Skip to main content

Epigenetic Basis of Human Cancer

  • Chapter
  • First Online:
The Molecular Basis of Human Cancer

Abstract

It is now overwhelmingly clear that any comprehensive study of cancer genomes should address epigenetics. The study of cancer epigenetics has changed from a somewhat unrespectable fringe activity to a central place in the molecular understanding of carcinogenesis. Indeed, it is now often argued that the epigenetic changes in cancer are of greater importance than the genetic changes. It is clear that both genetic and epigenetic mechanisms are important and often interrelated. In this chapter, we seek to give an introduction to the essentials of cancer. As this is a rapidly growing area, it is now impossible to cover many of the seminal contributions and so the overview provided is necessarily colored by our own specific interests. While we have sought to include many original references, we have also cited other reviews to enable the reader to find out more on a given topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Waddington CH. The epigenotype. Endeavour. 1942;1:18–20.

    Google Scholar 

  2. Haig D. The (dual) origin of epigenetics. Cold Spring Harbor Symp Quant Biol. 2004;69:67–70.

    Article  CAS  PubMed  Google Scholar 

  3. Holliday R. Epigenetics: a historical overview. Epigenetics. 2006;1:76–80.

    Google Scholar 

  4. Jablonka E, Lamb MJ. The changing concept of epigenetics. Ann N Y Acad Sci. 2002;981:82–96.

    Article  PubMed  Google Scholar 

  5. Bonasio R, Tu S, Reinberg D. Molecular signals of epigenetic states. Science. 2010;330:612–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Berger SL, Kouzarides T, Shiekhattar R, et al. An operational definition of epigenetics. Genes Dev. 2009;23:781–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yoder JA, Walsh CP, Bestor TH. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 1997;13:335–40.

    Article  CAS  PubMed  Google Scholar 

  8. Bird AP. Gene number, noise reduction and biological complexity. Trends Genet. 1995;11:94–100.

    Article  CAS  PubMed  Google Scholar 

  9. Jeanpierre M, Turleau C, Aurias A, et al. An embryonic-like methylation pattern of classical satellite DNA is observed in ICF syndrome. Hum Mol Genet. 1993;2:731–5.

    Article  CAS  PubMed  Google Scholar 

  10. Hansen RS, Wijmenga C, Luo P, et al. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci U S A. 1999;96:14412–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xu GL, Bestor TH, Bourc’his D, et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature. 1999;402:187–91.

    Article  CAS  PubMed  Google Scholar 

  12. Ehrlich M, Gama-Sosa MA, Huang L-H, et al. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues or cells. Nucleic Acids Res. 1982;10:2709–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gardiner-Garden M, Frommer M. CpG islands in vertebrate genomes. J Mol Biol. 1987;196:261–82.

    Article  CAS  PubMed  Google Scholar 

  14. Wang Y, Leung FCC. An evaluation of new criteria for CpG islands in the human genome as gene markers. Bioinformatics. 2004;20:1170–7.

    Article  CAS  PubMed  Google Scholar 

  15. McCabe MT, Brandes JC, Vertino PM. Cancer DNA methylation: molecular mechanisms and clinical implications. Clin Cancer Res. 2009;15:3927–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Saxonov S, Berg P, Brutlag DL. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci U S A. 2006;103:1412–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Coulondre C, Miller JH, Farabaugh PJ, et al. Molecular basis of base substitution hotspots in Escherichia coli. Nature. 1978;274:775–80.

    Article  CAS  PubMed  Google Scholar 

  18. Hendrich B, Hardeland U, Ng H-H, et al. The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature. 1999;401:301–4.

    Article  CAS  PubMed  Google Scholar 

  19. Walsh CP, Xu GL. Cytosine methylation and DNA repair. Curr Topic Micrbiol Immunol. 2006;301:283–315.

    CAS  Google Scholar 

  20. Cooper DN, Gerber-Huber S. DNA methylation and CpG suppression. Cell Differ. 1985;17:199–205.

    Article  CAS  PubMed  Google Scholar 

  21. Gonzalgo ML, Jones PA. Mutagenic and epigenetic effects of DNA methylation. Mutat Res. 1997;386:107–18.

    Article  CAS  PubMed  Google Scholar 

  22. Grønbaek K, Hother C, Jones PA. Epigenetic changes in cancer. Acta Pathol Microbiol Immunol Scand. 2007;115:1039–59.

    Article  Google Scholar 

  23. Rideout 3rd W, Coetzee G, Olumi A, et al. 5-Methylcytosine as an endogenous mutagen in the p53 tumor suppressor gene. Princess Takamatsu Symp. 1991;22:207–19.

    PubMed  Google Scholar 

  24. Chang SC, Tucker T, Thorogood NP, et al. Mechanisms of X-chromosome inactivation. Front Biosci. 2005;11:852–66.

    Article  Google Scholar 

  25. Bartolomei MS. Genomic imprinting: employing and avoiding epigenetic processes. Genes Dev. 2009;23:2124–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Holliday R, Pugh JE. DNA modification mechanisms and gene activity during development. Science. 1975;187:226–32.

    Article  CAS  PubMed  Google Scholar 

  27. Takai D, Jones PA. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci U S A. 2002;99:3740–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao Z, Han L. CpG islands: algorithms and applications in methylation studies. Biochem Biophys Res Commun. 2009;382:643–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Irizarry RA, Wu H, Feinberg AP. A species-generalized probabilistic model-based definition of CpG islands. Mammalian Genome. 2009;20:674–80.

    Google Scholar 

  30. Antequera F, Bird A. Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci U S A. 1993;90:11995–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bock C, Walter J, Paulsen M, et al. CpG island mapping by epigenome prediction. PLoS Comput Biol. 2007;3:e110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med. 2003;349:2042–54.

    Article  CAS  PubMed  Google Scholar 

  33. Watt F, Molloy PL. Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter. Genes Dev. 1988;2:1136–43.

    Article  CAS  PubMed  Google Scholar 

  34. Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006;31:89–97.

    Article  CAS  PubMed  Google Scholar 

  35. Boyes J, Bird A. DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell. 1991;64:1123–34.

    Article  CAS  PubMed  Google Scholar 

  36. Mutskov V, Felsenfeld G. Silencing of transgene transcription precedes methylation of promoter DNA and histone H3 lysine 9. EMBO J. 2004;23:138–49.

    Article  CAS  PubMed  Google Scholar 

  37. Stirzaker C, Song JZ, Davidson B, et al. Transcriptional gene silencing promotes DNA hypermethylation through a sequential change in chromatin modifications in cancer cells. Cancer Res. 2004;64:3871–7.

    Article  CAS  PubMed  Google Scholar 

  38. Cheng X, Blumenthal RM. Mammalian DNA methyltransferases: a structural perspective. Structure. 2008;16:341–50.

    Google Scholar 

  39. Jurkowska RZ, Jurkowski TP, Jeltsch A. Structure and function of mammalian DNA methyltransferases. Chembiochem. 2011;12:206–22.

    Article  CAS  PubMed  Google Scholar 

  40. Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Ann Rev Biochem. 2005;74:481–514.

    Article  CAS  PubMed  Google Scholar 

  41. Robert M-F, Morin S, Beaulieu N, et al. DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nat Genet. 2002;33:61–5.

    Article  PubMed  CAS  Google Scholar 

  42. Okano M, Bell DW, Haber DA, et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99:247–57.

    Article  CAS  PubMed  Google Scholar 

  43. Jeltsch A. On the enzymatic properties of Dnmt1: specificity, processivity, mechanism of linear diffusion and allosteric regulation of the enzyme. Epigenetics. 2006;1:63–6.

    Article  PubMed  Google Scholar 

  44. Chen Z, Riggs AD. Maintenance and regulation of DNA methylation patterns in mammals. Biochem Cell Biol. 2005;83:438–48.

    Article  CAS  PubMed  Google Scholar 

  45. Mortusewicz O, Schermelleh L, Walter J, et al. Recruitment of DNA methyltransferase I to DNA repair sites. Proc Natl Acad Sci U S A. 2005;102:8905–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bourc’his D, Xu G-L, Lin C-S, et al. Dnmt3L and the establishment of maternal genomic imprints. Science. 2001;294:2536–9.

    Article  PubMed  Google Scholar 

  47. Chen Z-X, Mann JR, Hsieh C-L, et al. Physical and functional interactions between the human DNMT3L protein and members of the de novo methyltransferase family. J Cell Biochem. 2005;95:902–17.

    Article  CAS  PubMed  Google Scholar 

  48. Goll MG, Kirpekar F, Maggert KA, et al. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science. 2006;311:395–8.

    Article  CAS  PubMed  Google Scholar 

  49. Jurkowski TP, Meusburger M, Phalke S, et al. Human DNMT2 methylates tRNA(Asp) molecules using a DNA methyltransferase-like catalytic mechanism. RNA. 2008;14:1663–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Morgan HD, Santos F, Green K, et al. Epigenetic reprogramming in mammals. Hum Mol Genet. 2005;14:R47–58.

    Article  CAS  PubMed  Google Scholar 

  51. Bhutani N, Burns DM, Blau HM. DNA demethylation dynamics. Cell. 2011;146:866–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wu SC, Zhang Y. Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol. 2010;11:607–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tahiliani M, Koh KP, Shen Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324:930–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ito S, D’Alessio AC, Taranova OV, et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature. 2010;466:1129–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Biel M, Wascholowski V, Giannis A. Epigenetics-an epicenter of gene regulation: histones and histone-modifying enzymes. Angew Chem. 2005;44:3186–216.

    Article  CAS  Google Scholar 

  56. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705.

    Article  CAS  PubMed  Google Scholar 

  57. Wang GG, Allis CD, Chi P. Chromatin remodeling and cancer. Part I: Covalent histone modifications. Trends Mol Med. 2007;13:363–72.

    Article  CAS  PubMed  Google Scholar 

  58. Allfrey VG, Faulkner R, Mirsky AE. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A. 1964;51:786–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Baxter CS, Byvoet P. Effects of carcinogens and other agents on histone methylation by a histone arginine methyltransferase purified from rat liver cytoplasm. Cancer Res. 1974;34:1418–23.

    CAS  PubMed  Google Scholar 

  60. Murray K. The occurence of epsilon-N-methyl lysine in histones. Biochemistry. 1964;3:10–5.

    Article  CAS  PubMed  Google Scholar 

  61. Stevely W, Stocken L. Phosphorylation of rat-thymus histone. Biochem J. 1966;100:20C–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ord MG, Stocken LA. Metabolic properties of histones from rat liver and thymus gland. Biochem J. 1966;98:888–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Goldknopf IL, Busch H. Isopeptide linkage between nonhistone and histone 2A polypeptides of chromosomal conjugate-protein A24. Proc Natl Acad Sci U S A. 1977;74:864–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hunt LT, Dayhoff MO. Amino-terminal sequence identity of ubiquitin and the nonhistone component of nuclear protein A24. Biochem Biophys Res Commun. 1977;74:650–5.

    Article  CAS  PubMed  Google Scholar 

  65. Ueda K, Omachi A, Kawaichi M, et al. Natural occurrence of poly(ADP-ribosyl) histones in rat liver. Proc Natl Acad Sci U S A. 1975;72:205–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shiio Y, Eisenman RN. Histone sumoylation is associated with transcriptional repression. Proc Natl Acad Sci U S A. 2003;100:13225–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Stanley JS, Griffin JB, Zempleni J. Biotinylation of histones in human cells. Effects of cell proliferation. Eur J Biochem. 2001;268:5424–9.

    Article  CAS  PubMed  Google Scholar 

  68. Chen Y, Sprung R, Tang Y, et al. Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol Cell Proteom. 2007;6:812–9.

    Article  CAS  Google Scholar 

  69. Margueron R, Trojer P, Reinberg D. The key to development: interpreting the histone code? Curr Opin Genet Dev. 2005;15:163–76.

    Article  CAS  PubMed  Google Scholar 

  70. Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403:41–5.

    Article  CAS  PubMed  Google Scholar 

  71. Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293:1074–80.

    Article  CAS  PubMed  Google Scholar 

  72. Lachner M, O’Sullivan RJ, Jenuwein T. An epigenetic road map for histone lysine methylation. J Cell Sci. 2003;116:2117–24.

    Article  CAS  PubMed  Google Scholar 

  73. Sawan C, Herceg Z. Histone modifications and cancer. Adv Genet. 2010;70:57–85.

    CAS  PubMed  Google Scholar 

  74. Choi JK, Howe LJ. Histone acetylation: truth of consequences? Biochem Cell Biol. 2009;87:139–50.

    Article  CAS  PubMed  Google Scholar 

  75. Lee KK, Workman JL. Histone acetyltransferase complexes: one size doesn’t fit all. Nat Rev Mol Cell Biol. 2007;8:284–95.

    Article  CAS  PubMed  Google Scholar 

  76. Ekwall K. Genome-wide analysis of HDAC function. Trends Genet. 2005;21:608–15.

    Article  CAS  PubMed  Google Scholar 

  77. Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function. Biochem J. 2007;404:1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Thiagalingam S, Cheng K-H, Lee HJ, et al. Histone deacetylases: unique players in shaping the epigenetic histone code. Ann N Y Acad Sci. 2003;983:84–100.

    Article  CAS  PubMed  Google Scholar 

  79. Zhang Y, Fang H, Jiao J, et al. The structure and function of histone deacetylases: the target for anti-cancer therapy. Curr Med Chem. 2008;15:2840–9.

    Article  CAS  PubMed  Google Scholar 

  80. Dillon SC, Zhang X, Trievel RC, et al. The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol. 2005;6:227.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Schuettengruber B, Chourrout D, Vervoort M, et al. Genome regulation by polycomb and trithorax proteins. Cell. 2007;128:735–45.

    Article  CAS  PubMed  Google Scholar 

  82. Shi Y, Lan F, Matson C, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 2004;119:941–53.

    Article  CAS  PubMed  Google Scholar 

  83. Hou H, Yu H. Structural insights into histone lysine demethylation. Curr Opin Struct Biol. 2010;20:739–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rotili D, Mai A. Targeting histone demethylases: a new avenue for the fight against cancer. Genes Cancer. 2011;2:663–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Agger K, Christensen J, Cloos PAC, et al. The emerging functions of histone demethylases. Curr Opin Genet Dev. 2008;18:159–68.

    Article  CAS  PubMed  Google Scholar 

  86. Santos-Rosa H, Schneider R, Bannister AJ, et al. Active genes are tri-methylated at K4 of histone H3. Nature. 2002;419:407–11.

    Article  CAS  PubMed  Google Scholar 

  87. Krogan NJ, Kim M, Tong A, et al. Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol Cell Biol. 2003;23:4207–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. van Leeuwen F, Gafken PR, Gottschling DE. Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell. 2002;109:745–56.

    Article  PubMed  Google Scholar 

  89. Nakayama J, Rice JC, Strahl BD, et al. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science. 2001;292:110–3.

    Article  CAS  PubMed  Google Scholar 

  90. Cao R, Wang L, Wang H, et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science. 2002;298:1039–43.

    Article  CAS  PubMed  Google Scholar 

  91. Schotta G, Lachner M, Sarma K, et al. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev. 2004;18:1251–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet. 2009;10:295–304.

    Article  CAS  PubMed  Google Scholar 

  93. Gama-Sosa MA, Slagel VA, Trewyn RW, et al. The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res. 1983;11:6883–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Feinberg AP, Vogelstein B, et al. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983;301:89–92.

    Article  CAS  PubMed  Google Scholar 

  95. Rauch TA, Zhong X, Wu X, et al. High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proc Natl Acad Sci U S A. 2008;105:252–7.

    Article  CAS  PubMed  Google Scholar 

  96. Ehrlich M. DNA methylation in cancer: too much, but also too little. Oncogene. 2002;21:5400–13.

    Article  CAS  PubMed  Google Scholar 

  97. Doggett NA. Overview of human repetitive DNA sequences. Curr Protoc Hum Genet. Appendix 1B, 2001.

    Google Scholar 

  98. Hoffmann MJ, Schulz WA. Causes and consequences of DNA hypomethylation in human cancer. Biochem Cell Biol. 2005;83:296–321.

    Article  CAS  PubMed  Google Scholar 

  99. Wilson AS, Power BE, Molloy PL. DNA hypomethylation and human diseases. Biochim Biophys Acta. 2007;1775:138–62.

    CAS  PubMed  Google Scholar 

  100. Cravo M, Pinto R, Fidalgo P, et al. Global DNA hypomethylation occurs in the early stages of intestinal type gastric carcinoma. Gut. 1996;39:434–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yegnasubramanian S, Haffner MC, Zhang Y, et al. DNA hypomethylation arises later in prostate cancer progression than CpG island hypermethylation and contributes to metastatic tumor heterogeneity. Cancer Res. 2008;68:8954–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer. 2004;4:143–53.

    Article  CAS  PubMed  Google Scholar 

  103. Suzuki K, Suzuki I, Leodolter A, et al. Global DNA demethylation in gastrointestinal cancer is age dependent and precedes genomic damage. Cancer Cell. 2006;9:199–207.

    Article  CAS  PubMed  Google Scholar 

  104. Rodriguez J, Frigola J, Vendrell E, et al. Chromosomal instability correlates with genome-wide DNA demethylation in human primary colorectal cancers. Cancer Res. 2006;66:8462–8.

    Article  CAS  PubMed  Google Scholar 

  105. Schulz WA, Elo JP, Florl AR, et al. Genomewide DNA hypomethylation is associated with alterations on chromosome 8 in prostate carcinoma. Genes Chromosomes Cancer. 2002;35:58–65.

    Article  CAS  PubMed  Google Scholar 

  106. Qu GZ, Grundy PE, Narayan A, et al. Frequent hypomethylation in Wilms tumors of pericentromeric DNA in chromosomes 1 and 16. Cancer Genet Cytogenet. 1999;109:34–9.

    Article  CAS  PubMed  Google Scholar 

  107. Wong N, Lam WC, Lai PB, et al. Hypomethylation of chromosome 1 heterochromatin DNA correlates with q-arm copy gain in human hepatocellular carcinoma. Am J Pathol. 2001;159:465–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Pogribny IP, Beland FA. DNA hypomethylation in the origin and pathogenesis of human diseases. Cell Mol Life Sci. 2009;66:2249–61.

    Article  CAS  PubMed  Google Scholar 

  109. Simpson AJG, Caballero OL, Jungbluth A, et al. Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer. 2005;5:615–25.

    Article  CAS  PubMed  Google Scholar 

  110. Scanlan MJ, Simpson AJG, Old LJ. The cancer/testis genes: review, standardization, and commentary. Cancer Immun. 2004;4:1.

    PubMed  Google Scholar 

  111. De Smet C, De Backer O, Faraoni I, et al. The activation of human gene MAGE-1 in tumor cells is correlated with genome-wide demethylation. Proc Natl Acad Sci U S A. 1996;93:7149–53.

    Article  PubMed  PubMed Central  Google Scholar 

  112. De Smet C, Lurquin C, Lethé B, et al. DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Mol Cell Biol. 1999;19:7327–35.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Nicholaou T, Ebert L, Davis ID, et al. Directions in the immune targeting of cancer: lessons learned from the cancer-testis Ag NY-ESO-1. Immunol Cell Biol. 2006;84:303–17.

    Article  CAS  PubMed  Google Scholar 

  114. Caballero OL, Chen Y-T. Cancer/testis (CT) antigens: potential targets for immunotherapy. Cancer Sci. 2009;100:2014–21.

    Article  CAS  PubMed  Google Scholar 

  115. Lavedan C, Leroy E, Dehejia A, et al. Identification, localization and characterization of the human gamma-synuclein gene. Hum Genet. 1998;103:106–12.

    Article  CAS  PubMed  Google Scholar 

  116. Bruening W, Giasson BI, Klein-Szanto AJ, et al. Synucleins are expressed in the majority of breast and ovarian carcinomas and in preneoplastic lesions of the ovary. Cancer. 2000;88:2154–63.

    Article  CAS  PubMed  Google Scholar 

  117. Ye Q, Zheng M-H, Cai Q, et al. Aberrant expression and demethylation of gamma-synuclein in colorectal cancer, correlated with progression of the disease. Cancer Sci. 2008;99:1924–32.

    CAS  PubMed  Google Scholar 

  118. Li Z, Sclabas GM, Peng B, et al. Overexpression of synuclein-gamma in pancreatic adenocarcinoma. Cancer. 2004;101:58–65.

    Article  CAS  PubMed  Google Scholar 

  119. Liu H, Liu W, Wu Y, et al. Loss of epigenetic control of synuclein-gamma gene as a molecular indicator of metastasis in a wide range of human cancers. Cancer Res. 2005;65:7635–43.

    CAS  PubMed  Google Scholar 

  120. Zhao W, Liu H, Liu W, et al. Abnormal activation of the synuclein-gamma gene in hepatocellular carcinomas by epigenetic alteration. Int J Oncol. 2006;28:1081–8.

    CAS  PubMed  Google Scholar 

  121. Morgan J, Hoekstra AV, Chapman-Davis E, et al. Synuclein-gamma (SNCG) may be a novel prognostic biomarker in uterine papillary serous carcinoma. Gynecol Oncol. 2009;114:293–8.

    Article  CAS  PubMed  Google Scholar 

  122. Gupta A, Godwin AK, Vanderveer L, et al. Hypomethylation of the synuclein gamma gene CpG island promotes its aberrant expression in breast carcinoma and ovarian carcinoma. Cancer Res. 2003;63:664–73.

    CAS  PubMed  Google Scholar 

  123. Czekierdowski A, Czekierdowska S, Wielgos M, et al. The role of CpG islands hypomethylation and abnormal expression of neuronal protein synuclein-gamma (SNCG) in ovarian cancer. Neuro Endocrinol Lett. 2006;27:381–6.

    CAS  PubMed  Google Scholar 

  124. Yanagawa N, Tamura G, Honda T, et al. Demethylation of the synuclein gamma gene CpG island in primary gastric cancers and gastric cancer cell lines. Clin Cancer Res. 2004;10:2447–51.

    Article  CAS  PubMed  Google Scholar 

  125. Cui H, Cruz-Correa M, Giardiello FM, et al. Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science. 2003;299:1753–5.

    Article  CAS  PubMed  Google Scholar 

  126. Cui H. Loss of imprinting of IGF2 as an epigenetic marker for the risk of human cancer. Dis Markers. 2007;23:105–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kawakami T, Okamoto K, Ogawa O, et al. XIST unmethylated DNA fragments in male-derived plasma as a tumour marker for testicular cancer. Lancet. 2004;363:40–2.

    Article  CAS  PubMed  Google Scholar 

  128. Laner T, Schulz WA, Engers R, et al. Hypomethylation of the XIST gene promoter in prostate cancer. Oncol Res. 2005;15:257–64.

    CAS  PubMed  Google Scholar 

  129. Brueckner B, Stresemann C, Kuner R, et al. The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res. 2007;67:1419–23.

    Article  CAS  PubMed  Google Scholar 

  130. Li A, Omura N, Hong S-M, et al. Pancreatic cancers epigenetically silence SIP1 and hypomethylate and overexpress miR-200a/200b in association with elevated circulating miR-200a and miR-200b levels. Cancer Res. 2010;70:5226–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tsai K-W, Hu L-Y, Wu C-W, et al. Epigenetic regulation of miR-196b expression in gastric cancer. Genes Chromosomes Cancer. 2010;49:969–80.

    Article  CAS  PubMed  Google Scholar 

  132. Palii SS, Robertson KD. Epigenetic control of tumor suppression. Crit Rev Eukaryot Gene Expr. 2007;17:295–316.

    Article  CAS  PubMed  Google Scholar 

  133. Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128:683–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Widschwendter M, Fiegl H, Egle D, et al. Epigenetic stem cell signature in cancer. Nat Genet. 2007;39:157–8.

    Article  CAS  PubMed  Google Scholar 

  135. Ohm JE, McGarvey KM, Yu X, et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet. 2007;39:237–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Baylin SB, Höppener JW, de Bustros A, et al. DNA methylation patterns of the calcitonin gene in human lung cancers and lymphomas. Cancer Res. 1986;46:2917–22.

    CAS  PubMed  Google Scholar 

  137. Sakai T, Toguchida J, Ohtani N, et al. Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Am J Hum Genet. 1991;48:880–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Greger V, Passarge E, Höpping W, et al. Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum Genet. 1989;83:155–8.

    Article  CAS  PubMed  Google Scholar 

  139. Herman JG, Latif F, Weng Y, et al. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci U S A. 1994;91:9700–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Merlo A, Herman JG, Mao L, et al. 5’ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med. 1995;1:686–92.

    Article  CAS  PubMed  Google Scholar 

  141. Herman JG, Jen J, Merlo A, et al. Hypermethylation-associated inactivation indicates a tumor suppressor role for p15INK4B. Cancer Res. 1996;56:722–7.

    CAS  PubMed  Google Scholar 

  142. Dobrovic A, Kristensen LS. DNA methylation, epimutations and cancer predisposition. Int J Biochem Cell Biol. 2009;41:34–9.

    Article  CAS  PubMed  Google Scholar 

  143. Herman JG, Umar A, Polyak K, et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci U S A. 1998;95:6870–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Catteau A, Morris JR. BRCA1 methylation: a significant role in tumour development? Semin Cancer Biol. 2002;12:359–71.

    Article  CAS  PubMed  Google Scholar 

  145. Esteller M, Fraga MF, Guo M, et al. DNA methylation patterns in hereditary human cancers mimic sporadic tumorigenesis. Hum Mol Genet. 2001;10:3001–7.

    Article  CAS  PubMed  Google Scholar 

  146. Esteller M, Silva JM, Dominguez G, et al. Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst. 2000;92:564–9.

    Article  CAS  PubMed  Google Scholar 

  147. Bianco T, Chenevix-Trench G, Walsh DC, et al. Tumour-specific distribution of BRCA1 promoter region methylation supports a pathogenetic role in breast and ovarian cancer. Carcinogenesis. 2000;21:147–51.

    Article  CAS  PubMed  Google Scholar 

  148. Shames DS, Minna JD, Gazdar AF. DNA methylation in health, disease, and cancer. Curr Mol Med. 2007;7:85–102.

    Article  CAS  PubMed  Google Scholar 

  149. Fabbri M, Calin GA. Epigenetics and miRNAs in human cancer. Adv Genet. 2010;70:87–99.

    CAS  PubMed  Google Scholar 

  150. Costello JF, Frühwald MC, Smiraglia DJ, et al. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet. 2000;24:132–8.

    Article  CAS  PubMed  Google Scholar 

  151. Esteller M, Corn PG, Baylin SB, et al. A gene hypermethylation profile of human cancer. Cancer Res. 2001;61:3225–9.

    CAS  PubMed  Google Scholar 

  152. Adorján P, Distler J, Lipscher E, et al. Tumour class prediction and discovery by microarray-based DNA methylation analysis. Nucleic Acids Res. 2002;30, e21.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Cottrell S, Jung K, Kristiansen G, et al. Discovery and validation of 3 novel DNA methylation markers of prostate cancer prognosis. J Urol. 2007;177:1753–8.

    Article  CAS  PubMed  Google Scholar 

  154. Nakagawa H, Nuovo GJ, Zervos EE, et al. Age-related hypermethylation of the 5′ region of MLH1 in normal colonic mucosa is associated with microsatellite-unstable colorectal cancer development. Cancer Res. 2001;61:6991–5.

    CAS  PubMed  Google Scholar 

  155. Versmold B, Felsberg J, Mikeska T, et al. Epigenetic silencing of the candidate tumor suppressor gene PROX1 in sporadic breast cancer. Int J Cancer. 2007;121:547–54.

    Article  CAS  PubMed  Google Scholar 

  156. Raval A, Tanner SM, Byrd JC, et al. Downregulation of death-associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia. Cell. 2007;129:879–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Candiloro ILM, Mikeska T, Hokland P, et al. Rapid analysis of heterogeneously methylated DNA using digital methylation-sensitive high resolution melting: application to the CDKN2B (p15) gene. Epigenet Chromatin. 2008;1:7.

    Article  CAS  Google Scholar 

  158. Pasquali L, Bedeir A, Ringquist S, et al. Quantification of CpG island methylation in progressive breast lesions from normal to invasive carcinoma. Cancer Lett. 2007;257:136–44.

    Article  CAS  PubMed  Google Scholar 

  159. Novak P, Jensen TJ, Garbe JC, et al. Stepwise DNA methylation changes are linked to escape from defined proliferation barriers and mammary epithelial cell immortalization. Cancer Res. 2009;69:5251–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Cameron EE, Baylin SB, Herman JG. p15(INK4B) CpG island methylation in primary acute leukemia is heterogeneous and suggests density as a critical factor for transcriptional silencing. Blood. 1999;94:2445–51.

    CAS  PubMed  Google Scholar 

  161. Clark SJ. Action at a distance: epigenetic silencing of large chromosomal regions in carcinogenesis. Hum Mol Genet. 2007;16:R88–95.

    Article  CAS  PubMed  Google Scholar 

  162. Choi S-W, Friso S. Interactions between folate and aging for carcinogenesis. Clin Chem Lab Med. 2005;43:1151–7.

    Article  CAS  PubMed  Google Scholar 

  163. Herceg Z. Epigenetics and cancer: towards an evaluation of the impact of environmental and dietary factors. Mutagenesis. 2007;22:91–103.

    Article  CAS  PubMed  Google Scholar 

  164. Fraga MF, Esteller M. Epigenetics and aging: the targets and the marks. Trends Genet. 2007;23:413–8.

    Article  CAS  PubMed  Google Scholar 

  165. Suter MA, Aagaard-Tillery KM. Environmental influences on epigenetic profiles. Semin Reprod Med. 2009;27:380–90.

    Article  CAS  PubMed  Google Scholar 

  166. Mathers JC, Strathdee G, Relton CL. Induction of epigenetic alterations by dietary and other environmental factors. Adv Genet. 2010;71:3–39.

    PubMed  Google Scholar 

  167. Arita A, Costa M. Epigenetics in metal carcinogenesis: nickel, arsenic, chromium and cadmium. Metallomics Integrated Biometal Sci. 2009;1:222–8.

    Article  CAS  Google Scholar 

  168. Issa J-P. Aging, DNA methylation and cancer. Crit Rev Oncol/Hematol. 1999;32:31–43.

    Article  CAS  Google Scholar 

  169. Issa JP, Ottaviano YL, Celano P, et al. Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nat Genet. 1994;7:536–40.

    Article  CAS  PubMed  Google Scholar 

  170. Waki T, Tamura G, Sato M, et al. Age-related methylation of tumor suppressor and tumor-related genes: an analysis of autopsy samples. Oncogene. 2003;22:4128–33.

    Article  CAS  PubMed  Google Scholar 

  171. Ahuja N, Li Q, Mohan AL, et al. Aging and DNA methylation in colorectal mucosa and cancer. Cancer Res. 1998;58:5489–94.

    CAS  PubMed  Google Scholar 

  172. Roll JD, Rivenbark AG, Jones WD, et al. DNMT3b overexpression contributes to a hypermethylator phenotype in human breast cancer cell lines. Mol Cancer. 2008;7:15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Girault I, Tozlu S, Lidereau R, et al. Expression analysis of DNA methyltransferases 1, 3A, and 3B in sporadic breast carcinomas. Clin Cancer Res. 2003;9:4415–22.

    CAS  PubMed  Google Scholar 

  174. Robertson KD, Uzvolgyi E, Liang G, et al. The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Res. 1999;27:2291–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Casillas MA, Lopatina N, Andrews LG, et al. Transcriptional control of the DNA methyltransferases is altered in aging and neoplastically-transformed human fibroblasts. Mol Cell Biochem. 2003;252:33–43.

    Article  CAS  PubMed  Google Scholar 

  176. Castro R, Rivera I, Ravasco P, et al. 5,10-Methylenetetrahydrofolate reductase (MTHFR) 677C → T and 1298A → C mutations are associated with DNA hypomethylation. J Med Genet. 2004;41:454–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Friso S, Choi S-W, Girelli D, et al. A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc Natl Acad Sci U S A. 2002;99:5606–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Paz MF, Avila S, Fraga MF, et al. Germ-line variants in methyl-group metabolism genes and susceptibility to DNA methylation in normal tissues and human primary tumors. Cancer Res. 2002;62:4519–24.

    CAS  PubMed  Google Scholar 

  179. Frosst P, Blom HJ, Milos R, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995;10:111–3.

    Article  CAS  PubMed  Google Scholar 

  180. Friso S, Girelli D, Trabetti E, et al. The MTHFR 1298A>C polymorphism and genomic DNA methylation in human lymphocytes. Cancer Epidemiol Biomarkers Prev. 2005;14:938–43.

    Article  CAS  PubMed  Google Scholar 

  181. van der Put NM, Gabreëls F, Stevens EM, et al. A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet. 1998;62:1044–51.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Ogino S, Hazra A, Tranah GJ, et al. MGMT germline polymorphism is associated with somatic MGMT promoter methylation and gene silencing in colorectal cancer. Carcinogenesis. 2007;28:1985–90.

    Article  CAS  PubMed  Google Scholar 

  183. Kristensen LS, Nielsen HM, Hager H, et al. Methylation of MGMT in malignant pleural mesothelioma occurs in a subset of patients and is associated with the T allele of the rs16906252 MGMT promoter SNP. Lung Cancer. 2011;71:130–6.

    Article  PubMed  Google Scholar 

  184. Hawkins NJ, Lee JH-F, Wong JJ-L, et al. MGMT methylation is associated primarily with the germline C>T SNP (rs16906252) in colorectal cancer and normal colonic mucosa. Mod Pathol. 2009;22:1588–99.

    Article  CAS  PubMed  Google Scholar 

  185. Candiloro ILM, Dobrovic A. Detection of MGMT promoter methylation in normal individuals is strongly associated with the T allele of the rs16906252 MGMT promoter single nucleotide polymorphism. Cancer Prev Res. 2009;2:862–7.

    Article  CAS  Google Scholar 

  186. Hellman A, Chess A. Extensive sequence-influenced DNA methylation polymorphism in the human genome. Epigenet Chromatin. 2010;3:11.

    Article  CAS  Google Scholar 

  187. Kerkel K, Spadola A, Yuan E, et al. Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA methylation. Nat Genet. 2008;40:904–8.

    Article  CAS  PubMed  Google Scholar 

  188. Toyota M, Ahuja N, Ohe-Toyota M, et al. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A. 1999;96:8681–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Weisenberger DJ, Siegmund KD, Campan M, et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet. 2006;38:787–93.

    Article  CAS  PubMed  Google Scholar 

  190. Ogino S, Kawasaki T, Kirkner GJ, et al. Evaluation of markers for CpG island methylator phenotype (CIMP) in colorectal cancer by a large population-based sample. J Mol Diagn. 2007;9:305–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Ogino S, Cantor M, Kawasaki T, et al. CpG island methylator phenotype (CIMP) of colorectal cancer is best characterised by quantitative DNA methylation analysis and prospective cohort studies. Gut. 2006;55:1000–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Ogino S, Kawasaki T, Kirkner GJ, et al. CpG island methylator phenotype-low (CIMP-low) in colorectal cancer: possible associations with male sex and KRAS mutations. J Mol Diagn. 2006;8:582–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Hawkins N, Norrie M, Cheong K, et al. CpG island methylation in sporadic colorectal cancers and its relationship to microsatellite instability. Gastroenterology. 2002;122:1376–87.

    Article  CAS  PubMed  Google Scholar 

  194. Kambara T, Simms LA, Whitehall VLJ, et al. BRAF mutation is associated with DNA methylation in serrated polyps and cancers of the colorectum. Gut. 2004;53:1137–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Shen L, Toyota M, Kondo Y, et al. Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proc Natl Acad Sci U S A. 2007;104:18654–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Ang PW, Loh M, Liem N, et al. Comprehensive profiling of DNA methylation in colorectal cancer reveals subgroups with distinct clinicopathological and molecular features. BMC Cancer. 2010;10:227.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Toyota M, Ohe-Toyota M, Ahuja N, et al. Distinct genetic profiles in colorectal tumors with or without the CpG island methylator phenotype. Proc Natl Acad Sci U S A. 2000;97:710–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Samowitz WS, Albertsen H, Herrick J, et al. Evaluation of a large, population-based sample supports a CpG island methylator phenotype in colon cancer. Gastroenterology. 2005;129:837–45.

    Article  CAS  PubMed  Google Scholar 

  199. Samowitz WS, Sweeney C, Herrick J, et al. Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. Cancer Res. 2005;65:6063–9.

    Article  CAS  PubMed  Google Scholar 

  200. Nagasaka T, Sasamoto H, Notohara K, et al. Colorectal cancer with mutation in BRAF, KRAS, and wild-type with respect to both oncogenes showing different patterns of DNA methylation. J Clin Oncol. 2004;22:4584–94.

    Article  CAS  PubMed  Google Scholar 

  201. Lynch HT, de la Chapelle A. Hereditary colorectal cancer. N Engl J Med. 2003;348:919–32.

    Article  CAS  PubMed  Google Scholar 

  202. Issa J-PJ, Shen L, Toyota M. CIMP, at last. Gastroenterology. 2005;129:1121–4.

    Article  CAS  PubMed  Google Scholar 

  203. Issa J-P. CpG island methylator phenotype in cancer. Nat Rev Cancer. 2004;4:988–93.

    Article  CAS  PubMed  Google Scholar 

  204. Teodoridis JM, Hardie C, Brown R. CpG island methylator phenotype (CIMP) in cancer: causes and implications. Cancer Lett. 2008;268:177–86.

    Article  CAS  PubMed  Google Scholar 

  205. Tellez CS, Shen L, Estécio MRH, et al. CpG island methylation profiling in human melanoma cell lines. Melanoma Res. 2009;19:146–55.

    Article  CAS  PubMed  Google Scholar 

  206. Marsit CJ, Houseman EA, Christensen BC, et al. Examination of a CpG island methylator phenotype and implications of methylation profiles in solid tumors. Cancer Res. 2006;66:10621–9.

    Article  CAS  PubMed  Google Scholar 

  207. Turcan S, Rohle D, Goenka A, et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature. 2012;483:479–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. McGarvey KM, Fahrner JA, Greene E, et al. Silenced tumor suppressor genes reactivated by DNA demethylation do not return to a fully euchromatic chromatin state. Cancer Res. 2006;66:3541–9.

    Article  CAS  PubMed  Google Scholar 

  209. Kondo Y, Shen L, Cheng AS, et al. Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat Genet. 2008;40:741–50.

    Article  CAS  PubMed  Google Scholar 

  210. Ocker M, Schneider-Stock R. Histone deacetylase inhibitors: signalling towards p21cip1/waf1. Int J Biochem Cell Biol. 2007;39:1367–74.

    Article  CAS  PubMed  Google Scholar 

  211. Richon VM, Sandhoff TW, Rifkind RA, et al. Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci U S A. 2000;97:10014–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Hoshikawa Y, Kwon HJ, Yoshida M, et al. Trichostatin A induces morphological changes and gelsolin expression by inhibiting histone deacetylase in human carcinoma cell lines. Exp Cell Res. 1994;214:189–97.

    Article  CAS  PubMed  Google Scholar 

  213. Mielnicki LM, Ying AM, Head KL, et al. Epigenetic regulation of gelsolin expression in human breast cancer cells. Exp Cell Res. 1999;249:161–76.

    Article  CAS  PubMed  Google Scholar 

  214. Li X, Yoshida M, Beppu T, et al. Modulation of growth and differentiation of human colon carcinoma cells by histone deacetylase inhibitory trichostatins. Int J Oncol. 1996;8:431–7.

    CAS  PubMed  Google Scholar 

  215. Berdasco M, Esteller M. Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell. 2010;19:698–711.

    Article  CAS  PubMed  Google Scholar 

  216. Muntean AG, Hess JL. Epigenetic dysregulation in cancer. Am J Pathol. 2009;175:1353–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Miremadi A, Oestergaard MZ, Pharoah PDP, et al. Cancer genetics of epigenetic genes. Hum Mol Genet. 2007;16:R28–49.

    Article  CAS  PubMed  Google Scholar 

  218. Gangaraju VK, Bartholomew B. Mechanisms of ATP dependent chromatin remodeling. Mutat Res. 2007;618:3–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Roberts CW, Orkin SH. The SWI/SNF complex—chromatin and cancer. Nat Rev Cancer. 2004;4:133–42.

    Article  CAS  PubMed  Google Scholar 

  220. Roberts CWM, Biegel JA. The role of SMARCB1/INI1 in development of rhabdoid tumor. Cancer Biol Therapy. 2009;8:412–6.

    Article  CAS  Google Scholar 

  221. McKenna ES, Sansam CG, Cho Y-J, et al. Loss of the epigenetic tumor suppressor SNF5 leads to cancer without genomic instability. Mol Cell Biol. 2008;28:6223–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Henikoff S. Position effect and related phenomena. Curr Opin Genet Dev. 1992;2:907–12.

    Article  CAS  PubMed  Google Scholar 

  223. Dobrovic A, Gareau P, Seifert AM, et al. A HindIII RFLP for the HPRT pseudogene on chromosome 3 (HPRTP1). Nucleic Acids Res. 1987;15:1346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Grant SG, Campbell CE, Duff C, et al. Gene inactivation as a mechanism for the expression of recessive phenotypes. Am J Hum Genet. 1989;45:619–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Whitelaw E. Unravelling the X in sex. Dev Cell. 2006;11:759–62.

    Article  CAS  PubMed  Google Scholar 

  226. Frigola J, Song J, Stirzaker C, et al. Epigenetic remodeling in colorectal cancer results in coordinate gene suppression across an entire chromosome band. Nat Genet. 2006;38:540–9.

    Article  CAS  PubMed  Google Scholar 

  227. Stransky N, Vallot C, Reyal F, et al. Regional copy number-independent deregulation of transcription in cancer. Nat Genet. 2006;38:1386–96.

    Article  CAS  PubMed  Google Scholar 

  228. Hitchins MP, Lin VA, Buckle A, et al. Epigenetic inactivation of a cluster of genes flanking MLH1 in microsatellite-unstable colorectal cancer. Cancer Res. 2007;67:9107–16.

    Article  CAS  PubMed  Google Scholar 

  229. Dallosso AR, Hancock AL, Szemes M, et al. Frequent long-range epigenetic silencing of protocadherin gene clusters on chromosome 5q31 in Wilms’ tumor. PLoS Genet. 2009;5, e1000745.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  230. Novak P, Jensen T, Oshiro MM, et al. Epigenetic inactivation of the HOXA gene cluster in breast cancer. Cancer Res. 2006;66:10664–70.

    Article  CAS  PubMed  Google Scholar 

  231. Novak P, Jensen T, Oshiro MM, et al. Agglomerative epigenetic aberrations are a common event in human breast cancer. Cancer Res. 2008;68:8616–25.

    Article  CAS  PubMed  Google Scholar 

  232. Coolen MW, Stirzaker C, Song JZ, et al. Consolidation of the cancer genome into domains of repressive chromatin by long-range epigenetic silencing (LRES) reduces transcriptional plasticity. Nat Cell Biol. 2010;12:235–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Buckley PG, Das S, Bryan K, et al. Genome-wide DNA methylation analysis of neuroblastic tumors reveals clinically relevant epigenetic events and large-scale epigenomic alterations localized to telomeric regions. Int J Cancer. 2011;128:2296–305.

    Article  CAS  PubMed  Google Scholar 

  234. Feinberg AP, Ohlsson R, Henikoff S. The epigenetic progenitor origin of human cancer. Nat Rev Genet. 2006;7:21–33.

    Article  CAS  PubMed  Google Scholar 

  235. Schuebel KE, Chen W, Cope L, et al. Comparing the DNA hypermethylome with gene mutations in human colorectal cancer. PLoS Genet. 2007;3:1709–23.

    Article  CAS  PubMed  Google Scholar 

  236. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3:415–28.

    Article  CAS  PubMed  Google Scholar 

  237. Hochedlinger K, Blelloch R, Brennan C, et al. Reprogramming of a melanoma genome by nuclear transplantation. Genes Dev. 2004;18:1875–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Wood LD, Parsons DW, Jones S, et al. The genomic landscapes of human breast and colorectal cancers. Science. 2007;318:1108–13.

    Article  CAS  PubMed  Google Scholar 

  239. Ley TJ, Mardis ER, Ding L, et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature. 2008;456:66–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Ley TJ, Ding L, Walter MJ, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363:2424–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Ayton PM, Chen EH, Cleary ML. Binding to nonmethylated CpG DNA is essential for target recognition, transactivation, and myeloid transformation by an MLL oncoprotein. Mol Cell Biol. 2004;24:10470–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Dou Y, Milne TA, Tackett AJ, et al. Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell. 2005;121:873–85.

    Article  CAS  PubMed  Google Scholar 

  243. Toyota M, Suzuki H. Epigenetic drivers of genetic alterations. Adv Genet. 2010;70:309–23.

    CAS  PubMed  Google Scholar 

  244. Jacinto FV, Esteller M. Mutator pathways unleashed by epigenetic silencing in human cancer. Mutagenesis. 2007;22:247–53.

    Article  CAS  PubMed  Google Scholar 

  245. Miquel C, Jacob S, Grandjouan S, et al. Frequent alteration of DNA damage signalling and repair pathways in human colorectal cancers with microsatellite instability. Oncogene. 2007;26:5919–26.

    Article  CAS  PubMed  Google Scholar 

  246. Patra SK. Ras regulation of DNA-methylation and cancer. Exp Cell Res. 2008;314:1193–201.

    Article  CAS  PubMed  Google Scholar 

  247. Lund P, Weisshaupt K, Mikeska T, et al. Oncogenic HRAS suppresses clusterin expression through promoter hypermethylation. Oncogene. 2006;25:4890–903.

    Article  CAS  PubMed  Google Scholar 

  248. Bakin AV, Curran T. Role of DNA 5-methylcytosine transferase in cell transformation by fos. Science. 1999;283:387–90.

    Article  CAS  PubMed  Google Scholar 

  249. Laird PW, Jackson-Grusby L, Fazeli A, et al. Suppression of intestinal neoplasia by DNA hypomethylation. Cell. 1995;81:197–205.

    Article  CAS  PubMed  Google Scholar 

  250. MacLeod AR, Szyf M. Expression of antisense to DNA methyltransferase mRNA induces DNA demethylation and inhibits tumorigenesis. J Biol Chem. 1995;270:8037–43.

    Article  CAS  PubMed  Google Scholar 

  251. Yuan J, Pu M, Zhang Z, et al. Histone H3-K56 acetylation is important for genomic stability in mammals. Cell Cycle. 2009;8:1747–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Masumoto H, Hawke D, Kobayashi R, et al. A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature. 2005;436:294–8.

    Article  CAS  PubMed  Google Scholar 

  253. Lal G, Padmanabha L, Smith BJ, et al. RIZ1 is epigenetically inactivated by promoter hypermethylation in thyroid carcinoma. Cancer. 2006;107:2752–9.

    Article  CAS  PubMed  Google Scholar 

  254. Du Y, Carling T, Fang W, et al. Hypermethylation in human cancers of the RIZ1 tumor suppressor gene, a member of a histone/protein methyltransferase superfamily. Cancer Res. 2001;61:8094–9.

    CAS  PubMed  Google Scholar 

  255. Chang HW, Chan A, Kwong DLW, et al. Detection of hypermethylated RIZ1 gene in primary tumor, mouth, and throat rinsing fluid, nasopharyngeal swab, and peripheral blood of nasopharyngeal carcinoma patient. Clin Cancer Res. 2003;9:1033–8.

    CAS  PubMed  Google Scholar 

  256. Mori N, Yoshinaga K, Tomita K, et al. Aberrant methylation of the RIZ1 gene in myelodysplastic syndrome and acute myeloid leukemia. Leuk Res. 2011;35:516–21.

    Article  CAS  PubMed  Google Scholar 

  257. Tokumaru Y, Nomoto S, Jerónimo C, et al. Biallelic inactivation of the RIZ1 gene in human gastric cancer. Oncogene. 2003;22:6954–8.

    Article  CAS  PubMed  Google Scholar 

  258. Kim K-C, Geng L, Huang S. Inactivation of a histone methyltransferase by mutations in human cancers. Cancer Res. 2003;63:7619–23.

    CAS  PubMed  Google Scholar 

  259. Steele-Perkins G, Fang W, Yang XH, et al. Tumor formation and inactivation of RIZ1, an Rb-binding member of a nuclear protein-methyltransferase superfamily. Genes Dev. 2001;15:2250–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Laird PW. The power and the promise of DNA methylation markers. Nat Rev Cancer. 2003;3:253–66.

    Article  CAS  PubMed  Google Scholar 

  261. Herman JG, Graff JR, Myöhänen S, et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A. 1996;93:9821–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Colella S, Shen L, Baggerly KA, et al. Sensitive and quantitative universal Pyrosequencing methylation analysis of CpG sites. Biotechniques. 2003;35:146–50.

    CAS  PubMed  Google Scholar 

  263. Tost J, Dunker J, Gut IG. Analysis and quantification of multiple methylation variable positions in CpG islands by pyrosequencing. Biotechniques. 2003;35:152–6.

    Google Scholar 

  264. Uhlmann K, Brinckmann A, Toliat MR, et al. Evaluation of a potential epigenetic biomarker by quantitative methyl-single nucleotide polymorphism analysis. Electrophoresis. 2002;23:4072–9.

    Article  CAS  PubMed  Google Scholar 

  265. Eads CA, Danenberg KD, Kawakami K, et al. MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res. 2000;28, E32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Kristensen LS, Mikeska T, Krypuy M, et al. Sensitive Melting Analysis after Real Time- Methylation Specific PCR (SMART-MSP): high-throughput and probe-free quantitative DNA methylation detection. Nucleic Acids Res. 2008;36, e42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  267. Wojdacz TK, Dobrovic A. Methylation-sensitive high resolution melting (MS-HRM): a new approach for sensitive and high-throughput assessment of methylation. Nucleic Acids Res. 2007;35, e41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  268. Mikeska T, Candiloro ILM, Dobrovic A. The implications of heterogeneous DNA methylation for the accurate quantification of methylation. Epigenomics. 2010;2:561–73.

    Article  CAS  PubMed  Google Scholar 

  269. Lofton-Day C, Model F, Devos T, et al. DNA methylation biomarkers for blood-based colorectal cancer screening. Clin Chem. 2008;54:414–23.

    Article  CAS  PubMed  Google Scholar 

  270. Grützmann R, Molnar B, Pilarsky C, et al. Sensitive detection of colorectal cancer in peripheral blood by septin 9 DNA methylation assay. PLoS One. 2008;3, e3759.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  271. Tänzer M, Balluff B, Distler J, et al. Performance of epigenetic markers SEPT9 and ALX4 in plasma for detection of colorectal precancerous lesions. PLoS One. 2010;5, e9061.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  272. Maier S, Nimmrich I, Koenig T, et al. DNA-methylation of the homeodomain transcription factor PITX2 reliably predicts risk of distant disease recurrence in tamoxifen-treated, node-negative breast cancer patients – Technical and clinical validation in a multi-centre setting in collaboration with the European Organisation for Research and Treatment of Cancer (EORTC) PathoBiology group. Eur J Cancer. 2007;43:1679–86.

    Article  CAS  PubMed  Google Scholar 

  273. Harbeck N, Nimmrich I, Hartmann A, et al. Multicenter study using paraffin-embedded tumor tissue testing PITX2 DNA methylation as a marker for outcome prediction in tamoxifen-treated, node-negative breast cancer patients. J Clin Oncol. 2008;26:5036–42.

    Article  CAS  PubMed  Google Scholar 

  274. Nimmrich I, Sieuwerts AM, Meijer-van Gelder ME, et al. DNA hypermethylation of PITX2 is a marker of poor prognosis in untreated lymph node-negative hormone receptor-positive breast cancer patients. Breast Cancer Res Treat. 2008;111:429–37.

    Article  CAS  PubMed  Google Scholar 

  275. Hartmann O, Spyratos F, Harbeck N, et al. DNA methylation markers predict outcome in node-positive, estrogen receptor-positive breast cancer with adjuvant anthracycline-based chemotherapy. Clin Cancer Res. 2009;15:315–23.

    Article  CAS  PubMed  Google Scholar 

  276. Bañez LL, Sun L, van Leenders GJ, et al. Multicenter clinical validation of PITX2 methylation as a prostate specific antigen recurrence predictor in patients with post-radical prostatectomy prostate cancer. J Urol. 2010;184:149–56.

    Article  PubMed  CAS  Google Scholar 

  277. Weiss G, Cottrell S, Distler J, et al. DNA methylation of the PITX2 gene promoter region is a strong independent prognostic marker of biochemical recurrence in patients with prostate cancer after radical prostatectomy. J Urol. 2009;181:1678–85.

    Article  CAS  PubMed  Google Scholar 

  278. Meiers I, Shanks JH, Bostwick DG. Glutathione S-transferase pi (GSTP1) hypermethylation in prostate cancer: Review 2007. Pathology. 2007;39:299–304.

    Article  CAS  PubMed  Google Scholar 

  279. Nakayama M, Gonzalgo ML, Yegnasubramanian S, et al. GSTP1 CpG island hypermethylation as a molecular biomarker for prostate cancer. J Cell Biochem. 2004;91:540–52.

    Article  CAS  PubMed  Google Scholar 

  280. Harden SV, Guo Z, Epstein JI, et al. Quantitative GSTP1 methylation clearly distinguishes benign prostatic tissue and limited prostate adenocarcinoma. J Urol. 2003;169:1138–42.

    Article  CAS  PubMed  Google Scholar 

  281. Jerónimo C, Usadel H, Henrique R, et al. Quantitation of GSTP1 methylation in non-neoplastic prostatic tissue and organ-confined prostate adenocarcinoma. J Natl Cancer Inst. 2001;93:1747–52.

    Article  PubMed  Google Scholar 

  282. Bastian PJ, Palapattu GS, Lin X, et al. Preoperative serum DNA GSTP1 CpG island hypermethylation and the risk of early prostate-specific antigen recurrence following radical prostatectomy. Clin Cancer Res. 2005;11:4037–43.

    Article  CAS  PubMed  Google Scholar 

  283. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403:503–11.

    Article  CAS  PubMed  Google Scholar 

  284. Perou CM, Sørlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52.

    Article  CAS  PubMed  Google Scholar 

  285. Pieper R, Costello J, Kroes R, et al. Direct correlation between methylation status and expression of the human O-6-methylguanine DNA methyltransferase gene. Cancer Commun. 1991;3:241–53.

    CAS  PubMed  Google Scholar 

  286. Aquilina G, Biondo R, Dogliotti E, et al. Expression of the endogenous O6-methylguanine-DNA-methyltransferase protects Chinese hamster ovary cells from spontaneous G:C to A:T transitions. Cancer Res. 1992;52:6471–5.

    CAS  PubMed  Google Scholar 

  287. Esteller M, Garcia-Foncillas J, Andion E, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med. 2000;343:1350–4.

    Article  CAS  PubMed  Google Scholar 

  288. Hegi ME, Diserens A-C, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352:997–1003.

    Article  CAS  PubMed  Google Scholar 

  289. Esteller M, Gaidano G, Goodman SN, et al. Hypermethylation of the DNA repair gene O(6)-methylguanine DNA methyltransferase and survival of patients with diffuse large B-cell lymphoma. J Natl Cancer Inst. 2002;94:26–32.

    Article  CAS  PubMed  Google Scholar 

  290. Vlassenbroeck I, Califice S, Diserens A-C, et al. Validation of real-time methylation-specific PCR to determine O6-methylguanine-DNA methyltransferase gene promoter methylation in glioma. J Mol Diagn. 2008;10:332–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Mikeska T, Bock C, El-Maarri O, et al. Optimization of quantitative MGMT promoter methylation analysis using pyrosequencing and combined bisulfite restriction analysis. J Mol Diagn. 2007;9:368–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Kane MF, Loda M, Gaida GM, et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res. 1997;57:808–11.

    CAS  PubMed  Google Scholar 

  293. Agrelo R, Cheng W-H, Setien F, et al. Epigenetic inactivation of the premature aging Werner syndrome gene in human cancer. Proc Natl Acad Sci U S A. 2006;103:8822–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Dobrovic A, Simpfendorfer D. Methylation of the BRCA1 gene in sporadic breast cancer. Cancer Res. 1997;57:3347–50.

    CAS  PubMed  Google Scholar 

  295. Hess CJ, Ameziane N, Schuurhuis GJ, et al. Hypermethylation of the FANCC and FANCL promoter regions in sporadic acute leukaemia. Cell Oncol. 2008;30:299–306.

    CAS  PubMed  PubMed Central  Google Scholar 

  296. Taniguchi T, Tischkowitz M, Ameziane N, et al. Disruption of the Fanconi anemia-BRCA pathway in cisplatin-sensitive ovarian tumors. Nat Med. 2003;9:568–74.

    Article  CAS  PubMed  Google Scholar 

  297. Hegi ME, Sciuscio D, Murat A, et al. Epigenetic deregulation of DNA repair and its potential for therapy. Clin Cancer Res. 2009;15:5026–31.

    Article  CAS  PubMed  Google Scholar 

  298. Toyota M, Suzuki H, Yamashita T, et al. Cancer epigenomics: Implications of DNA methylation in personalized cancer therapy. Cancer Sci. 2009;100:787–91.

    Article  CAS  PubMed  Google Scholar 

  299. Helleday T, Petermann E, Lundin C, et al. DNA repair pathways as targets for cancer therapy. Nat Rev Cancer. 2008;8:193–204.

    Article  CAS  PubMed  Google Scholar 

  300. Martin SA, Hewish M, Lord CJ, et al. Genomic instability and the selection of treatments for cancer. J Pathol. 2010;220:281–9.

    CAS  PubMed  Google Scholar 

  301. Bianco-Miotto T, Chiam K, Buchanan G, et al. Global levels of specific histone modifications and an epigenetic gene signature predict prostate cancer progression and development. Cancer Epidemiol Biomarkers Prev. 2010;19:2611–22.

    Article  CAS  PubMed  Google Scholar 

  302. Ellinger J, Kahl P, von der Gathen J, et al. Global levels of histone modifications predict prostate cancer recurrence. Prostate. 2010;70:61–9.

    Article  CAS  PubMed  Google Scholar 

  303. Seligson DB, Horvath S, Shi T, et al. Global histone modification patterns predict risk of prostate cancer recurrence. Nature. 2005;435:1262–6.

    Article  CAS  PubMed  Google Scholar 

  304. Van Den Broeck A, Brambilla E, Moro-Sibilot D, et al. Loss of histone H4K20 trimethylation occurs in preneoplasia and influences prognosis of non-small cell lung cancer. Clin Cancer Res. 2008;14:7237–45.

    Article  CAS  Google Scholar 

  305. Seligson DB, Horvath S, McBrian MA, et al. Global levels of histone modifications predict prognosis in different cancers. Am J Pathol. 2009;174:1619–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Barlési F, Giaccone G, Gallegos-Ruiz MI, et al. Global histone modifications predict prognosis of resected non small-cell lung cancer. J Clin Oncol. 2007;25:4358–64.

    Article  PubMed  Google Scholar 

  307. Wei Y, Xia W, Zhang Z, et al. Loss of trimethylation at lysine 27 of histone H3 is a predictor of poor outcome in breast, ovarian, and pancreatic cancers. Mol Carcinog. 2008;47:701–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Manuyakorn A, Paulus R, Farrell J, et al. Cellular histone modification patterns predict prognosis and treatment response in resectable pancreatic adenocarcinoma: results from RTOG 9704. J Clin Oncol. 2010;28:1358–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Park YS, Jin MY, Kim YJ, et al. The global histone modification pattern correlates with cancer recurrence and overall survival in gastric adenocarcinoma. Ann Surg Oncol. 2008;15:1968–76.

    Article  PubMed  Google Scholar 

  310. Elsheikh SE, Green AR, Rakha EA, et al. Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome. Cancer Res. 2009;69:3802–9.

    Article  CAS  PubMed  Google Scholar 

  311. Mosashvilli D, Kahl P, Mertens C, et al. Global histone acetylation levels: prognostic relevance in patients with renal cell carcinoma. Cancer Sci. 2010;101:2664–9.

    Article  CAS  PubMed  Google Scholar 

  312. Sharma SV, Lee DY, Li B, et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell. 2010;141:69–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Yoo CB, Jones PA. Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov. 2006;5:37–50.

    Article  CAS  PubMed  Google Scholar 

  314. Santi DV, Norment A, Garrett CE. Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine. Proc Natl Acad Sci U S A. 1984;81:6993–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Osterman DG, DePillis GD, Wu JC, et al. 5-Fluorocytosine in DNA is a mechanism-based inhibitor of HhaI methylase. Biochemistry. 1988;27:5204–10.

    Article  CAS  PubMed  Google Scholar 

  316. van Bemmel DM, Brank AS, Eritja R, et al. DNA (Cytosine-C5) methyltransferase inhibition by oligodeoxyribonucleotides containing 2-(1H)-pyrimidinone (zebularine aglycon) at the enzymatic target site. Biochem Pharmacol. 2009;78:633–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  317. Champion C, Guianvarc’h D, Sénamaud-Beaufort C, et al. Mechanistic insights on the inhibition of c5 DNA methyltransferases by zebularine. PLoS One. 2010;5, e12388.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  318. Kaminskas E, Farrell A, Abraham S, et al. Approval summary: azacitidine for treatment of myelodysplastic syndrome subtypes. Clin Cancer Res. 2005;11:3604–8.

    Article  CAS  PubMed  Google Scholar 

  319. Saba HI. Decitabine in the treatment of myelodysplastic syndromes. Ther Clin Risk Manag. 2007;3:807–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  320. Marquez VE, Kelley JA, Agbaria R, et al. Zebularine: a unique molecule for an epigenetically based strategy in cancer chemotherapy. Ann N Y Acad Sci. 2005;1058:246–54.

    Article  CAS  PubMed  Google Scholar 

  321. Andersen JB, Factor VM, Marquardt JU, et al. An integrated genomic and epigenomic approach predicts therapeutic response to zebularine in human liver cancer. Sci Trans Med. 2010;2:54ra77.

    Google Scholar 

  322. Issa J-PJ, Kantarjian HM. Targeting DNA methylation. Clin Cancer Res. 2009;15:3938–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Egger G, Aparicio AM, Escobar SG, et al. Inhibition of histone deacetylation does not block resilencing of p16 after 5-aza-2′-deoxycytidine treatment. Cancer Res. 2007;67:346–53.

    Article  CAS  PubMed  Google Scholar 

  324. Lopez J, Percharde M, Coley HM, et al. The context and potential of epigenetics in oncology. Br J Cancer. 2009;100:571–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Yee KWL, Jabbour E, Kantarjian HM, et al. Clinical experience with decitabine in North American patients with myelodysplastic syndrome. Ann Hematol. 2005;84:18–24.

    Article  CAS  PubMed  Google Scholar 

  326. Issa J-PJ, Garcia-Manero G, Giles FJ, et al. Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in hematopoietic malignancies. Blood. 2004;103:1635–40.

    Article  CAS  PubMed  Google Scholar 

  327. Rüter B, Wijermans PW, Lübbert M. Superiority of prolonged low-dose azanucleoside administration? Results of 5-aza-2′-deoxycytidine retreatment in high-risk myelodysplasia patients. Cancer. 2006;106:1744–50.

    Article  PubMed  CAS  Google Scholar 

  328. Graham JS, Kaye SB, Brown R. The promises and pitfalls of epigenetic therapies in solid tumours. Eur J Cancer. 2009;45:1129–36.

    Article  CAS  PubMed  Google Scholar 

  329. Juergens RA, Wrangle J, Vendetti FP, et al. Combination epigenetic therapy has efficacy in patients with refractory advanced non-small cell lung cancer. Cancer Discov. 2011;1:598–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Rasheed WK, Johnstone RW, Prince HM. Histone deacetylase inhibitors in cancer therapy. Expert Opin Invest Drugs. 2007;16:659–78.

    Article  CAS  Google Scholar 

  331. Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 2006;5:769–84.

    Article  CAS  PubMed  Google Scholar 

  332. Xu WS, Parmigiani RB, Marks PA. Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene. 2007;26:5541–52.

    Article  CAS  PubMed  Google Scholar 

  333. Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 1997;90:595–606.

    Article  CAS  PubMed  Google Scholar 

  334. Altucci L, Minucci S. Epigenetic therapies in haematological malignancies: searching for true targets. Eur J Cancer. 2009;45:1137–45.

    Article  CAS  PubMed  Google Scholar 

  335. Grant C, Rahman F, Piekarz R, et al. Romidepsin: a new therapy for cutaneous T-cell lymphoma and a potential therapy for solid tumors. Expert Rev Anticancer Ther. 2010;10:997–1008.

    Article  CAS  PubMed  Google Scholar 

  336. Piekarz RL, Frye R, Turner M, et al. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J Clin Oncol. 2009;27:5410–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Marks PA, Breslow R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol. 2007;25:84–90.

    Article  CAS  PubMed  Google Scholar 

  338. Duvic M, Talpur R, Ni X, et al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood. 2007;109:31–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Kuendgen A, Gattermann N. Valproic acid for the treatment of myeloid malignancies. Cancer. 2007;110:943–54.

    Article  CAS  PubMed  Google Scholar 

  340. Duenas-Gonzalez A, Candelaria M, Perez-Plascencia C, et al. Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors. Cancer Treat Rev. 2008;34:206–22.

    Article  CAS  PubMed  Google Scholar 

  341. Bots M, Johnstone RW. Rational combinations using HDAC inhibitors. Clin Cancer Res. 2009;15:3970–7.

    Article  CAS  PubMed  Google Scholar 

  342. Cameron EE, Bachman KE, Myöhänen S, et al. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet. 1999;21:103–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas Mikeska Ph.D. or Alexander Dobrovic Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mikeska, T., Dobrovic, A. (2017). Epigenetic Basis of Human Cancer. In: Coleman, W., Tsongalis, G. (eds) The Molecular Basis of Human Cancer. Humana Press, New York, NY. https://doi.org/10.1007/978-1-59745-458-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-458-2_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-934115-18-3

  • Online ISBN: 978-1-59745-458-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics