Skip to main content

Small Molecule Inhibitors

  • Chapter
  • First Online:
The Molecular Basis of Human Cancer
  • 3130 Accesses

Abstract

Before the biomedical community had had any understanding of the molecular mechanisms that drive tumorigenesis, the discovery of cancer chemotherapy exclusively focused on the development of novel cytotoxic compounds targeting DNA processing and cell division including DNA alkylating and cross-linking agents, antimetabolites, topoisomerase inhibitors, and anti-tubulin agents. Although these drugs can be very efficacious in killing tumor cells, serious side effects accompanied due to the lack of selectivity for tumor cells versus normal cells. The side effects, such as bone marrow suppression and gastrointestinal, cardiac, hepatic, and renal toxicities, significantly limit their use. In addition, drug resistance was frequently observed after initial stabilization or regression of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thurston DE. Chemistry and pharmacology of anticancer drugs. Boca Raton, FL: Taylor & Francis Group; 2006. p. 290.

    Book  Google Scholar 

  2. Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 2002;53:615–27.

    Article  CAS  PubMed  Google Scholar 

  3. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  PubMed  Google Scholar 

  4. Saalfield S, Jackson-Allen P. Biopsychosocial consequences of sweetened drink consumption in children 0-6 years of age. Pediatr Nurs. 2006;32:467–71.

    Google Scholar 

  5. Cheng H, Force T. Why do Kinase inhibitors cause cardiotoxicity and what can be done about it? Prog Cardiovasc Dis. 2010;53:114–20.

    Google Scholar 

  6. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298:1912–34.

    Article  CAS  PubMed  Google Scholar 

  7. Haber DA, Settleman J. Cancer—drivers and passengers. Nature. 2007;446:145–6.

    Article  CAS  PubMed  Google Scholar 

  8. Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. 2010;Cell. 141:1117–34.

    Google Scholar 

  9. Krause DS, Van Etten RA. Tyrosine kinases as targets for cancer therapy. N Engl J Med. 2005;353:172–87.

    Article  CAS  PubMed  Google Scholar 

  10. Tsatsanis C, Spandidos DA. The role of oncogenic kinases in human cancer (review). Int J Mol Med. 2000;5:583–90.

    CAS  PubMed  Google Scholar 

  11. Shchemelinin I, Sefc L, Necas E. Protein kinases, their function and implication in cancer and other diseases. Folia Biol. 2006;52:81–100.

    CAS  Google Scholar 

  12. Blagden S, de Bono J. Drugging cell cycle kinases in cancer therapy. Curr Drug Targets. 2005;6:325–35.

    Article  CAS  PubMed  Google Scholar 

  13. Futreal PA, Coin L, Marshall M, et al. A census of human cancer genes. Nat Rev Cancer. 2004;4:177–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Forbes SA, Tang G, Bindal N, et al. COSMIC (the Catalogue of Somatic Mutations in Cancer): a resource to investigate acquired mutations in human cancer. Nucleic Acids Res. 2010;38:D652–7.

    Google Scholar 

  15. Zhang JM, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer. 2009;9:28–39.

    Article  PubMed  CAS  Google Scholar 

  16. Deininger MWN, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood. 2000;96:3343–56.

    CAS  PubMed  Google Scholar 

  17. Kalidas MT, Kantarjian H, Talpaz M. Chronic myelogenous leukemia. JAMA. 2001;286:895–8.

    Article  CAS  PubMed  Google Scholar 

  18. Nowell PC, Hungerford DA. Minute chromosome in human chronic granulocytic leukemia. Science. 1960;132:1497.

    Google Scholar 

  19. Rowley JD. New consistent chromosomal abnormality in chronic myelogenous leukemia identified by quinacrine fluorescence and giemsa staining. Nature. 1973;243:290–3.

    Article  CAS  PubMed  Google Scholar 

  20. Knight GWA, McLellan D. Use and limitations of imatinib mesylate (Glivec), a selective inhibitor of the tyrosine kinase Abl transcript in the treatment of chronic myeloid leukaemia. Br J Biomed Sci. 2004;61:103–11.

    Article  CAS  PubMed  Google Scholar 

  21. Daley GQ, Vanetten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the p210 Bcr/Abl gene of the philadelphia-chromosome. Science. 1990;247:824–30.

    Article  CAS  PubMed  Google Scholar 

  22. Lugo TG, Pendergast AM, Muller AJ, Witte ON. Tyrosine kinase-activity and transformation potency of Bcr-Abl oncogene products. Science. 1990;247:1079–82.

    Article  CAS  PubMed  Google Scholar 

  23. Deininger M, Buchdunger E, Druker BJ. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood. 2005;105:2640–53.

    Article  CAS  PubMed  Google Scholar 

  24. Capdeville R, Buchdunger E, Zimmermann J, Matter A. Glivec (ST1571, Imatinib), a rationally developed, targeted anticancer drug. Nat Rev Drug Discov. 2002;1:493–502.

    Article  CAS  PubMed  Google Scholar 

  25. Zimmermann J, Buchdunger E, Mett H, et al. Phenylamino-pyrimidine (PAP)—derivatives: a new class of potent and highly selective PDGF-receptor autophosphorylation inhibitors. Bioorg Med Chem Lett. 1996;6:1221–6.

    Article  CAS  Google Scholar 

  26. Zimmermann J, Buchdunger E, Mett H, Meyer T, Lydon NB. Potent and selective inhibitors of the Abl-kinase: phenylamino-pyrimidine (PAP) derivatives. Bioorg Med Chem Lett. 1997;7:187–92.

    Article  CAS  Google Scholar 

  27. Teague SJ, Davis AM, Leeson PD, Oprea T. The design of leadlike combinatorial libraries. Angew Chem Int Ed. 1999;38:3743–8.

    Article  CAS  Google Scholar 

  28. Zimmermann J, Furet P, Buchdunger E. STI571, a new treatment modality for CML. ACS Symp Ser. 2001;796:245–59.

    Article  CAS  Google Scholar 

  29. Schindler T, Bornmann W, Pellicena P, et al. Structural mechanism for STI-571 inhibition of Abelson tyrosine kinase. Science. 2000;289:1938–42.

    Article  CAS  PubMed  Google Scholar 

  30. Moen MD, McKeage K, Plosker GL, Siddiqui MAA. Imatinib—a review of its use in chronic myeloid leukaemia. Drugs. 2007;67:299–320.

    Article  CAS  PubMed  Google Scholar 

  31. Buchdunger E, Cioffi CL, Law N, et al. Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-Kit and platelet-derived growth factor receptors. J Pharmacol Exp Ther. 2000;295:139–45.

    CAS  PubMed  Google Scholar 

  32. Quintas-Cardama A, Kantarjian H, Cortes J. Imatinib and beyond-exploring the full potential of targeted therapy for CML. Nat Rev Clin Oncol. 2009;6:535–43.

    Article  CAS  PubMed  Google Scholar 

  33. Druker BJ, Guilhot F, O'Brien SG, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355:2408–17.

    Article  CAS  PubMed  Google Scholar 

  34. Weisberg E, Manley PW, Cowan-Jacob SW, Hochhaus A, Griffin JD. Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat Rev Cancer. 2007;7:345–56.

    Google Scholar 

  35. Weisberg E, Manley PW, Breitenstein W, et al. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell. 2005;7:129–41.

    Article  CAS  PubMed  Google Scholar 

  36. Shah NP, Tran C, Lee FY, et al. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science. 2004;305:399–401.

    Article  CAS  PubMed  Google Scholar 

  37. Puttini M, Coluccia AML, Boschelli F, et al. In vitro and in vivo activity of SKI-606, a novel Src-Abl inhibitor, against imatinib-resistant Bcr-Abl(+) neoplastic cells. Cancer Res. 2006;66:11314–22.

    Article  CAS  PubMed  Google Scholar 

  38. O'Hare T, Walters DK, Stoffregen EP, et al. In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res. 2005;65:4500–5.

    Article  PubMed  Google Scholar 

  39. Redaelli S, Piazza R, Rostagno R, et al. Activity of bosutinib, dasatinib, and nilotinib against 18 imatinib-resistant BCR/ABL mutants. J Clin Oncol. 2009;27:469–71.

    Article  CAS  PubMed  Google Scholar 

  40. Deguchi Y, Kimura S, Ashihara E, et al. Comparison of imatinib, dasatinib, nilotinib and INNO-406 in imatinib-resistant cell lines. Leuk Res. 2008;32:980–3.

    Article  CAS  PubMed  Google Scholar 

  41. O'Hare T, Eide CA, Deininger MW. New Bcr-Abl inhibitors in chronic myeloid leukemia: keeping resistance in check. Expert Opin Investig Drugs. 2008;17:865–78.

    Article  PubMed  Google Scholar 

  42. Tanaka R, Kimura S. Abl tyrosine kinase inhibitors for overriding Bcr-Abl/T315l: from the second to third generation. Expert Rev Anticancer. 2008;8:1387–98.

    Article  CAS  Google Scholar 

  43. Noronha G, Cao JG, Chow CP, et al. Inhibitors of ABL and the ABL-T315I mutation. Curr Top Med Chem. 2008;8:905–21.

    Article  CAS  PubMed  Google Scholar 

  44. Quintas-Cardama A, Cortes J. Therapeutic options against BCR-ABL1 T315I-positive chronic myelogenous leukemia. Clin Cancer Res. 2008;14:4392–9.

    Article  CAS  PubMed  Google Scholar 

  45. Huang WS, Metcalf CA, Sundaramoorthi R, et al. Discovery of 3-[2-(Imidazo[1,2-b]pyridazin-3-yl)ethynyl]-4-methyl-N-{4-[(4-methylpiperazin-1-yl)methyl]-3-(trifluoromethyl)phenyl}benzamide (AP24534), a potent, orally active pan-inhibitor of breakpoint cluster region-Abelson (BCR-ABL) kinase including the T315I gatekeeper mutant. J Med Chem. 2010;53:4701–19.

    Article  CAS  PubMed  Google Scholar 

  46. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2:127–37.

    Article  CAS  PubMed  Google Scholar 

  47. Mendelsohn J, Baselga J. Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J Clin Oncol. 2003;21:2787–99.

    Article  CAS  PubMed  Google Scholar 

  48. Normanno N, Bianco C, De Luca A, Maiello MR, Salomon DS. Target-based agents against ErbB receptors and their ligands: a novel approach to cancer treatment. Endocr Relat Cancer. 2003;10:1–21.

    Article  CAS  PubMed  Google Scholar 

  49. Herbst RS, Fukuoka M, Baselga J. Timeline—gefitinib—a novel targeted approach to treating cancer. Nat Rev Cancer. 2004;4:956–65.

    Article  CAS  PubMed  Google Scholar 

  50. Cohen S. Isolation of a mouse submaxillart gland protein accelerating incisor eruption and eyelid opening in new-born animal. J Biol Chem. 1962;237:1555–62.

    CAS  PubMed  Google Scholar 

  51. Cohen S, Carpenter G. Human epidermal growth-factor—isolation and chemical and biological properties. Proc Natl Acad Sci U S A. 1975;72:1317–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sporn MB, Todaro GJ. Autocrine secretion and malignant transformation of cells. N Engl J Med. 1980;303:878–80.

    Article  CAS  PubMed  Google Scholar 

  53. Cohen S, Carpenter G, King L. Epidermal growth factor-receptor-protein kinase interactions. Prog Clin Biol Res. 1981;66(Pt A):557–67.

    PubMed  Google Scholar 

  54. Ozanne B, Richards CS, Hendler F, Burns D, Gusterson B. Over-expression of the EGF receptor is a hallmark of squamous-cell carcinomas. J Pathol. 1986;149:9–14.

    Article  CAS  PubMed  Google Scholar 

  55. Milas L, Raju U, Liao ZX, Ajani J. Targeting molecular determinants of tumor chemo-radioresistance. Semin Oncol. 2005;32:S78–81.

    Article  CAS  PubMed  Google Scholar 

  56. Umekita Y, Ohi Y, Sagara Y, Yoshida H. Co-expression of epidermal growth factor receptor and transforming growth factor-alpha predicts worse prognosis in breast-cancer patients. Int J Cancer. 2000;89:484–7.

    Article  CAS  PubMed  Google Scholar 

  57. Mendelsohn J. Blockade of receptors for growth factors: an anticancer therapy—the fourth annual Joseph H Burchenal American Association for Cancer Research Clinical Research Award Lecture. Clin Cancer Res. 2000;6:747–53.

    CAS  PubMed  Google Scholar 

  58. Rewcastle GW, Denny WA, Bridges AJ, et al. Tyrosine kinase inhibitors. 5. Synthesis and structure-activity-relationships for 4-[(phenylmethyl)amino]-quinazolines and 4-(phenylamino)quinazolines as potent adenosine 5′-triphosphate binding-site inhibitors of the tyrosine kinase domain of the epidermal growth-factor receptor. J Med Chem. 1995;38:3482–7.

    Article  CAS  PubMed  Google Scholar 

  59. Denny WA, Rewcastle GW, Bridges AJ, Fry DW, Kraker AJ. Structure-activity relationships for 4-anilinoquinazolines as potent inhibitors at the ATP binding site of the epidermal growth factor receptor in vitro. Clin Exp Pharmacol Physiol. 1996;23:424–7.

    Article  CAS  PubMed  Google Scholar 

  60. Barker AJ, Gibson KH, Grundy W, et al. Studies leading to the identification of ZD1839 (Iressa (TM)): an orally active, selective epidermal growth factor receptor tyrosine kinase inhibitor targeted to the treatment of cancer. Bioorg Med Chem Lett. 2001;11:1911–4.

    Article  CAS  PubMed  Google Scholar 

  61. Wakeling AE, Guy SP, Woodburn JR, et al. ZD1839 (Iressa): an orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res. 2002;62:5749–54.

    CAS  PubMed  Google Scholar 

  62. Janne PA, Engelman JA, Johnson BE. Epidermal growth factor receptor mutations in non-small-cell lung cancer: implications for treatment and tumor biology. J Clin Oncol. 2005;23:3227–34.

    Article  CAS  PubMed  Google Scholar 

  63. Riely GJ, Pao W, Pham DK, et al. Clinical course of patients with non-small cell lung cancer and epidermal growth factor receptor exon 19 and exon 21 mutations treated with gefitinib or erlotinib. Clin Cancer Res. 2006;12:839–44.

    Article  CAS  PubMed  Google Scholar 

  64. Kobayashi S, Boggon TJ, Dayaram T, et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med. 2005;352:786–92.

    Article  CAS  PubMed  Google Scholar 

  65. Pao W, Miller VA, Politi KA, et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. Plos Med. 2005;2:225–35.

    Article  CAS  Google Scholar 

  66. Mulloy R, Ferrand A, Kim Y, et al. Epidermal growth factor receptor mutants from human lung cancers exhibit enhanced catalytic activity and increased sensitivity to gefitinib. Cancer Res. 2007;67:2325–30.

    Article  CAS  PubMed  Google Scholar 

  67. Schiffer HH, Reding EC, Fuhs SR, et al. Pharmacology and signaling properties of epidermal growth factor receptor isoforms studied by bioluminescence resonance energy transfer. Mol Pharmacol. 2007;71:508–18.

    Article  CAS  PubMed  Google Scholar 

  68. Vikis H, Sato M, James M, et al. EGFR-T790M is a rare lung cancer susceptibility allele with enhanced kinase activity. Cancer Res. 2007;67:4665–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yuza Y, Glatt KA, Jiang JR, et al. Allele-dependent variation in the relative cellular potency of distinct EGFR inhibitors. Cancer Biol Ther. 2007;6:661–7.

    Article  CAS  PubMed  Google Scholar 

  70. Greulich H, Chen TH, Feng W, et al. Oncogenic transformation by inhibitor-sensitive and -resistant EGFR mutants. Plos Med. 2005;2:1167–76.

    Article  CAS  Google Scholar 

  71. Kwak EL, Sordella R, Bell DW, et al. Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib. Proc Natl Acad Sci U S A. 2005;102:7665–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kobayashi S, Ji HB, Yuza Y, et al. An alternative inhibitor overcomes resistance caused by a mutation of the epidermal growth factor receptor. Cancer Res. 2005;65:7096–101.

    Article  CAS  PubMed  Google Scholar 

  73. Shimamura T, Lowell AM, Engelman JA, Shapiro GI. Epidermal growth factor receptors harboring kinase domain mutations associate with the heat shock protein 90 chaperone and are destabilized following exposure to geldanamycins. Cancer Res. 2005;65:6401–8.

    Article  CAS  PubMed  Google Scholar 

  74. Li D, Ambrogio L, Shimamura T, et al. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene. 2008;27:4702–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sos ML, Rode HB, Heynck S, et al. Chemogenomic profiling provides insights into the limited activity of irreversible EGFR inhibitors in tumor cells expressing the T790M EGFR resistance mutation. Cancer Res. 2010;70:868–74.

    Article  CAS  PubMed  Google Scholar 

  76. Lin NU, Winer EP, Wheatley D, et al. A phase II study of afatinib (BIBW 2992), an irreversible ErbB family blocker, in patients with HER2-positive metastatic breast cancer progressing after trastuzumab. Breast Cancer Res Treat. 2012;133:1057–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nahta R, Hortobagyi GN, Esteva FJ. Growth factor receptors in breast cancer: potential for therapeutic intervention. Oncologist. 2003;8:5–17.

    Article  CAS  PubMed  Google Scholar 

  78. El-Rayes BF, LoRusso PM. Targeting the epidermal growth factor receptor. Br J Cancer. 2004;91:418–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tsutsui S, Ohno S, Murakami S, Hachitanda Y, Oda S. Prognostic value of epidermal growth factor receptor (EGFR) and its relationship to the estrogen receptor status in 1029 patients with breast cancer. Breast Cancer Res Treat. 2002;71:67–75.

    Article  PubMed  Google Scholar 

  80. Chu I, Blackwell K, Chen S, Slingerland J. The dual ErbB1/ErbB2 inhibitor, lapatinib (GW572016), cooperates with tamoxifen to inhibit both cell proliferation- and estrogen-dependent gene expression in antiestrogen-resistant breast cancer. Cancer Res. 2005;65:18–25.

    CAS  PubMed  Google Scholar 

  81. Slamon DJ, Clark GM, Wong SG, et al. Human-breast cancer—coreelation of relapse and survival with amplification of the HER-2 neu oncogene. Science. 1987;235:177–82.

    Article  CAS  PubMed  Google Scholar 

  82. GrausPorta D, Beerli RR, Daly JM, Hynes NE. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J. 1997;16:1647–55.

    Article  CAS  Google Scholar 

  83. Karunagaran D, Tzahar E, Beerli RR, et al. ErbB-2 is a common auxiliary subunit of NDF and EGF receptors: implications for breast cancer. EMBO J. 1996;15:254–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. King CR, Borrello I, Bellot F, Comoglio P, Schlessinger J. EGF binding to its receptor triggers a rapid tyrosine phosphorylation of the ERBB-2 protein in the mammary-tumor cell-line SK-BR-3. EMBO J. 1988;7:1647–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Burris HA. Dual kinase inhibition in the treatment of breast cancer: initial experience with the EGFR/ErbB-2 inhibitor lapatinib. Oncologist. 2004;9:10–5.

    Article  CAS  PubMed  Google Scholar 

  86. Cockerill S, Stubberfield C, Stables J, et al. Indazolylamino quinazolines and pyridopyrimidines as inhibitors of the EGFr and C-erbB-2. Bioorg Med Chem Lett. 2001;11:1401–5.

    Article  CAS  PubMed  Google Scholar 

  87. Petrov KG, Zhang YM, Carter M, et al. Optimization and SAR for dual ErbB-1/ErbB-2 tyrosine kinase inhibition in the 6-furanylquinazoline series. Bioorg Med Chem Lett. 2006;16:4686–91.

    Article  CAS  PubMed  Google Scholar 

  88. Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase-activity. Cell. 1990;61:203–12.

    Article  CAS  PubMed  Google Scholar 

  89. Folkman J. What is the evidence that tumors are angiogenesis dependent. J Natl Cancer Inst. 1990;82:4–6.

    Article  CAS  PubMed  Google Scholar 

  90. Heng DYC, Bukowski RM. Anti-angiogenic targets in the treatment of advanced renal cell carcinoma. Curr Cancer Drug Targets. 2008;8:676–82.

    Article  CAS  PubMed  Google Scholar 

  91. Veikkola T, Karkkainen M, Claesson-Welsh L, Alitalo K. Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res. 2000;60:203–12.

    CAS  PubMed  Google Scholar 

  92. Cherrington JM, Strawn LM, Shawver LK. New paradigms for the treatment of cancer: the role of anti-angiogenesis agents. Adv Cancer Res. 2000;79:1–38.

    Article  CAS  PubMed  Google Scholar 

  93. Bilodeau MT, Fraley ME, Hartman GD. Kinase insert domain-containing receptor kinase inhibitors as anti-angiogenic agents. Expert Opin Investig Drugs. 2002;11:737–45.

    Article  CAS  PubMed  Google Scholar 

  94. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol. 2006;7:359–71.

    Article  CAS  PubMed  Google Scholar 

  95. Caprioni F, Fornarini G. Bevacizumab in the treatment of metastatic colorectal cancer. Future Oncol. 2007;3:141–8.

    Article  CAS  PubMed  Google Scholar 

  96. Ramalingam S, Belani CP. Role of bevacizumab for the treatment of non-small-cell lung cancer. Future Oncol. 2007;3:131–9.

    Article  CAS  PubMed  Google Scholar 

  97. Duda DG, Batchelor TT, Willett CG, Jain RK. VEGF-targeted cancer therapy strategies: current progress, hurdles and future prospects. Trends Mol Med. 2007;13:223–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Harris PA, Boloor A, Cheung M, et al. Discovery of 5-[[4-[(2,3-dimethyl-2H-indazol-6-yl)methylamino]-2-pyrimidinyl]amino]-2 -methylbenzenesulfonamide (pazopanib), a novel and potent vascular endothelial growth factor receptor inhibitor. J Med Chem. 2008;51:4632–40.

    Article  CAS  PubMed  Google Scholar 

  99. van Geel RMJM, Beijnen JH, Schellens JHM. Concise drug review: pazopanib and axitinib. Oncologist. 2012;17:1081–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Hu-Lowe DD, Zou HY, Grazzini ML, et al. Nonclinical antiangiogenesis and antitumor activities of axitinib (AG-013736), an oral, potent, and selective inhibitor of vascular endothelial growth factor receptor tyrosine kinases 1, 2, 3. Clin Cancer Res. 2008;14:7272–83.

    Article  CAS  PubMed  Google Scholar 

  101. Escudier B, Gore M. Axitinib for the management of metastatic renal cell carcinoma. Drugs R D. 2011;11:113–26.

    Article  PubMed  Google Scholar 

  102. Faivre S, Djelloul S, Raymond E. New paradigms in anticancer therapy: targeting multiple signaling pathways with kinase inhibitors. Semin Oncol. 2006;33:407–20.

    Article  CAS  PubMed  Google Scholar 

  103. le Coutre P, Tassi E, Varella-Garcia M, et al. Induction of resistance to the Abelson inhibitor ST1571 in human leukemic cells through gene amplification. Blood. 2000;95:1758–66.

    PubMed  Google Scholar 

  104. Engelman JA, Zejnullahu K, Mitsudomi T, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316:1039–43.

    Article  CAS  PubMed  Google Scholar 

  105. Sierra JR, Cepero V, Giordano S. Molecular mechanisms of acquired resistance to tyrosine kinase targeted therapy. Mol Cancer. 2010;9:75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Erber R, Thurnher A, Katsen AD, et al. Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. FASEB J. 2004;18:338–40.

    CAS  PubMed  Google Scholar 

  107. Faivre S, Demetri G, Sargent W, Raymond E. Molecular basis for sunitinib efficacy and future clinical development. Nat Rev Drug Discov. 2007;6:734–45.

    Article  CAS  PubMed  Google Scholar 

  108. Mendel DB, Laird AD, Xin XH, et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res. 2003;9:327–37.

    CAS  PubMed  Google Scholar 

  109. Sun L, Tran N, Tang F, et al. Synthesis and biological evaluations of 3-substituted indolin-2-ones: a novel class of tyrosine kinase inhibitors that exhibit selectivity toward particular receptor tyrosine kinases. J Med Chem. 1998;41:2588–603.

    Article  CAS  PubMed  Google Scholar 

  110. Fong TAT, Shawver LK, Sun L, et al. SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res. 1999;59:99–106.

    CAS  PubMed  Google Scholar 

  111. Laird AD, Vajkoczy P, Shawver LK, et al. SU6668 is a potent antiangiogenic and antitumor agent that induces regression of established tumors. Cancer Res. 2000;60:4152–60.

    CAS  PubMed  Google Scholar 

  112. Sun L, Tran N, Liang CX, et al. Design, synthesis, and evaluations of substituted 3-[(3-or 4-carboxyethylpyrrol-2-yl)methylidenyl]indolin-2-ones as inhibitors of VEGF, FGF, and PDGF receptor tyrosine kinases. J Med Chem. 1999;42:5120–30.

    Article  CAS  PubMed  Google Scholar 

  113. Laird AD, Li G, Potapova O, et al. Mechanism of action and biomarker studies of SU11248, a selective oral multi-targeted tyrosine kinase inhibitor with antitumor and anti-angiogenic activity through targeting PDGFR, VEGFR, KIT and FLT3. Proc Am Assoc Cancer Res Ann Meet. 2003;44:937.

    Google Scholar 

  114. Steinberg M. Dasatinib: a tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia. Clin Ther. 2007;29:2289–308.

    Article  CAS  PubMed  Google Scholar 

  115. Rix U, Hantschel O, Duernberger G, et al. Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib, reveal novel kinase and nonkinase targets. Blood. 2007;110:4055–63.

    Article  CAS  PubMed  Google Scholar 

  116. Frame MC. Src in cancer: deregulation and consequences for cell behaviour. Biochim Biophys Acta Rev Cancer. 2002;1602:114–30.

    Google Scholar 

  117. Nam S, Kim DW, Cheng JQ, et al. Action of the Src family kinase inhibitor, dasatinib (BMS-354825), on human prostate cancer cells. Cancer Res. 2005;65:9185–9.

    Article  CAS  PubMed  Google Scholar 

  118. Wityak J, Das J, Moquin RV, et al. Discovery and initial SAR of 2-amino-5-carboxamidothiazoles as inhibitors of the Src-family kinase p56(Lck). Bioorg Med Chem Lett. 2003;13:4007–10.

    Article  CAS  PubMed  Google Scholar 

  119. Chen P, Norris D, Das J, et al. Discovery of novel 2-(aminoheteroaryl)-thiazole-5-carboxamides as potent and orally active Src-family kinase p56Lck inhibitors. Bioorg Med Chem Lett. 2004;14:6061–6.

    Article  CAS  PubMed  Google Scholar 

  120. Lombardo LJ, Lee FY, Chen P, et al. Discovery of N-(2-chloro-6-methylphenyl)-2-(6-(4-(2-hydroxyethyl)-piperazin-1-yl)-2-m ethylpyrimidin-4-ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J Med Chem. 2004;47:6658–61.

    Article  CAS  PubMed  Google Scholar 

  121. Muller MC, Cortes J, Kim DW, et al. Dasatinib efficacy in patients with chronic myeloid leukemia in chronic phase (CML-CP) and pre-existing BCR-ABL mutations. Blood. 2008;112:171–2.

    Google Scholar 

  122. Konig H, Copland M, Chu S, et al. Effects of dasatinib on Src kinase activity and downstream intracellular signaling in primitive chronic myelogenous leukemia hematopoietic cells. Cancer Res. 2008;68:9624–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Younes MN, Kim S, Yigitbasi OG, et al. Integrin-linked kinase is a potential therapeutic target for anaplastic thyroid cancer. Mol Cancer Ther. 2005;4:1146–56.

    Article  CAS  PubMed  Google Scholar 

  124. Hao HF, Naomoto Y, Bao XH, et al. Focal adhesion kinase as potential target for cancer therapy (Review). Oncol Rep. 2009;22:973–9.

    Article  CAS  PubMed  Google Scholar 

  125. Sawa M, Masai H. Drug design with Cdc7 kinase: a potential novel cancer therapy target. Drug Des Devel Ther. 2009;2:255–64.

    PubMed  PubMed Central  Google Scholar 

  126. Liu XD, Newton RC, Scherle PA. Developing c-MET pathway inhibitors for cancer therapy: progress and challenges. Trends Mol Med. 2010;16:37–45.

    Google Scholar 

  127. Sebolt-Leopold JS, Herrera R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer. 2004;4:937–47.

    Article  CAS  PubMed  Google Scholar 

  128. Hennessy BT, Smith DL, Ram PT, Lu YL, Mills GB. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov. 2005;4:988–1004.

    Article  CAS  PubMed  Google Scholar 

  129. Ferrajoli A, Faderl S, Ravandi F, Estrov Z. The JAK-STAT pathway: a therapeutic target in hematological malignancies. Curr Cancer Drug Targets. 2006;6:671–9.

    Article  CAS  PubMed  Google Scholar 

  130. Hoshino R, Chatani Y, Yamori T, et al. Constitutive activation of the 41-/43-kDa mitogen-activated protein kinase signaling pathway in human tumors. Oncogene. 1999;18:813–22.

    Article  CAS  PubMed  Google Scholar 

  131. Lewis TS, Shapiro PS, Ahn NG. Signal transduction through MAP kinase cascades. Adv Cancer Res. 1998;74:49–139.

    Article  CAS  PubMed  Google Scholar 

  132. Zhao Y, Adjei, AA. The clinical development of MEK inhibitors. Nature Rev. Clinical Oncol. 2014;11:385–400.

    Google Scholar 

  133. Wallace EM, Lyssikatos JP, Yeh T, Winkler JD, Koch K. Progress towards therapeutic small molecule MEK inhibitors for use in cancer therapy. Curr Top Med Chem. 2005;5:215–29.

    Article  CAS  PubMed  Google Scholar 

  134. Dudley DT, Pang L, Decker SJ, Bridges AJ, Saltiel AR. A synthetic inhibitor of the mitogen-activated protein-kinase cascade. Proc Natl Acad Sci U S A. 1995;92:7686–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Favata MF, Horiuchi KY, Manos EJ, et al. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem. 1998;273:18623–32.

    Article  CAS  PubMed  Google Scholar 

  136. Barrett SD, Bridges AJ, Dudley DT, et al. The discovery of the benzhydroxamate MEK inhibitors CI-1040 and PD 0325901. Bioorg Med Chem Lett. 2008;18:6501–4.

    Article  CAS  PubMed  Google Scholar 

  137. Ohren JF, Chen HF, Pavlovsky A, et al. Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nat Struct Mol Biol. 2004;11:1192–7.

    Article  CAS  PubMed  Google Scholar 

  138. Sebolt-Leopold JS, Dudley DT, Herrera R, et al. Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nat Med. 1999;5:810–6.

    Article  CAS  PubMed  Google Scholar 

  139. Haura EB, Ricart AD, Larson TG, et al. A phase II study of PD-0325901, an oral MEK inhibitor, in previously treated patients with advanced non-small cell lung cancer. Clin Cancer Res. 2010;16:2450–7.

    Article  CAS  PubMed  Google Scholar 

  140. Lyssikatos J, Yeh T, Wallace E, et al. ARRY-142886, a potent and selective MEK inhibitor: I) ATP-independent inhibition results in high enzymatic and cellular selectivity. AACR Meet Abstr. 2004;2004:896.

    Google Scholar 

  141. Lee P, Wallace E, Yeh T, et al. ARRY-142886, a potent and selective MEK inhibitor: III. Efficacy in murine xenograft models correlates with decreased ERK phosphorylation. AACR Meet Abstr. 2004;2004:897.

    Google Scholar 

  142. Flaherty KT, Robert C, Hersey P, et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med. 2012;367:107–14.

    Article  CAS  PubMed  Google Scholar 

  143. Yamaguchi T, Yoshida T, Kurachi R, et al. Identification of JTP-70902, a p15(INK4b)-inductive compound, as a novel MEK1/2 inhibitor. Cancer Sci. 2007;98:1809–16.

    Article  CAS  PubMed  Google Scholar 

  144. Abe H, Kikuchi S, Hayakawa K, et al. Discovery of a highly potent and selective MEK inhibitor: GSK1120212 (JTP-74057 DMSO solvate). ACS Med Chem Lett. 2011;2:320–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA. DNA repair pathways as targets for cancer therapy. Nat Rev Cancer. 2008;8:193–204.

    Article  CAS  PubMed  Google Scholar 

  146. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem. 2004;73:39–85.

    Article  CAS  PubMed  Google Scholar 

  147. Hassa PO, Hottiger MO. The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. Front Biosci. 2008;13:3046–82.

    Article  CAS  PubMed  Google Scholar 

  148. Miwa M, Masutani M. PolyADP-ribosylation and cancer. Cancer Sci. 2007;98:1528–35.

    Article  CAS  PubMed  Google Scholar 

  149. Zaremba T, Jane-Curtin N. PARP inhibitor development for systemic cancer targeting. Anticancer Agents Med Chem. 2007;7:515–23.

    Article  CAS  PubMed  Google Scholar 

  150. Huber A, Bai P, de Murcia JM, de Murcia G. PARP-1, PARP-2 and ATM in the DNA damage response: functional synergy in mouse development. DNA Repair. 2004;3:1103–8.

    Article  CAS  PubMed  Google Scholar 

  151. Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG. PARP inhibition: PARP1 and beyond. Nat Rev Cancer. 2010;10:293–301.

    Google Scholar 

  152. Ferraris DV. Evolution of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. From concept to clinic. J Med Chem. 2010;53:4561–84.

    Google Scholar 

  153. Ljungman M. Targeting the DNA damage response in cancer. Chem Rev. 2009;109:2929–50.

    Article  CAS  PubMed  Google Scholar 

  154. Bryant HE, Schultz N, Thomas HD, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005;434:913–7.

    Article  CAS  PubMed  Google Scholar 

  155. Farmer H, McCabe N, Lord CJ, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434:917–21.

    Article  CAS  PubMed  Google Scholar 

  156. Banasik M, Komura H, Shimoyama M, Ueda K. Specific inhibitors of poly(ADP-ribose) synthetase and mono(adp-ribosyl)transferase. J Biol Chem. 1992;267:1569–75.

    CAS  PubMed  Google Scholar 

  157. Zhu GD, Gandhi VB, Gong JC, et al. Synthesis and SAR of novel, potent and orally bioavailable benzimidazole inhibitors of poly(ADP-ribose) polymerase (PARP) with a quaternary methylene-amino substituent. Bioorg Med Chem Lett. 2008;18:3955–8.

    Article  CAS  PubMed  Google Scholar 

  158. Penning TD, Zhu GD, Gandhi VB, et al. Discovery and SAR of 2-(1-propylpiperidin-4-yl)-1H-benzimidazole-4-carboxamide: a potent inhibitor of poly(ADP-ribose) polymerase (PARP) for the treatment of cancer. Bioorg Med Chem. 2008;16:6965–75.

    Article  CAS  PubMed  Google Scholar 

  159. Penning TD, Zhu GD, Gandhi VB, et al. Discovery of the poly(ADP-ribose) polymerase (PARP) inhibitor 2-[(R)-2-methylpyrrolidin-2-yl]-1H-benzimidazole-4-carboxamide (ABT-888) for the treatment of cancer. J Med Chem. 2009;52:514–23.

    Article  CAS  PubMed  Google Scholar 

  160. Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell. 2007;128:669–81.

    Article  CAS  PubMed  Google Scholar 

  161. Gelato KA, Fischle W. Role of histone modifications in defining chromatin structure and function. Biol Chem. 2008;389:353–63.

    Article  CAS  PubMed  Google Scholar 

  162. Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403:41–5.

    Article  CAS  PubMed  Google Scholar 

  163. Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293:1074–80.

    Article  CAS  PubMed  Google Scholar 

  164. Egger G, Liang GN, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429:457–63.

    Article  CAS  PubMed  Google Scholar 

  165. Lyko F, Brown R. DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. J Natl Cancer Inst. 2005;97:1498–506.

    Article  CAS  PubMed  Google Scholar 

  166. Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358:1148–59.

    Article  CAS  PubMed  Google Scholar 

  167. Noyer-Weidner M, Trautner TA. Methylation of DNA in prokaryotes. EXS. 1993;64:39–108.

    CAS  PubMed  Google Scholar 

  168. Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res. 1998;72:141–96.

    Article  CAS  PubMed  Google Scholar 

  169. Santini V, Kantarjian HM, Issa JP. Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. Ann Intern Med. 2001;134:573–86.

    Article  CAS  PubMed  Google Scholar 

  170. Baylin SB, Esteller M, Rountree MR, et al. Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet. 2001;10:687–92.

    Article  CAS  PubMed  Google Scholar 

  171. Robertson KD. DNA methylation, methyltransferases, and cancer. Oncogene. 2001;20:3139–55.

    Article  CAS  PubMed  Google Scholar 

  172. Pradhan S, Bacolla A, Wells RD, Roberts RJ. Recombinant human DNA (cytosine-5) methyltransferase I. Expression, purification, and comparison of de novo and maintenance methylation. J Biol Chem. 1999;274:33002–10.

    Article  CAS  PubMed  Google Scholar 

  173. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99:247–57.

    Article  CAS  PubMed  Google Scholar 

  174. Sorm F, Cihak A, Vesely J, Piskala A. 5-Azacytidine, new highly effective cancerostatic. Experientia. 1964;20:202–3.

    Article  CAS  PubMed  Google Scholar 

  175. Jones PA, Taylor SM. Cellular-differentiation, cytidine analogs and DNA methylation. Cell. 1980;20:85–93.

    Article  CAS  PubMed  Google Scholar 

  176. Santi DV, Norment A, Garrett CE. Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine. Proc Natl Acad Sci U S A. 1984;81:6993–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Momparler RL, Momparler LF, Samson J. Comparison of the antileukemic activity of 5-aza-2′-deoxycytidine, 1-beta-d-arabinofuranosylcytosine and 5-azacytidine against L1210 leukemia. Leuk Res. 1984;8:1043–9.

    Article  CAS  PubMed  Google Scholar 

  178. Issa J-P. Decitabine. Curr Opin Oncol. 2003;15:446–51.

    Article  CAS  PubMed  Google Scholar 

  179. Leone G, Vosoa MT, Teofili L, Lubbert M. Inhibitors of DNA methylation in the treatment of hematological malignancies and MDS. Clin Immunol. 2003;109:89–102.

    Article  CAS  PubMed  Google Scholar 

  180. Issa JPJ, Gharibyan V, Cortes J, et al. Phase II study of low-dose decitabine in patients with chronic myelogenous leukemia resistant to imatinib mesylate. J Clin Oncol. 2005;23:3948–56.

    Article  CAS  PubMed  Google Scholar 

  181. Juttermann R, Li E, Jaenisch R. Toxicity of 5-aza-2'-deoxycytidine to mammalian-cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc Natl Acad Sci U S A. 1994;91:11797–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Zhou L, Cheng X, Connolly BA, et al. Zebularine: a novel DNA methylation inhibitor that forms a covalent complex with DNA methyltransferases. J Mol Biol. 2002;321:591–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Holleran JL, Parise RA, Joseph E, et al. Plasma pharmacokinetics, oral bioavailability, and interspecies scaling of the DNA methyltransferase inhibitor, zebularine. Clin Cancer Res. 2005;11:3862–8.

    Article  CAS  PubMed  Google Scholar 

  184. Fischle W, Wang YM, Allis CD. Binary switches and modification cassettes in histone biology and beyond. Nature. 2003;425:475–9.

    Article  CAS  PubMed  Google Scholar 

  185. Zhou Q, Melkoumian ZK, Lucktong A, et al. Rapid induction of histone hyperacetylation and cellular differentiation in human breast tumor cell lines following degradation of histone deacetylase-1. J Biol Chem. 2000;275:35256–63.

    Article  CAS  PubMed  Google Scholar 

  186. Verdin E, Dequiedt F, Kasler HG. Class II histone deacetylases: versatile regulators. Trends Genet. 2003;19:286–93.

    Article  CAS  PubMed  Google Scholar 

  187. Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 2006;5:769–84.

    Article  CAS  PubMed  Google Scholar 

  188. Lehrmann H, Pritchard LL, Harel-Bellan A. Histone acetyltransferases and deacetylases in the control of cell proliferation and differentiation. Adv Cancer Res. 2002;86:41–65.

    Article  CAS  PubMed  Google Scholar 

  189. Gregoretti IV, Lee YM, Goodson HV. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol. 2004;338:17–31.

    Article  CAS  PubMed  Google Scholar 

  190. Smith BC, Hallows WC, Denu JM. Mechanisms and molecular probes of sirtuins. Chem Biol. 2008;15:1002–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Marks PA. Discovery and development of SAHA as an anticancer agent. Oncogene. 2007;26:1351–6.

    Article  CAS  PubMed  Google Scholar 

  192. Friend C, Scher W, Holland JG, Sato T. Hemoglobin synthesis in murine virus-induced leukemic cells in-vitro—stimulation of erythroid differentiation by dimethyl sulfoxide. Proc Natl Acad Sci U S A. 1971;68:378–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Tanaka M, Levy J, Terada M, et al. Induction of erythroid differentiation in murine virus-infected erythroleukemia cells by highly polar compounds. Proc Natl Acad Sci U S A. 1975;72:1003–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Reuben RC, Wife RL, Breslow R, Rifkind RA, Marks PA. New group of potent inducers of differentiation in murine erythroleukemia cells. Proc Natl Acad Sci U S A. 1976;73:862–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Marks PA, Rifkind RA. Erythroleukemic differentiation. Annu Rev Biochem. 1978;47:419–48.

    Article  CAS  PubMed  Google Scholar 

  196. Marks PA, Sheffery M, Rifkind RA. Induction of transformed-cells to terminal differentiation and the modulation of gene-expression. Cancer Res. 1987;47:659–66.

    CAS  PubMed  Google Scholar 

  197. Richon VM, Ramsay RG, Rifkind RA, Marks PA. Modulation of the c-myb, c-myc and p53 messenger-RNA and protein-levels during induced murine erythroleukemia cell-differentiation. Oncogene. 1989;4:165–73.

    CAS  PubMed  Google Scholar 

  198. Breslow R, Jursic B, Yan ZF, et al. Potent cytodifferentiating agents related to hexamethylenebisacetamide. Proc Natl Acad Sci U S A. 1991;88:5542–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Richon VM, Webb Y, Merger R, et al. Second generation hybrid polar compounds are potent inducers of transformed cell differentiation. Proc Natl Acad Sci U S A. 1996;93:5705–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Finnin MS, Donigian JR, Cohen A, et al. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature. 1999;401:188–93.

    Article  CAS  PubMed  Google Scholar 

  201. Johnstone RW, Licht JD. Histone deacetylase inhibitors in cancer therapy: Is transcription the primary target? Cancer Cell. 2003;4:13–8.

    Article  CAS  PubMed  Google Scholar 

  202. Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer. 2006;6:38–51.

    Article  CAS  PubMed  Google Scholar 

  203. Yoo CB, Jones PA. Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov. 2006;5:37–50.

    Article  CAS  PubMed  Google Scholar 

  204. Butler LM, Zhou XB, Xu WS, et al. The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin. Proc Natl Acad Sci U S A. 2002;99:11700–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Richon VM, Sandhoff TW, Rifkind RA, Marks PA. Histone deacetylase inhibitor selectively induces p21(WAF1) expression and gene-associated histone acetylation. Proc Natl Acad Sci U S A. 2000;97:10014–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Peart MJ, Smyth GK, van Laar RK, et al. Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors. Proc Natl Acad Sci U S A. 2005;102:3697–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Scott GK, Mattie ND, Berger CE, Benz SC, Benz CC. Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res. 2006;66:1277–81.

    Article  CAS  PubMed  Google Scholar 

  208. Nakajima H, Kim YB, Terano H, Yoshida M, Horinouchi S. FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp Cell Res. 1998;241:126–33.

    Article  CAS  PubMed  Google Scholar 

  209. Shigematsu N, Ueda H, Takase S, et al. Fr901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium-violaceum No-968. 2. Structure determination. J Antibiot. 1994;47:311–4.

    Article  CAS  PubMed  Google Scholar 

  210. Biamonte MA, Van de Water R, Arndt JW, et al. Heat shock protein 90: inhibitors in clinical trials. J Med Chem. 53:3–17.

    Google Scholar 

  211. Jego G, Hazoume A, Seiqneuric R, Garrido C. Targeting heat shock proteins in cancer. Cancer Lett. 2013;332:275–85.

    Google Scholar 

  212. Pearl LH, Prodromou C. Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem. 2006;75:271–94.

    Article  CAS  PubMed  Google Scholar 

  213. Welch WJ, Feramisco JR. Purification of the major mammalian heat-shock proteins. J Biol Chem. 1982;257:4949–59.

    Google Scholar 

  214. Gorre ME, Ellwood-Yen K, Chiosis G, Rosen N, Sawyers CL. BCR-ABL point mutants isolated from patients with imatinib mesylate-resistant chronic myeloid leukemia remain sensitive to inhibitors of the BCR-ABL chaperone heat shock protein 90. Blood. 2002;100:3041–4.

    Article  CAS  PubMed  Google Scholar 

  215. Messaoudi S, Peyrat JF, Brion JD, Alami M. Recent advances in Hsp90 inhibitors as antitumor agents. Anticancer Agents Med Chem. 2008;8:761–82.

    Article  CAS  PubMed  Google Scholar 

  216. Dymock BW, Drysdale MJ, McDonald E, Workman P. Inhibitors of HSP90 and other chaperones for the treatment of cancer. Expert Opin Ther Pat. 2004;14:837–47.

    Article  CAS  Google Scholar 

  217. Isaacs JS, Xu WP, Neckers L. Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell. 2003;3:213–7.

    Article  CAS  PubMed  Google Scholar 

  218. Maloney A, Workman P. HSP90 as a new therapeutic target for cancer therapy: the story unfolds. Expert Opin Biol Ther. 2002;2:3–24.

    Article  CAS  PubMed  Google Scholar 

  219. Richter K, Buchner J. Hsp90: chaperoning signal transduction. J Cell Physiol. 2001;188:281–90.

    Article  CAS  PubMed  Google Scholar 

  220. Kamal A, Boehm MF, Burrows FJ. Therapeutic and diagnostic implications of Hsp90 activation. Trends Mol Med. 2004;10:283–90.

    Article  CAS  PubMed  Google Scholar 

  221. Workman P, Powers MV. Chaperoning cell death: a critical dual role for Hsp90 in small-cell lung cancer. Nat Chem Biol. 2007;3:455–7.

    Article  CAS  PubMed  Google Scholar 

  222. Kamal A, Thao L, Sensintaffar J, et al. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature. 2003;425:407–10.

    Article  CAS  PubMed  Google Scholar 

  223. Pratt WB, Toft DO. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med. 2003;228:111–33.

    CAS  Google Scholar 

  224. Jhaveri K, Taldone T, Modi S, Chiosis G. Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers. Biochim Biophys Acta. 2012;1823:742–55.

    Article  CAS  PubMed  Google Scholar 

  225. Huang KH, Veal JM, Fadden RP, et al. Discovery of novel 2-aminobenzamide inhibitors of heat shock protein 90 as potent. Selective and orally active antitumor agents. J Med Chem. 2009;52:4288–305.

    Article  CAS  PubMed  Google Scholar 

  226. Barta TE, Veal JM, Rice JW, et al. Discovery of benzamide tetrahydro-4H-carbazol-4-ones as novel small molecule inhibitors of Hsp90. Bioorg Med Chem Lett. 2008;18:3517–21.

    Article  CAS  PubMed  Google Scholar 

  227. Rajan A, Kelly RJ, Trepel JB, et al. A phase I study of PF-04929113 (SNX-5422), an orally bioavailable heat shock protein 90 inhibitor, in patients with refractory solid tumor malignancies and lymphomas. Clin Cancer Res. 2011;17:6831–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Jin Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chen, X., Jin, J. (2017). Small Molecule Inhibitors. In: Coleman, W., Tsongalis, G. (eds) The Molecular Basis of Human Cancer. Humana Press, New York, NY. https://doi.org/10.1007/978-1-59745-458-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-458-2_40

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-934115-18-3

  • Online ISBN: 978-1-59745-458-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics