Skip to main content

Cancer Cytogenetics

  • Chapter
  • First Online:
The Molecular Basis of Human Cancer

Abstract

The analysis of malignant cells with cytogenetic methods, or cancer cytogenetics, has been instrumental in elucidating the genetic basis of cancer, and much of our knowledge about specific chromosomal aberrations in cancers and the molecular events they trigger is based on the detection of nonrandom, cancer-specific cytogenetic abnormalities. In this chapter we first review how the field of cancer cytogenetics developed. Then we present an in-depth overview on the evolution of cytogenetic methods, which culminated in embracing molecular techniques and the transformation of cytogenetics to array-based, high-resolution, and high-throughput formats. Next, we summarize and discuss our current knowledge of chromosomal aberrations in cancer, and explore the consequences of genomic imbalances on the transcriptome of cancer cells, with a special emphasis on cancers of epithelial origin. Finally, we summarize the most pertinent diagnostic and prognostic applications of molecular cytogenetics related to cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hansemann D. Über asymmetrische Zellteilung in Epithelkrebsen und deren biologische Bedeutung. Virchows Arch Pathol. 1890;119:299–326.

    Article  Google Scholar 

  2. Bignold LP, Coghlan BL, Jersmann HP. Hansemann, Boveri, chromosomes and the gametogenesis-related theories of tumours. Cell Biol Int. 2006;30:640–4.

    Article  CAS  PubMed  Google Scholar 

  3. Boveri T. Zur Frage der Entstehung maligner Tumoren. Jena: Gustav Fischer; 1914.

    Google Scholar 

  4. Boveri T. The origin of malignant tumors. Baltimore: Williams & Wilkins; 1929.

    Google Scholar 

  5. Ried T. Homage to Theodor Boveri (1862–1915): Boveri’s theory of cancer as a disease of the chromosomes, and the landscape of genomic imbalances in human carcinomas. Environ Mol Mutagen. 2009;50:593–601.

    Article  CAS  PubMed  Google Scholar 

  6. Albertson DG, Collins C, McCormick F, Gray JW. Chromosome aberrations in solid tumors. Nat Genet. 2003;34:369–76.

    Article  CAS  PubMed  Google Scholar 

  7. Duesberg P, Li R, Fabarius A, Hehlmann R. The chromosomal basis of cancer. Cell Oncol. 2005;27:293–318.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ried T, Heselmeyer-Haddad K, Blegen H, Schrock E, Auer G. Genomic changes defining the genesis, progression, and malignancy potential in solid human tumors: a phenotype/genotype correlation. Genes Chromosomes Cancer. 1999;25:195–204.

    Article  CAS  PubMed  Google Scholar 

  9. Harris H. The cells of the body. A history of somatic cell genetics. Plainview, NY: Cold Spring Harbor Press; 1995.

    Google Scholar 

  10. Hsu TC. Human and mammalian cytogenetics. An historical perspective. New York, Heidelberg, Berlin: Springer; 1979.

    Book  Google Scholar 

  11. Tijo JH, Levan A. The chromosome number in man. Hereditas. 1956;42:1–6.

    Article  Google Scholar 

  12. Watson JD, Crick FHC. A structure for deoxyribose nucleic acid. Nature. 1953;171:737–8.

    Article  CAS  PubMed  Google Scholar 

  13. Kottler MJ. From 48 to 46: cytological technique, preconception, and the counting of human chromosomes. Bull Hist Med. 1974;48:465–502.

    CAS  PubMed  Google Scholar 

  14. Lejeune J, Gautier M, Turpin R. Etude des chromosomes somatiques de neuf enfants mongoliens. C R Hebd Seances Acad Sci. 1959;248:1721–2.

    CAS  PubMed  Google Scholar 

  15. Ford CE, Jones KW, Polani PE, et al. A sex chromosome anomaly in a case of gonadal dysgenesis (Turner’s syndrome). Lancet. 1959;1:711–3.

    Article  CAS  PubMed  Google Scholar 

  16. Pätau K, Smith DW, Therman E, Inhorn SL, Wagner HP. Multiple congenital anomaly caused by an extra autosome. Lancet. 1960;1:790–3.

    Article  PubMed  Google Scholar 

  17. Edwards JH, Hamden DG, Cameron AH, Crosse VM, Wolff OH. A new trisomic syndrome. Lancet. 1960;1:787–90.

    Article  CAS  PubMed  Google Scholar 

  18. Jacobs PA, Strong JA. A case of human intersexuality having a possible XXY sex-determining mechanism. Nature. 1959;183:302–3.

    Article  CAS  PubMed  Google Scholar 

  19. Nowell PC, Hungerford DA. The minute chromosome (Phl) in chronic granulocytic leukemia. Blood. 1962;132:65–6.

    Google Scholar 

  20. Moorhead PS, Nowell PC, Mellman WJ, Battips DM, Hungerford DA. Chromosome preparations of leukocytes cultured from human peripheral blood. Exp Cell Res. 1960;20:613–6.

    Article  CAS  PubMed  Google Scholar 

  21. Caspersson T, Zech L, Modest EJ, Foley GE, Wagh U. Chemical differentiation with fluorescent alkylating agents in Vicia faba metaphase chromosomes. Exp Cell Res. 1969;58:128–40.

    Article  CAS  PubMed  Google Scholar 

  22. Caspersson T, Zech L, Johansson C. Differential binding of alkylating fluorochromes in human chromosomes. Exp Cell Res. 1970;60:315–9.

    Article  CAS  PubMed  Google Scholar 

  23. Rowley JD. A new consistent chromosomal abnormality in chronic myelogeneous leukemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243:290–3.

    Article  CAS  PubMed  Google Scholar 

  24. Manolov G, Manolova Y. Marker band in one chromosome 14 from Burkitt lymphomas. Nature. 1972;237:33–4.

    Article  CAS  PubMed  Google Scholar 

  25. Zech L, Haglund U, Nilson K, Klein G. Characteristic chromosomal abnormalities in biopsies and lymphoid cell-lines from patients with Burkitt and non-Burkitt lymphomas. Int J Cancer. 1976;17:47–56.

    Article  CAS  PubMed  Google Scholar 

  26. Ohno S, Babonits M, Wiener F, Spira J, et al. Nonrandom chromosome changes involving the Ig gene-carrying chromosomes 12 and 6 in pristane-induced mouse plasmacytomas. Cell. 1979;18:1001–7.

    Article  CAS  PubMed  Google Scholar 

  27. Wiener F, Babonits M, Spira J, Klein G, Potter M. Cytogenetic studies on IgA/lambda-producing murine plasmacytomas: regular occurrence of a T(12;15) translocation. Somatic Cell Genet. 1980;6:731–8.

    Article  CAS  PubMed  Google Scholar 

  28. Klein G. The role of gene dosage and genetic transpositions in carcinogenesis. Nature. 1981;294:313–8.

    Article  CAS  PubMed  Google Scholar 

  29. Kirsch IR, Morton CC, Nakahara K, Leder P. Human immunoglobulin heavy chain genes map to a region of translocations in malignant B lymphocytes. Science. 1982;216:301–3.

    Article  CAS  PubMed  Google Scholar 

  30. Taub R, Kirsch I, Morton C, Lenoir G, et al. Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci U S A. 1982;79:7837–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Crews S, Barth R, Hood L, Prehn J, Calame K. Mouse c-myc oncogene is located on chromosome 15 and translocated to chromosome 12 in plasmacytomas. Science. 1982;218:1319–21.

    Article  CAS  PubMed  Google Scholar 

  32. Rowley JD. The critical role of chromosome translocations in human leukemias. Annu Rev Genet. 1998;32:495–519.

    Article  CAS  PubMed  Google Scholar 

  33. Druker BJ. Translation of the Philadelphia chromosome into therapy for CML. Blood. 2008;112:4808–17.

    Article  CAS  PubMed  Google Scholar 

  34. Seabright M. A rapid banding technique for human chromosomes. Lancet. 1971;2:971–2.

    Article  CAS  PubMed  Google Scholar 

  35. Sandberg AA. The chromosomes in human cancer and leukemia. New York: Elsevier Science; 1990.

    Google Scholar 

  36. Heim S, Mitelman F. Cancer cytogenetics. Hoboken: John Wiley & Sons; 2009.

    Google Scholar 

  37. Gall JG, Pardue ML. Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci U S A. 1969;63:378–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pardue ML, Gall JG. Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc Natl Acad Sci U S A. 1969;64:600–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pardue ML, Gall JG. Chromosomal localization of mouse satellite DNA. Science. 1970;168:1356–8.

    Article  CAS  PubMed  Google Scholar 

  40. Rudkin GT, Stollar BD. High resolution detection of DNA.RNA hybrids in situ by indirect immunofluorescence. Nature. 1977;265:472–3.

    Article  CAS  PubMed  Google Scholar 

  41. Langer PR, Waldrop AA, Ward DC. Enzymatic synthesis of biotin-labeled polynucleotides: novel nucleic acid affinity probes. Proc Natl Acad Sci U S A. 1981;78:6633–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Verma RS, Babu A. Human chromosomes: principles and techniques. 2nd ed. New York: McGraw-Hill Inc.; 1995.

    Google Scholar 

  43. Barch M, Knutsen T, Spurbeck J, editors. The AGT cytogenetics laboratory manual. 3rd ed. New York: Raven; 1997.

    Google Scholar 

  44. Spector D, Goldman R, Leinwand L, editors. Cells: a laboratory manual, vol 1. Culture and biochemical analysis of cells. Plainview, NY: Cold Spring Harbor Laboratory Press; 1998.

    Google Scholar 

  45. Padilla-Nash HM, Barenboim-Stapleton L, Difilippantonio MJ, Ried T. Spectral karyotyping analysis of human and mouse chromosomes. Nat Protoc. 2006;1:3129–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cremer T, Landegent JE, Bruckner A, Scholl HP, et al. Detection of chromosome aberrations in the human interphase nucleus by visualization of specific target DNAs with radioactive and nonradioactive in situ hybridization techniques: diagnosis of trisomy 18 with probe L1.84. Hum Genet. 1986;74:346–52.

    Article  CAS  PubMed  Google Scholar 

  47. Ried T, Landes G, Dackowski W, Klinger K, Ward DC. Multicolor fluorescence in situ hybridization for the simultaneous detection of probe sets for chromosomes 13, 18, 21, X and Y in uncultured amniotic fluid cells. Hum Mol Genet. 1992;1:307–13.

    Article  CAS  PubMed  Google Scholar 

  48. Muller CR, Davies KE, Cremer C, Rappold G, et al. Cloning of genomic sequences from the human Y chromosome after purification by dual beam flow sorting. Hum Genet. 1983;64:110–5.

    Article  CAS  PubMed  Google Scholar 

  49. Lichter P, Cremer T, Borden J, Manuelidis L, Ward DC. Delineation of individual human chromosomes in metaphase and interphase cells by in situ hybridization using recombinant DNA libraries. Hum Genet. 1988;80:224–34.

    Article  CAS  PubMed  Google Scholar 

  50. Cremer T, Lichter P, Borden J, Ward DC, Mannuelidis L. Detection of chromosome aberrations in metaphase and interphase tumor cells by in situ hybridization using chromosome-specific library probes. Hum Genet. 1988;80:235–46.

    Article  CAS  PubMed  Google Scholar 

  51. Pinkel D, Landegent J, Collins C, Fuscoe J, et al. Fluorescence in situ hybridization with human chromosome specific libraries: detection of trisomy 21 and translocation of chromosome 4. Proc Natl Acad Sci U S A. 1988;85:9138–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Collins C, Kuo WL, Segraves R, Fuscoe J, et al. Construction and characterization of plasmid libraries enriched in sequences from single human chromosomes. Genomics. 1991;11:997–1006.

    Article  CAS  PubMed  Google Scholar 

  53. Harris P, Boyd E, Ferguson-Smith MA. Optimising human chromosome separation for the production of chromosome-specific DNA libraries by flow sorting. Hum Genet. 1985;70:59–65.

    Article  CAS  PubMed  Google Scholar 

  54. Guan XY, Meltzer PS, Trent JM. Rapid generation of whole chromosome painting probes (WCPs) by chromosome microdissection. Genomics. 1994;22:101–7.

    Article  CAS  PubMed  Google Scholar 

  55. Telenius H, Pelear AH, Tunnacliffe A, Carter NP, et al. Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow sorted chromosomes. Genes Chromosomes Cancer. 1992;4:257–63.

    Article  CAS  PubMed  Google Scholar 

  56. Cremer T, Cremer M. Chromosome territories. Cold Spring Harb Perspect Biol. 2010;2:a003889.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Cremer T, Cremer C, Baumann H, Luedtke EK, et al. Rabl’s model of the interphase chromosome arrangement tested in Chinese hamster cells by premature chromosome condensation and laser-UV-microbeam experiments. Hum Genet. 1982;60:46–56.

    Article  CAS  PubMed  Google Scholar 

  58. Boyle S, Gilchrist S, Bridger JM, Mahy NL, et al. The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. Hum Mol Genet. 2001;10:211–9.

    Article  CAS  PubMed  Google Scholar 

  59. Tanabe H, Habermann FA, Solovei I, Cremer M, Cremer T. Non-random radial arrangements of interphase chromosome territories: evolutionary considerations and functional implications. Mutat Res. 2002;504:37–45.

    Article  CAS  PubMed  Google Scholar 

  60. Cremer M, Kupper K, Wagler B, Wizelman L, et al. Inheritance of gene density-related higher order chromatin arrangements in normal and tumor cell nuclei. J Cell Biol. 2003;162:809–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sengupta K, Upender MB, Barenboim-Stapleton L, Nguyen QT, et al. Artificially introduced aneuploid chromosomes assume a conserved position in colon cancer cells. PLoS One. 2007;2:e199.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Sengupta K, Camps J, Mathews P, Barenboim-Stapleton L, et al. Position of human chromosomes is conserved in mouse nuclei indicating a species-independent mechanism for maintaining genome organization. Chromosoma. 2008;117:499–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Heard E, Bickmore W. The ins and outs of gene regulation and chromosome territory organisation. Curr Opin Cell Biol. 2007;19:311–6.

    Article  CAS  PubMed  Google Scholar 

  64. Cremer T, Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet. 2001;2:292–301.

    Article  CAS  PubMed  Google Scholar 

  65. Ried T. Cytogenetics—in color and digitized. N Engl J Med. 2004;350:1597–600.

    Article  CAS  PubMed  Google Scholar 

  66. Tkachuk DC, Westbrook CA, Andreeff M, Donlon TA, et al. Detection of bcr-abl fusion in chronic myelogeneous leukemia by in situ hybridization. Science. 1990;250:559–62.

    Article  CAS  PubMed  Google Scholar 

  67. Ried T, Lengauer C, Cremer T, Wiegant J, et al. Specific metaphase and interphase detection of the breakpoint region in 8q24 of Burkitt lymphoma cells by triple-color fluorescence in situ hybridization. Genes Chromosomes Cancer. 1992;4:69–74.

    Article  CAS  PubMed  Google Scholar 

  68. Ried T, Lengauer C, Lipp M, Fischer C, et al. Evaluation of the utility of interphase cytogenetics to detect residual cells with a malignant genotype in mixed cell populations: a Burkitt lymphoma model. DNA Cell Biol. 1993;12:637–43.

    Article  CAS  PubMed  Google Scholar 

  69. Gaiser T, Berroa-Garcia L, Kemmerling R, Dutta A, et al. Automated analysis of protein expression and gene amplification within the same cells of paraffin-embedded tumour tissue. Cell Oncol (Dordr). 2011;34(4):337–42.

    Google Scholar 

  70. Teerenhovi L, Knuutila S, Ekblom M, Borgström GH, et al. A method for simultaneous study of the karyotype, morphology, and immunological phenotype in hematologic malignances. Blood. 1984;64:1116–22.

    CAS  PubMed  Google Scholar 

  71. Weber-Matthiesen K, Winkemann M, Muller-Hermelink A, Schlegelberger B, Grote W. Simultaneous fluorescence immunophenotyping and interphase cytogenetics: a contribution to the characterization of tumor cells. J Histochem Cytochem. 1992;40:171–5.

    Article  CAS  PubMed  Google Scholar 

  72. Kirsch IR, Ried T. Integration of cytogenetic data with genome maps and available probes: present status and future promise. Semin Hematol. 2000;37:420–8.

    Article  CAS  PubMed  Google Scholar 

  73. Cheung VG, Nowak N, Jang W, Kirsch IR, et al. Integration of cytogenetic landmarks into the draft sequence of the human genome. Nature. 2001;409:953–8.

    Article  CAS  PubMed  Google Scholar 

  74. Jang W, Yonescu R, Knutsen T, Brown T, et al. Linking the human cytogenetic map with nucleotide sequence: the CCAP clone set. Cancer Genet Cytogenet. 2006;168:89–97.

    Article  CAS  PubMed  Google Scholar 

  75. Kirsch IR, Green ED, Yonescu R, Strausberg R, et al. A systematic, high-resolution linkage of the cytogenetic and physical maps of the human genome. Nat Genet. 2000;24:339–40.

    Article  CAS  PubMed  Google Scholar 

  76. Tanner M, Gancberg D, Di Leo A, Larsimont D, et al. Chromogenic in situ hybridization: a practical alternative for fluorescence in situ hybridization to detect HER-2/neu oncogene amplification in archival breast cancer samples. Am J Pathol. 2000;157:1467–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Isola J, Tanner M. Chromogenic in situ hybridization in tumor pathology. Methods Mol Med. 2004;97:133–44.

    CAS  PubMed  Google Scholar 

  78. Gong Y, Sweet W, Duh YJ, Greenfield L, et al. Chromogenic in situ hybridization is a reliable method for detecting HER2 gene status in breast cancer: a multicenter study using conventional scoring criteria and the new ASCO/CAP recommendations. Am J Clin Pathol. 2009;131:490–7.

    Article  CAS  PubMed  Google Scholar 

  79. Macville MV, Van Der Laak JA, Speel EJ, Katzir N, et al. Spectral imaging of multi-color chromogenic dyes in pathological specimens. Anal Cell Pathol. 2001;22:133–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hopman AH, Claessen S, Speel EJ. Multi-colour brightfield in situ hybridisation on tissue sections. Histochem Cell Biol. 1997;108:291–8.

    Article  CAS  PubMed  Google Scholar 

  81. Laakso M, Tanner M, Isola J. Dual-colour chromogenic in situ hybridization for testing of HER-2 oncogene amplification in archival breast tumours. J Pathol. 2006;210:3–9.

    Article  CAS  PubMed  Google Scholar 

  82. Mayr D, Heim S, Weyrauch K, Zeindl-Eberhart E, et al. Chromogenic in situ hybridization for Her-2/neu-oncogene in breast cancer: comparison of a new dual-colour chromogenic in situ hybridization with immunohistochemistry and fluorescence in situ hybridization. Histopathology. 2009;55:716–23.

    Article  PubMed  Google Scholar 

  83. Powell RD, Pettay JD, Powell WC, Roche PC, et al. Metallographic in situ hybridization. Hum Pathol. 2007;38:1145–59.

    Article  CAS  PubMed  Google Scholar 

  84. Bartlett JM, Campbell FM, Ibrahim M, Wencyk P, et al. Chromogenic in situ hybridization: a multicenter study comparing silver in situ hybridization with FISH. Am J Clin Pathol. 2009;132:514–20.

    Article  CAS  PubMed  Google Scholar 

  85. Carbone A, Botti G, Gloghini A, Simone G, et al. Delineation of HER2 gene status in breast carcinoma by silver in situ hybridization is reproducible among laboratories and pathologists. J Mol Diagn. 2008;10:527–36.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Dietel M, Ellis IO, Hofler H, Kreipe H, et al. Comparison of automated silver enhanced in situ hybridisation (SISH) and fluorescence ISH (FISH) for the validation of HER2 gene status in breast carcinoma according to the guidelines of the American Society of Clinical Oncology and the College of American Pathologists. Virchows Arch. 2007;451:19–25.

    Article  CAS  PubMed  Google Scholar 

  87. Francis GD, Jones MA, Beadle GF, Stein SR. Bright-field in situ hybridization for HER2 gene amplification in breast cancer using tissue microarrays: correlation between chromogenic (CISH) and automated silver-enhanced (SISH) methods with patient outcome. Diagn Mol Pathol. 2009;18:88–95.

    Article  CAS  PubMed  Google Scholar 

  88. Shousha S, Peston D, Amo-Takyi B, Morgan M, Jasani B. Evaluation of automated silver-enhanced in situ hybridization (SISH) for detection of HER2 gene amplification in breast carcinoma excision and core biopsy specimens. Histopathology. 2009;54:248–53.

    Article  CAS  PubMed  Google Scholar 

  89. Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science. 1992;258:818–21.

    Article  CAS  PubMed  Google Scholar 

  90. Joos S, Scherthan H, Speicher MR, Schlegel J, et al. Detection of amplified DNA sequences by reverse chromosome painting using genomic tumor DNA as probe. Hum Genet. 1993;90:584–9.

    Article  CAS  PubMed  Google Scholar 

  91. du Manoir S, Speicher MR, Joos S, Schröck E, et al. Detection of complete and partial chromosome gains and losses by comparative genomic in situ hybridization. Hum Genet. 1993;90:590–610.

    Article  PubMed  Google Scholar 

  92. Knutsen T, Gobu V, Knaus R, Padilla-Nash H, et al. The interactive online SKY/M-FISH & CGH database and the Entrez cancer chromosomes search database: linkage of chromosomal aberrations with the genome sequence. Genes Chromosomes Cancer. 2005;44:52–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Knuutila S, Björkqvist A-M, Autio K, Tarkkanen M, et al. DNA copy number amplifications in human neoplasms. Am J Pathol. 1998;152:1107–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Knuutila S, Aalto Y, Autio K, Bjorkqvist AM, et al. DNA copy number losses in human neoplasms. Am J Pathol. 1999;155:683–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Isola J, DeVries S, Chu L, Ghazrini S, Waldman F. Analysis of changes in DNA sequence copy number by comparative genomic hybridization in archival paraffin-embedded tumor samples. Am J Pathol. 1994;145:1301–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Speicher MR, du Manoir S, Schrock E, Holtgreve-Grez H, et al. Molecular cytogenetic analysis of formalin-fixed, paraffin-embedded solid tumors by comparative genomic hybridization after universal DNA-amplification. Hum Mol Genet. 1993;2:1907–14.

    Article  CAS  PubMed  Google Scholar 

  97. Ried T, Just KE, Holtgreve-Grez H, du Manoir S, et al. Comparative genomic hybridization of formalin-fixed, paraffin-embedded breast tumors reveals different patterns of chromosomal gains and losses in fibroadenomas and diploid and aneuploid carcinomas. Cancer Res. 1995;55:5415–23.

    CAS  PubMed  Google Scholar 

  98. Speicher MR, Jauch A, Walt H, du Manoir S, et al. Correlation of microscopic phenotype with genotype in a formalin-fixed, paraffin-embedded testicular germ cell tumor with universal DNA amplification, comparative genomic hybridization, and interphase cytogenetics. Am J Pathol. 1995;146:1332–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Heselmeyer K, Schrock E, du Manoir S, Blegen H, et al. Gain of chromosome 3q defines the transition from severe dysplasia to invasive carcinoma of the uterine cervix. Proc Natl Acad Sci U S A. 1996;93:479–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Telenius H, Carter NP, Bebb CE, Norednskjöld M, et al. Degenerate oligonucleotide-primed PCR (DOP-PCR): general amplification of target DNA by a single degenerate primer. Genomics. 1992;13:718–25.

    Article  CAS  PubMed  Google Scholar 

  101. Ried T, Knutzen R, Steinbeck R, Blegen H, et al. Comparative genomic hybridization reveals a specific pattern of chromosomal gains and losses during the genesis of colorectal tumors. Genes Chromosomes Cancer. 1996;15:234–45.

    Article  CAS  PubMed  Google Scholar 

  102. Klein CA, Schmidt-Kittler O, Schardt JA, Pantel K, et al. Comparative genomic hybridization, loss of heterozygosity, and DNA sequence analysis of single cells. Proc Natl Acad Sci U S A. 1999;96:4494–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Riethdorf S, Wikman H, Pantel K. Review: Biological relevance of disseminated tumor cells in cancer patients. Int J Cancer. 2008;123:1991–2006.

    Article  CAS  PubMed  Google Scholar 

  104. Cristofanilli M, Reuben J, Uhr J. Circulating tumor cells in breast cancer: fiction or reality? J Clin Oncol. 2008;26:3656–7.

    Article  PubMed  Google Scholar 

  105. Klein CA, Stoecklein NH. Lessons from an aggressive cancer: evolutionary dynamics in esophageal carcinoma. Cancer Res. 2009;69:5285–8.

    Article  CAS  PubMed  Google Scholar 

  106. Solinas-Toldo S, Lampel S, Stilgenbauer S, Nickolenko J, et al. Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer. 1997;20:399–407.

    Article  CAS  PubMed  Google Scholar 

  107. Pinkel D, Segraves R, Sudar D, Clark S, et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet. 1998;20:207–11.

    Article  CAS  PubMed  Google Scholar 

  108. Camps J, Grade M, Nguyen QT, Hormann P, et al. Chromosomal breakpoints in primary colon cancer cluster at sites of structural variants in the genome. Cancer Res. 2008;68:1284–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Nederlof PM, van der Flier S, Wiegant J, Raap AK, et al. Multiple fluorescence in situ hybridization. Cytometry. 1990;11:126–31.

    Article  CAS  PubMed  Google Scholar 

  110. Nederlof PM, van der Flier S, Vrolijk J, Tanke HJ, Raap AK. Fluorescence ratio measurements of double-labeled probes for multiple in situ hybridization by digital imaging microscopy. Cytometry. 1992;13:839–45.

    Article  CAS  PubMed  Google Scholar 

  111. Nederlof PM, van der Flier S, Verwoerd NP, Vrolijk J, et al. Quantification of fluorescence in situ hybridization signals by image cytometry. Cytometry. 1992;13:846–52.

    Article  CAS  PubMed  Google Scholar 

  112. Ried T, Baldini A, Rand TC, Ward DC. Simultaneous visualization of seven different DNA probes by in situ hybridization using combinatorial fluorescence and digital imaging microscopy. Proc Natl Acad Sci U S A. 1992;89:1388–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Schröck E, du Manoir S, Veldman T, Schoell B, et al. Multicolor spectral karyotyping of human chromosomes. Science. 1996;273:494–7.

    Article  PubMed  Google Scholar 

  114. Speicher MR, Ballard SG, Ward DC. Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet. 1996;12:368–75.

    Article  CAS  PubMed  Google Scholar 

  115. Veldman T, Vignon C, Schrock E, Rowley JD, Ried T. Hidden chromosome abnormalities in haematological malignancies detected by multicolour spectral karyotyping. Nat Genet. 1997;15:406–10.

    Article  CAS  PubMed  Google Scholar 

  116. Liang JC, Ning Y, Wang RY, Padilla-Nash HM, et al. Spectral karyotypic study of the HL-60 cell line: detection of complex rearrangements involving chromosomes 5, 7, and 16 and delineation of critical region of deletion on 5q31.1. Cancer Genet Cytogenet. 1999;113:105–9.

    Article  CAS  PubMed  Google Scholar 

  117. Chesi M, Nardini E, Brents LA, Schrock E, et al. Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3. Nat Genet. 1997;16:260–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chesi M, Bergsagel PL, Shonukan OO, Martelli ML, et al. Frequent dysregulation of the c-maf proto-oncogene at 16q23 by translocation to an Ig locus in multiple myeloma. Blood. 1998;91:4457–63.

    CAS  PubMed  Google Scholar 

  119. Hilgenfeld E, Padilla-Nash H, McNeil N, Knutsen T, et al. Spectral karyotyping and fluorescence in situ hybridization detect novel chromosomal aberrations, a recurring involvement of chromosome 21 and amplification of the MYC oncogene in acute myeloid leukaemia M2. Br J Haematol. 2001;113:305–17.

    Article  CAS  PubMed  Google Scholar 

  120. Knutsen T, Rao VK, Ried T, Mickley L, et al. Amplification of 4q21–q22 and the MXR gene in independently derived mitoxantrone-resistant cell lines. Genes Chromosomes Cancer. 2000;27:110–6.

    Article  CAS  PubMed  Google Scholar 

  121. Padilla-Nash HM, Heselmeyer-Haddad K, Wangsa D, Zhang H, et al. Jumping translocations are common in solid tumor cell lines and result in recurrent fusions of whole chromosome arms. Genes Chromosomes Cancer. 2001;30:349–63.

    Article  CAS  PubMed  Google Scholar 

  122. Ghadimi BM, Sackett DL, Difilippantonio MJ, Schrock E, et al. Centrosome amplification and instability occurs exclusively in aneuploid, but not in diploid colorectal cancer cell lines, and correlates with numerical chromosomal aberrations. Genes Chromosomes Cancer. 2000;27:183–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Macville M, Schrock E, Padilla-Nash H, Keck C, et al. Comprehensive and definitive molecular cytogenetic characterization of HeLa cells by spectral karyotyping. Cancer Res. 1999;59:141–50.

    CAS  PubMed  Google Scholar 

  124. Liyanage M, Coleman A, du Manoir S, Veldman T, et al. Multicolour spectral karyotyping of mouse chromosomes. Nat Genet. 1996;14:312–5.

    Article  CAS  PubMed  Google Scholar 

  125. Barlow C, Hirotsune S, Paylor R, Liyanage M, et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell. 1996;86:159–71.

    Article  CAS  PubMed  Google Scholar 

  126. Difilippantonio MJ, Zhu J, Chen HT, Meffre E, et al. DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature. 2000;404:510–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Difilippantonio MJ, Petersen S, Chen HT, Johnson R, et al. Evidence for replicative repair of DNA double-strand breaks leading to oncogenic translocation and gene amplification. J Exp Med. 2002;196:469–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Rowley JD. The role of chromosome translocations in leukemogenesis. Semin Hematol. 1999;36:59–72.

    CAS  PubMed  Google Scholar 

  129. Bakhshi A, Jensen JP, Goldman P, Wright JJ, et al. Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell. 1985;41:899–906.

    Article  CAS  PubMed  Google Scholar 

  130. Virgilio L, Narducci MG, Isobe M, Billips LG, et al. Identification of the TCL1 gene involved in T-cell malignancies. Proc Natl Acad Sci U S A. 1994;91:12530–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Virgilio L, Isobe M, Narducci MG, Carotenuto P, et al. Chromosome walking on the TCL1 locus involved in T-cell neoplasia. Proc Natl Acad Sci U S A. 1993;90:9275–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Erickson P, Gao J, Chang KS, Look T, et al. Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt. Blood. 1992;80:1825–31.

    CAS  PubMed  Google Scholar 

  133. Whang-Peng J, Kao-Shan CS, Lee EC, Bunn PA, et al. Specific chromosome defect associated with human small-cell lung cancer: deletion 3p(14-23). Science. 1982;215:181–2.

    Article  CAS  PubMed  Google Scholar 

  134. Bardi G, Johansson B, Pandis N, Heim S, et al. Trisomy 7 in short-term cultures of colorectal adenocarcinomas. Genes Chromosomes Cancer. 1991;3:149–52.

    Article  CAS  PubMed  Google Scholar 

  135. Ghadimi BM, Schrock E, Walker RL, Wangsa D, et al. Specific chromosomal aberrations and amplification of the AIB1 nuclear receptor coactivator gene in pancreatic carcinomas. Am J Pathol. 1999;154:525–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Cahill DP, Kinzler KW, Vogelstein B, Lengauer C. Genetic instability and Darwinian selection in tumours. Trends Cell Biol. 1999;9:M57–60.

    Article  CAS  PubMed  Google Scholar 

  137. Beroukhim R, Mermel CH, Porter D, Wei G, et al. The landscape of somatic copy-number alteration across human cancers. Nature. 2010;463:899–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Upender MB, Habermann JK, McShane LM, Korn EL, et al. Chromosome transfer induced aneuploidy results in complex dysregulation of the cellular transcriptome in immortalized and cancer cells. Cancer Res. 2004;64:6941–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Pollack JR, Sorlie T, Perou CM, Rees CA, et al. Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proc Natl Acad Sci U S A. 2002;99:12963–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wolf M, Mousses S, Hautaniemi S, Karhu R, et al. High-resolution analysis of gene copy number alterations in human prostate cancer using CGH on cDNA microarrays: impact of copy number on gene expression. Neoplasia. 2004;6:240–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Neve RM, Chin K, Fridlyand J, Yeh J, et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 2006;10:515–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Chin K, DeVries S, Fridlyand J, Spellman PT, et al. Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell. 2006;10:529–41.

    Article  CAS  PubMed  Google Scholar 

  143. Tsafrir D, Bacolod M, Selvanayagam Z, Tsafrir I, et al. Relationship of gene expression and chromosomal abnormalities in colorectal cancer. Cancer Res. 2006;66:2129–37.

    Article  CAS  PubMed  Google Scholar 

  144. Grade M, Ghadimi BM, Varma S, Simon R, et al. Aneuploidy-dependent massive deregulation of the cellular transcriptome and apparent divergence of the Wnt/beta-catenin signaling pathway in human rectal carcinomas. Cancer Res. 2006;66:267–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Grade M, Hormann P, Becker S, Hummon AB, et al. Gene expression profiling reveals a massive, aneuploidy-dependent transcriptional deregulation and distinct differences between lymph node-negative and lymph node-positive colon carcinomas. Cancer Res. 2007;67:41–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Camps J, Nguyen QT, Padilla-Nash HM, Knutsen T, et al. Integrative genomics reveals mechanisms of copy number alterations responsible for transcriptional deregulation in colorectal cancer. Genes Chromosomes Cancer. 2009;48:1002–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Duesberg P. Does aneuploidy or mutation start cancer? Science. 2005;307:41.

    Article  CAS  PubMed  Google Scholar 

  148. Kallioniemi A, Kallioniemi OP, Citro G, Sauter G, et al. Identification of gains and losses of DNA sequences in primary bladder cancer by comparative genomic hybridization. Genes Chromosomes Cancer. 1995;12:213–9.

    Article  CAS  PubMed  Google Scholar 

  149. Voorter C, Joos S, Bringuier PP, Vallinga M, et al. Detection of chromosomal imbalances in transitional cell carcinoma of the bladder by comparative genomic hybridization. Am J Pathol. 1995;146:1341–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Sokolova IA, Halling KC, Jenkins RB, Burkhardt HM, et al. The development of a multitarget, multicolor fluorescence in situ hybridization assay for the detection of urothelial carcinoma in urine. J Mol Diagn. 2000;2:116–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Halling KC, King W, Sokolova IA, Karnes RJ, et al. A comparison of BTA stat, hemoglobin dipstick, telomerase and Vysis UroVysion assays for the detection of urothelial carcinoma in urine. J Urol. 2002;167:2001–6.

    Article  CAS  PubMed  Google Scholar 

  152. Prindiville SA, Ried T. Interphase cytogenetics of sputum cells for the early detection of lung carcinogenesis. Cancer Prev Res (Phila). 2010;3:416–9.

    Article  CAS  Google Scholar 

  153. Varella-Garcia M, Schulte AP, Wolf HJ, Feser WJ, et al. The detection of chromosomal aneusomy by fluorescence in situ hybridization in sputum predicts lung cancer incidence. Cancer Prev Res (Phila). 2010;3:447–53.

    Article  CAS  Google Scholar 

  154. Sokolova IA, Bubendorf L, O'Hare A, Legator MS, et al. A fluorescence in situ hybridization-based assay for improved detection of lung cancer cells in bronchial washing specimens. Cancer. 2002;96:306–15.

    Article  PubMed  Google Scholar 

  155. Savic S, Glatz K, Schoenegg R, Spieler P, et al. Multitarget fluorescence in situ hybridization elucidates equivocal lung cytology. Chest. 2006;129:1629–35.

    Article  PubMed  Google Scholar 

  156. Gill RK, Vazquez MF, Kramer A, Hames M, et al. The use of genetic markers to identify lung cancer in fine needle aspiration samples. Clin Cancer Res. 2008;14:7481–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Slamon DJ, Clark GM, Wong SG, Levin WJ, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235:177–82.

    Article  CAS  PubMed  Google Scholar 

  158. Iwata H. Neo(adjuvant) trastuzumab treatment: current perspectives. Breast Cancer. 2009;16:288–94.

    Article  PubMed  Google Scholar 

  159. Borg A, Tandon AK, Sigurdsson H, Clark GM, et al. HER-2/neu amplification predicts poor survival in node-positive breast cancer. Cancer Res. 1990;50:4332–7.

    CAS  PubMed  Google Scholar 

  160. Duffy MJ. Predictive markers in breast and other cancers: a review. Clin Chem. 2005;51:494–503.

    Article  CAS  PubMed  Google Scholar 

  161. Gusterson BA, Gelber RD, Goldhirsch A, Price KN, et al. Prognostic importance of c-erbB-2 expression in breast cancer. International (Ludwig) Breast Cancer Study Group. J Clin Oncol. 1992;10:1049–56.

    CAS  PubMed  Google Scholar 

  162. Paik S, Park C. HER-2 and choice of adjuvant chemotherapy in breast cancer. Semin Oncol. 2001;28:332–5.

    Article  CAS  PubMed  Google Scholar 

  163. Slamon DJ. Studies of the HER-2/neu proto-oncogene in human breast cancer. Cancer Invest. 1990;8:253.

    Article  CAS  PubMed  Google Scholar 

  164. Thor AD, Berry DA, Budman DR, Muss HB, et al. erbB-2, p53, and efficacy of adjuvant therapy in lymph node-positive breast cancer. J Natl Cancer Inst. 1998;90:1346–60.

    Article  CAS  PubMed  Google Scholar 

  165. Owens MA, Horten BC, Da Silva MM. HER2 amplification ratios by fluorescence in situ hybridization and correlation with immunohistochemistry in a cohort of 6556 breast cancer tissues. Clin Breast Cancer. 2004;5:63–9.

    Article  CAS  PubMed  Google Scholar 

  166. Ross JS, Fletcher JA, Bloom KJ, Linette GP, et al. Targeted therapy in breast cancer: the HER-2/neu gene and protein. Mol Cell Proteomics. 2004;3:379–98.

    Article  CAS  PubMed  Google Scholar 

  167. Rocha-Lima CM, Soares HP, Raez LE, Singal R. EGFR targeting of solid tumors. Cancer Control. 2007;14:295–304.

    PubMed  Google Scholar 

  168. Martin V, Mazzucchelli L, Frattini M. An overview of the epidermal growth factor receptor fluorescence in situ hybridisation challenge in tumour pathology. J Clin Pathol. 2009;62:314–24.

    Article  CAS  PubMed  Google Scholar 

  169. Cappuzzo F, Finocchiaro G, Rossi E, Janne PA, et al. EGFR FISH assay predicts for response to cetuximab in chemotherapy refractory colorectal cancer patients. Ann Oncol. 2008;19:717–23.

    Article  CAS  PubMed  Google Scholar 

  170. Moroni M, Veronese S, Benvenuti S, Marrapese G, et al. Gene copy number for epidermal growth factor receptor (EGFR) and clinical response to antiEGFR treatment in colorectal cancer: a cohort study. Lancet Oncol. 2005;6:279–86.

    Article  CAS  PubMed  Google Scholar 

  171. Sartore-Bianchi A, Moroni M, Veronese S, Carnaghi C, et al. Epidermal growth factor receptor gene copy number and clinical outcome of metastatic colorectal cancer treated with panitumumab. J Clin Oncol. 2007;25:3238–45.

    Article  CAS  PubMed  Google Scholar 

  172. Ohgaki H, Kleihues P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol. 2005;64:479–89.

    Article  CAS  PubMed  Google Scholar 

  173. Gaiser T, Waha A, Moessler F, Bruckner T, et al. Comparison of automated silver enhanced in situ hybridization and fluorescence in situ hybridization for evaluation of epidermal growth factor receptor status in human glioblastomas. Mod Pathol. 2009;22:1263–71.

    Article  CAS  PubMed  Google Scholar 

  174. Halatsch ME, Schmidt U, Behnke-Mursch J, Unterberg A, Wirtz CR. Epidermal growth factor receptor inhibition for the treatment of glioblastoma multiforme and other malignant brain tumours. Cancer Treat Rev. 2006;32:74–89.

    Article  CAS  PubMed  Google Scholar 

  175. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.

    Article  PubMed  Google Scholar 

  176. Koss LG. Evolution in cervical pathology and cytology: a historical perspective. Eur J Gynaecol Oncol. 2000;21:550–4.

    CAS  PubMed  Google Scholar 

  177. Schiffman M, Castle PE, Jeronimo J, Rodriguez AC, Wacholder S. Human papillomavirus and cervical cancer. Lancet. 2007;370:890–907.

    Article  CAS  PubMed  Google Scholar 

  178. Granberg I. Chromosomes in preinvasive, microinvasive and invasive cervical carcinoma. Hereditas. 1971;68:165–218.

    Article  CAS  PubMed  Google Scholar 

  179. Atkin NB. Cytogenetics of carcinoma of the cervix uteri: a review. Cancer Genet Cytogenet. 1997;95:33–9.

    Article  CAS  PubMed  Google Scholar 

  180. Mitra AB, Murty VV, Singh V, Li RG, et al. Genetic alterations at 5p15: a potential marker for progression of precancerous lesions of the uterine cervix. J Natl Cancer Inst. 1995;87:742–5.

    Article  CAS  PubMed  Google Scholar 

  181. Heselmeyer K, Macville M, Schrock E, Blegen H, et al. Advanced-stage cervical carcinomas are defined by a recurrent pattern of chromosomal aberrations revealing high genetic instability and a consistent gain of chromosome arm 3q. Genes Chromosomes Cancer. 1997;19:233–40.

    Article  CAS  PubMed  Google Scholar 

  182. Rao PH, Arias-Pulido H, Lu XY, Harris CP, et al. Chromosomal amplifications, 3q gain and deletions of 2q33-q37 are the frequent genetic changes in cervical carcinoma. BMC Cancer. 2004;4:5.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Kirchhoff M, Rose H, Petersen BL, Maahr J, et al. Comparative genomic hybridization reveals a recurrent pattern of chromosomal aberrations in severe dysplasia/carcinoma in situ of the cervix and in advanced-stage cervical carcinoma. Genes Chromosomes Cancer. 1999;24:144–50.

    Article  CAS  PubMed  Google Scholar 

  184. Heselmeyer-Haddad K, Janz V, Castle PE, Chaudhri N, et al. Detection of genomic amplification of the human telomerase gene (TERC) in cytologic specimens as a genetic test for the diagnosis of cervical dysplasia. Am J Pathol. 2003;163:1405–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Heselmeyer-Haddad K, Sommerfeld K, White NM, Chaudhri N, et al. Genomic amplification of the human telomerase gene (TERC) in pap smears predicts the development of cervical cancer. Am J Pathol. 2005;166:1229–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Andersson S, Sowjanya P, Wangsa D, Hjerpe A, et al. Detection of genomic amplification of the human telomerase gene TERC, a potential marker for triage of women with HPV-positive, abnormal Pap smears. Am J Pathol. 2009;175:1831–47.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Sokolova I, Algeciras-Schimnich A, Song M, Sitailo S, et al. Chromosomal biomarkers for detection of human papillomavirus associated genomic instability in epithelial cells of cervical cytology specimens. J Mol Diagn. 2007;9:604–11.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Caraway NP, Khanna A, Dawlett M, Guo M, et al. Gain of the 3q26 region in cervicovaginal liquid-based pap preparations is associated with squamous intraepithelial lesions and squamous cell carcinoma. Gynecol Oncol. 2008;110:37–42.

    Article  CAS  PubMed  Google Scholar 

  189. Hopman AH, Theelen W, Hommelberg PP, Kamps MA, et al. Genomic integration of oncogenic HPV and gain of the human telomerase gene TERC at 3q26 are strongly associated events in the progression of uterine cervical dysplasia to invasive cancer. J Pathol. 2006;210:412–9.

    Article  CAS  PubMed  Google Scholar 

  190. Jalali GR, Herzog TJ, Dziura B, Walat R, Kilpatrick MW. Amplification of the chromosome 3q26 region shows high negative predictive value for nonmalignant transformation of LSIL cytologic finding. Am J Obstet Gynecol. 2010;202:581–5.

    Article  PubMed  CAS  Google Scholar 

  191. Seppo A, Jalali GR, Babkowski R, Symiakaki H, et al. Gain of 3q26: a genetic marker in low-grade squamous intraepithelial lesions (LSIL) of the uterine cervix. Gynecol Oncol. 2009;114:80–3.

    Article  CAS  PubMed  Google Scholar 

  192. Ried T. Interphase cytogenetics and its role in molecular diagnostics of solid tumors. Am J Pathol. 1998;152:325–7.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Hesed Padilla-Nash, Dr. Michael J. Difilippantonio, Dr. Darawalee Wangsa, Dr. Madhvi Upender, and Danny Wangsa for providing figures, Turid Knutsen for helpful comments, and Dr. Reinhard Ebner for critically reading the manuscript. We thank all members of our laboratory for their input and most of all for their dedication to cancer research. We greatly appreciate the help of Buddy Chen with creating the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Ried M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ried, T., Heselmeyer-Haddad, K., Camps, J., Gaiser, T. (2017). Cancer Cytogenetics. In: Coleman, W., Tsongalis, G. (eds) The Molecular Basis of Human Cancer. Humana Press, New York, NY. https://doi.org/10.1007/978-1-59745-458-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-458-2_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-934115-18-3

  • Online ISBN: 978-1-59745-458-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics