Skip to main content

Personalized Medicine for the Treatment of Human Cancer

  • Chapter
  • First Online:
The Molecular Basis of Human Cancer

Abstract

Our understanding of the sequential events that lead to the development of human cancer has resulted in better diagnostic, prognostic, and therapeutic approaches to the management of this disease. Personalized medicine offers the ability to begin to tailor management strategies for each individual patient based on genetic variants associated with the metabolism, transport, and absorption/excretion of therapeutic drugs. In addition, the detection of specific protein targets and mutations in signal transduction specific pathway genes will enable the healthcare provider to utilize novel therapeutics, such as monoclonal antibody and small molecule therapeutics, more effectively. This chapter highlights several examples of these pharmacogenomic applications as they pertain to personalized medicine in the management of the cancer patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.

    Article  CAS  PubMed  Google Scholar 

  2. Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science. 2001;291:1304–51.

    Article  CAS  PubMed  Google Scholar 

  3. Wistuba II, Gelovani JG, Jacoby JJ, Davis SE, Herbst RS. Methodological and practical challenges for personalized cancer therapies. Nat Rev Clin Oncol. 2011;8:135–41.

    Article  CAS  PubMed  Google Scholar 

  4. Hood L, Friend SH. Predictive, personalized, preventive, participatory (P4) cancer medicine. Nat Rev Clin Oncol. 2011;8:184–7.

    Article  PubMed  Google Scholar 

  5. Tursz T, Andre F, Lazar V, Lacroix L, Soria J-C. Implications of personalized medicine—perspective from a cancer center. Nat Rev Clin Oncol. 2011;8:177–83.

    Article  PubMed  Google Scholar 

  6. Diamandis M, White NMA, Yousef GM. Personalized medicine: marking a new epoch in cancer patient management. Mol Cancer Res. 2010;8:1175–87.

    Article  CAS  PubMed  Google Scholar 

  7. Evans WE, McLeod HL. Pharmacogenomics—drug disposition, drug targets, and side effects. N Engl J Med. 2003;348:538–49.

    Article  CAS  PubMed  Google Scholar 

  8. Shastry BS. Pharmacogenetics and the concept of individualized medicine. Pharmacogenomics J. 2006;6:16–21.

    Article  CAS  PubMed  Google Scholar 

  9. Weinshilboum R, Wang L. Pharmacogenomics: bench to bedside. Nat Rev Drug Discov. 2004;3:739–48.

    Article  CAS  PubMed  Google Scholar 

  10. Vogel F. Moderne Probleme der Humangenetik Ergebnisse der Inneren Medizin und Kinderheilkunde. Heidelberg, Berlin: Springer; 1959.

    Google Scholar 

  11. Mager J, Glaser G, Razin A, et al. Metabolic effects of pyrimidines derived from fava bean glycosides on human erythrocytes deficient in glucose-6-phosphate dehydrogenase. Biochem Biophys Res Commun. 1965;20:235–40.

    Article  CAS  PubMed  Google Scholar 

  12. Weber WW. Populations and genetic polymorphisms. Mol Diagn. 1999;4:299–307.

    Article  CAS  PubMed  Google Scholar 

  13. Snyder L. Studies in human inheritance. IX, the inheritance of taste deficiency in man. Ohio J Sci. 1932;32:46–440.

    Google Scholar 

  14. Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into rational therapeutics. Science. 1999;286:487–91.

    Article  CAS  PubMed  Google Scholar 

  15. Hughes HB, Biehl JP, Jones AP, Schmidt LH. Metabolism of isoniazid in man as related to the occurrence of peripheral neuritis. Am Rev Tuberc. 1954;70:266–73.

    CAS  PubMed  Google Scholar 

  16. Weinshilboum R. Inheritance and drug response. N Engl J Med. 2003;348:529–37.

    Article  PubMed  Google Scholar 

  17. Di Francia R, Frigeri F, Berretta M, et al. Decision criteria for rational selection of homogeneous genotyping platforms for pharmacogenomics testing in clinical diagnostics. Clin Chem Lab Med. 2010;48:447–59.

    Article  CAS  PubMed  Google Scholar 

  18. Jannetto PJ, Laleli-Sahin E, Wong SH. Pharmacogenomic genotyping methodologies. Clin Chem Lab Med. 2004;42:1256–64.

    Article  CAS  PubMed  Google Scholar 

  19. Tsongalis GJ, Coleman WB. Clinical genotyping: the need for interrogation of single nucleotide polymorphisms and mutations in the clinical laboratory. Clin Chim Acta. 2006;363:127–37.

    Article  CAS  PubMed  Google Scholar 

  20. Tsongalis GJ, Peterson JD, de Abreu FB, et al. Routine use of the Ion Torrent AmpliSeq Cancer Hotspot Panel for identification of clinically actionable somatic mutations. Clin Chem Lab Med. 2014;52:707–14.

    Article  CAS  PubMed  Google Scholar 

  21. Miller DT, Adam MP, Aradhya S, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86:749–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang Y, Muzny DM, Reid JG, et al. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med. 2013;369:1502–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gardiner SJ, Begg EJ. Pharmacogenetics, drug-metabolizing enzymes, and clinical practice. Pharmacol Rev. 2006;58:521–90.

    Article  CAS  PubMed  Google Scholar 

  24. Ingelman-Sundberg M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J. 2005;5:6–13.

    Article  CAS  PubMed  Google Scholar 

  25. Robarge JD, Li L, Desta Z, Nguyen A, Flockhart DA. The star-allele nomenclature: retooling for translational genomics. Clin Pharmacol Ther. 2007;82:244–8.

    Article  CAS  PubMed  Google Scholar 

  26. Heim MH, Meyer UA. Evolution of a highly polymorphic human cytochrome P450 gene cluster: CYP2D6. Genomics. 1992;14:49–58.

    Article  CAS  PubMed  Google Scholar 

  27. Goetz MP, Rae JM, Suman VJ, et al. Pharmacogenetics of tamoxifen biotransformation is associated with clinical outcomes of efficacy and hot flashes. J Clin Oncol. 2005;23:9312–8.

    Article  CAS  PubMed  Google Scholar 

  28. de Souza JA, Olopade OI. CYP2D6 genotyping and tamoxifen: an unfinished story in the quest for personalized medicine. Semin Oncol. 2011;38:263–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Saladores P, Murdter T, Eccles D, et al. Tamoxifen metabolism predicts drug concentrations and outcome in premenopausal patients with early breast cancer. Pharmacogenomics J. 2015;15:84–94.

    Article  CAS  PubMed  Google Scholar 

  30. Wasserman E, Myara A, Lokiec F, et al. Severe CPT-11 toxicity in patients with Gilbert’s syndrome: two case reports. Ann Oncol. 1997;8:1049–51.

    Article  CAS  PubMed  Google Scholar 

  31. Ando M, Hasegawa Y, Ando Y. Pharmacogenetics of irinotecan: a promoter polymorphism of UGT1A1 gene and severe adverse reactions to irinotecan. Invest New Drugs. 2005;23:539–45.

    Article  CAS  PubMed  Google Scholar 

  32. Massacesi C, Terrazzino S, Marcucci F, et al. Uridine diphosphate glucuronosyl transferase 1A1 promoter polymorphism predicts the risk of gastrointestinal toxicity and fatigue induced by irinotecan-based chemotherapy. Cancer. 2006;106:1007–16.

    Article  CAS  PubMed  Google Scholar 

  33. Cote J-F, Kirzin S, Kramar A, et al. UGT1A1 polymorphism can predict hematologic toxicity in patients treated with irinotecan. Clin Cancer Res. 2007;13:3269–75.

    Article  CAS  PubMed  Google Scholar 

  34. McLeod HL, Sargent DJ, Marsh S, et al. Pharmacogenetic predictors of adverse events and response to chemotherapy in metastatic colorectal cancer: results from North American Gastrointestinal Intergroup Trial N9741. J Clin Oncol. 2010;28:3227–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lennard L, Lilleyman JS, Van Loon J, Weinshilboum RM. Genetic variation in response to 6-mercaptopurine for childhood acute lymphoblastic leukaemia. Lancet. 1990;336:225–9.

    Article  CAS  PubMed  Google Scholar 

  36. Nguyen CM, Mendes MA, Ma JD. Thiopurine methyltransferase (TPMT) genotyping to predict myelosuppression risk. PLoS Curr. 2011;3:RRN1236.

    PubMed  PubMed Central  Google Scholar 

  37. Salavaggione OE, Wang L, Wiepert M, Yee VC, Weinshilboum RM. Thiopurine S-methyltransferase pharmacogenetics: variant allele functional and comparative genomics. Pharmacogenet Genomics. 2005;15:801–15.

    Article  CAS  PubMed  Google Scholar 

  38. Yates CR, Krynetski EY, Loennechen T, et al. Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann Intern Med. 1997;126:608–14.

    Article  CAS  PubMed  Google Scholar 

  39. Goda K, Bacso Z, Szabo G. Multidrug resistance through the spectacle of P-glycoprotein. Curr Cancer Drug Targets. 2009;9:281–97.

    Article  CAS  PubMed  Google Scholar 

  40. Tanigawara Y. Role of P-glycoprotein in drug disposition. Ther Drug Monit. 2000;22:137–40.

    Article  CAS  PubMed  Google Scholar 

  41. Ambudkar SV, Dey S, Hrycyna CA, et al. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol. 1999;39:361–98.

    Article  CAS  PubMed  Google Scholar 

  42. Ishikawa T, Sakurai A, Hirano H, et al. Emerging new technologies in pharmacogenomics: rapid SNP detection, molecular dynamic simulation, and QSAR analysis methods to validate clinically important genetic variants of human ABC Transporter ABCB1 (P-gp/MDR1). Pharmacol Ther. 2010;126:69–81.

    Article  CAS  PubMed  Google Scholar 

  43. Krause DS, Van Etten RA. Tyrosine kinases as targets for cancer therapy. N Engl J Med. 2005;353:172–87.

    Article  CAS  PubMed  Google Scholar 

  44. Murphy KM, Levis M, Hafez MJ, et al. Detection of FLT3 internal tandem duplication and D835 mutations by a multiplex polymerase chain reaction and capillary electrophoresis assay. J Mol Diagn. 2003;5:96–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Marcucci G, Haferlach T, Dohner H. Molecular genetics of adult acute myeloid leukemia: prognostic and therapeutic implications. J Clin Oncol. 2011;29:475–86.

    Article  CAS  PubMed  Google Scholar 

  46. Shankar DB, Li J, Tapang P, et al. ABT-869, a multitargeted receptor tyrosine kinase inhibitor: inhibition of FLT3 phosphorylation and signaling in acute myeloid leukemia. Blood. 2007;109:3400–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Smith CC, Wang Q, Chin C-S, et al. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature. 2012;485:260–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Soda M, Choi YL, Enomoto M, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561–6.

    Article  CAS  PubMed  Google Scholar 

  49. Shaw AT, Solomon B. Targeting anaplastic lymphoma kinase in lung cancer. Clin Cancer Res. 2011;17:2081–6.

    Article  CAS  PubMed  Google Scholar 

  50. Grande E, Bolos M-V, Arriola E. Targeting oncogenic ALK: a promising strategy for cancer treatment. Mol Cancer Ther. 2011;10:569–79.

    Article  CAS  PubMed  Google Scholar 

  51. Sasaki T, Rodig SJ, Chirieac LR, Janne PA. The biology and treatment of EML4-ALK non-small cell lung cancer. Eur J Cancer. 2010;46:1773–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bang YJ. The potential for crizotinib in non-small cell lung cancer: a perspective review. Ther Adv Med Oncol. 2011;3:279–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Katayama R, Shaw AT, Khan TM, et al. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers. Sci Transl Med. 2012;4:120.

    Article  CAS  Google Scholar 

  54. Shaw AT, Engelman JA. Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med. 2014;370:2537–9.

    Article  CAS  PubMed  Google Scholar 

  55. Socinski MA, Goldman J, El-Hariry I, et al. A multicenter phase II study of ganetespib monotherapy in patients with genotypically defined advanced non-small cell lung cancer. Clin Cancer Res. 2013;19:3068–77.

    Article  CAS  PubMed  Google Scholar 

  56. Melo JV, Barnes DJ. Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nat Rev Cancer. 2007;7:441–53.

    Article  CAS  PubMed  Google Scholar 

  57. An X, Tiwari AK, Sun Y, et al. BCR-ABL tyrosine kinase inhibitors in the treatment of Philadelphia chromosome positive chronic myeloid leukemia: a review. Leuk Res. 2010;34:1255–68.

    Article  CAS  PubMed  Google Scholar 

  58. Ou J, Vergilio J-A, Bagg A. Molecular diagnosis and monitoring in the clinical management of patients with chronic myelogenous leukemia treated with tyrosine kinase inhibitors. Am J Hematol. 2008;83:296–302.

    Article  CAS  PubMed  Google Scholar 

  59. Saglio G, Kim D-W, Issaragrisil S, et al. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N Engl J Med. 2010;362:2251–9.

    Article  CAS  PubMed  Google Scholar 

  60. Hazarika M, Jiang X, Liu Q, et al. Tasigna for chronic and accelerated phase Philadelphia chromosome—positive chronic myelogenous leukemia resistant to or intolerant of imatinib. Clin Cancer Res. 2008;14:5325–31.

    Article  CAS  PubMed  Google Scholar 

  61. Wei G, Rafiyath S, Liu D. First-line treatment for chronic myeloid leukemia: dasatinib, nilotinib, or imatinib. J Hematol Oncol. 2010;3:47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Soverini S, Hochhaus A, Nicolini FE, et al. BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: recommendations from an expert panel on behalf of European LeukemiaNet. Blood. 2011;118:1208–15.

    Article  CAS  PubMed  Google Scholar 

  63. Gutierrez C, Schiff R. HER2: biology, detection, and clinical implications. Arch Pathol Lab Med. 2011;135:55–62.

    PubMed  PubMed Central  Google Scholar 

  64. Moasser MM. Targeting the function of the HER2 oncogene in human cancer therapeutics. Oncogene. 2007;26:6577–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bang Y-J, Van Cutsem E, Feyereislova A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376:687–97.

    Article  CAS  PubMed  Google Scholar 

  66. Laudadio J, Quigley DI, Tubbs R, Wolff DJ. HER2 testing: a review of detection methodologies and their clinical performance. Expert Rev Mol Diagn. 2007;7:53–64.

    Article  CAS  PubMed  Google Scholar 

  67. Wolff AC, Hammond MEH, Schwartz JN, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol. 2007;25:118–45.

    Article  CAS  PubMed  Google Scholar 

  68. Sauter G, Lee J, Bartlett JM, Slamon DJ, Press MF. Guidelines for human epidermal growth factor receptor 2 testing: biologic and methodologic considerations. J Clin Oncol. 2009;27:1323–33.

    Article  CAS  PubMed  Google Scholar 

  69. Wolff AC, Hammond ME, Hicks DG, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol. 2013;31:3997–4013.

    Article  PubMed  Google Scholar 

  70. Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007;7:169–81.

    Article  CAS  PubMed  Google Scholar 

  71. Pao W, Chmielecki J. Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat Rev Cancer. 2010;10:760–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rosell R, Moran T, Queralt C, et al. Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med. 2009;361:958–67.

    Article  CAS  PubMed  Google Scholar 

  73. Su K-Y, Chen H-Y, Li K-C, et al. Pretreatment epidermal growth factor receptor (EGFR) T790M mutation predicts shorter EGFR tyrosine kinase inhibitor response duration in patients with non-small-cell lung cancer. J Clin Oncol. 2012;30:433–40.

    Article  CAS  PubMed  Google Scholar 

  74. Vakiani E, Solit DB. KRAS and BRAF: drug targets and predictive biomarkers. J Pathol. 2011;223:219–29.

    Article  CAS  PubMed  Google Scholar 

  75. Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364:2507–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ko JM, Fisher DE. A new era: melanoma genetics and therapeutics. J Pathol. 2011;223:241–50.

    Article  CAS  PubMed  Google Scholar 

  77. Sharma SG, Gulley ML. BRAF mutation testing in colorectal cancer. Arch Pathol Lab Med. 2010;134:1225–8.

    CAS  PubMed  Google Scholar 

  78. Di Nicolantonio F, Martini M, Molinari F, et al. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol. 2008;26:5705–12.

    Article  CAS  PubMed  Google Scholar 

  79. Laurent-Puig P, Cayre A, Manceau G, et al. Analysis of PTEN, BRAF, and EGFR status in determining benefit from cetuximab therapy in wild-type KRAS metastatic colon cancer. J Clin Oncol. 2009;27:5924–30.

    Article  CAS  PubMed  Google Scholar 

  80. Prahallad A, Sun C, Huang S, et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature. 2012;483:100–3.

    Article  CAS  PubMed  Google Scholar 

  81. Scaltriti M, Baselga J. The epidermal growth factor receptor pathway: a model for targeted therapy. Clin Cancer Res. 2006;12:5268–72.

    Article  CAS  PubMed  Google Scholar 

  82. Prenen H, Tejpar S, Van Cutsem E. New strategies for treatment of KRAS mutant metastatic colorectal cancer. Clin Cancer Res. 2010;16:2921–6.

    Article  CAS  PubMed  Google Scholar 

  83. Amado RG, Wolf M, Peeters M, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26:1626–34.

    Article  CAS  PubMed  Google Scholar 

  84. Lievre A, Bachet JB, Boige V, et al. KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol. 2008;26:374–9.

    Article  CAS  PubMed  Google Scholar 

  85. Karapetis CS, Khambata-Ford S, Jonker DJ, et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med. 2008;359:1757–65.

    Article  CAS  PubMed  Google Scholar 

  86. Douillard JY, Oliner KS, Siena S, et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med. 2013;369:1023–34.

    Article  CAS  PubMed  Google Scholar 

  87. Ciardiello F, Normanno N, Maiello E, et al. Clinical activity of FOLFIRI plus cetuximab according to extended gene mutation status by next-generation sequencing: findings from the CAPRI-GOIM trial. Ann Oncol. 2014;25:1756–61.

    Article  CAS  PubMed  Google Scholar 

  88. De Roock W, Jonker DJ, Di Nicolantonio F, et al. Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab. JAMA. 2010;304:1812–20.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory J. Tsongalis Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Turner, S.A., Tsongalis, G.J. (2017). Personalized Medicine for the Treatment of Human Cancer. In: Coleman, W., Tsongalis, G. (eds) The Molecular Basis of Human Cancer. Humana Press, New York, NY. https://doi.org/10.1007/978-1-59745-458-2_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-458-2_43

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-934115-18-3

  • Online ISBN: 978-1-59745-458-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics