Skip to main content

Biological Principles and Clinical Application of EGFR Inhibitors in Cancer

  • Chapter
  • First Online:
  • 3088 Accesses

Abstract

Epidermal growth factor receptor (EGFR) has been studied for over 40 years. The biological function of this receptor and its oncogenic activity make it an ideal target for treatment of human cancers. In recent years, several agents targeting EGFR have been developed and used in the clinic. The purpose of this chapter is to provide an overview of the biological characteristics of EGFR, its relationship with human cancer, and the development of EGFR inhibitors in clinical use. Using EGFR as an example, this review also intends to provide insight into current advances in molecular oncology and molecular therapeutics and their future directions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cohen S. The stimulation of epidermal proliferation by a specific protein (EGF). Dev Biol. 1965;12:394–407.

    Article  CAS  PubMed  Google Scholar 

  2. Cohen S. The epidermal growth factor (EGF). Cancer. 1983;51:1787–91.

    Article  CAS  PubMed  Google Scholar 

  3. Cohen S, Carpenter G, Lembach KJ. Interaction of epidermal growth factor (EGF) with cultured fibroblasts. Adv Metab Disord. 1975;8:265–84.

    Article  CAS  PubMed  Google Scholar 

  4. Cohen S, Carpenter G, King Jr L. Epidermal growth factor-receptor-protein kinase interactions. Co-purification of receptor and epidermal growth factor-enhanced phosphorylation activity. J Biol Chem. 1980;255:4834–42.

    CAS  PubMed  Google Scholar 

  5. Ullrich A, Coussens L, Hayflick JS, et al. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature. 1984;309:418–25.

    Article  CAS  PubMed  Google Scholar 

  6. Gullick WJ, Downward J, Parker PJ, et al. The structure and function of the epidermal growth factor receptor studied by using antisynthetic peptide antibodies. Proc R Soc Lond B Biol Sci. 1985;226:127–34.

    Article  CAS  PubMed  Google Scholar 

  7. Downward J, Yarden Y, Mayes E, et al. Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature. 1984;307:521–7.

    Article  CAS  PubMed  Google Scholar 

  8. Khazaie K, Dull TJ, Graf T, et al. Truncation of the human EGF receptor leads to differential transforming potentials in primary avian fibroblasts and erythroblasts. EMBO J. 1988;7:3061–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2:127–37.

    Article  CAS  PubMed  Google Scholar 

  10. Davies RL, Grosse VA, Kucherlapati R, Bothwell M. Genetic analysis of epidermal growth factor action: assignment of human epidermal growth factor receptor gene to chromosome 7. Proc Natl Acad Sci U S A. 1980;77:4188–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lin CR, Chen WS, Kruiger W, et al. Expression cloning of human EGF receptor complementary DNA: gene amplification and three related messenger RNA products in A431 cells. Science. 1984;224:843–8.

    Article  CAS  PubMed  Google Scholar 

  12. Xu YH, Ishii S, Clark AJ, et al. Human epidermal growth factor receptor cDNA is homologous to a variety of RNAs overproduced in A431 carcinoma cells. Nature. 1984;309:806–10.

    Article  CAS  PubMed  Google Scholar 

  13. Simmen FA, Gope ML, Schulz TZ, et al. Isolation of an evolutionarily conserved epidermal growth factor receptor cDNA from human A431 carcinoma cells. Biochem Biophys Res Commun. 1984;124:125–32.

    Article  CAS  PubMed  Google Scholar 

  14. Merlino GT, Ishii S, Whang-Peng J, et al. Structure and localization of genes encoding aberrant and normal epidermal growth factor receptor RNAs from A431 human carcinoma cells. Mol Cell Biol. 1985;5:1722–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Carpenter G, Cohen S. Epidermal growth factor. J Biol Chem. 1990;265:7709–12.

    CAS  PubMed  Google Scholar 

  16. Jorissen RN, Walker F, Pouliot N, et al. Epidermal growth factor receptor: mechanisms of activation and signalling. Exp Cell Res. 2003;284:31–53.

    Article  CAS  PubMed  Google Scholar 

  17. Ennis BW, Lippman ME, Dickson RB. The EGF receptor system as a target for antitumor therapy. Cancer Invest. 1991;9:553–62.

    Article  CAS  PubMed  Google Scholar 

  18. Carpenter G. Receptors for epidermal growth factor and other polypeptide mitogens. Annu Rev Biochem. 1987;56:881–914.

    Article  CAS  PubMed  Google Scholar 

  19. Slieker LJ, Martensen TM, Lane MD. Synthesis of epidermal growth factor receptor in human A431 cells. Glycosylation-dependent acquisition of ligand binding activity occurs post-translationally in the endoplasmic reticulum. J Biol Chem. 1986;261:15233–41.

    CAS  PubMed  Google Scholar 

  20. Cummings RD, Soderquist AM, Carpenter G. The oligosaccharide moieties of the epidermal growth factor receptor in A-431 cells. Presence of complex-type N-linked chains that contain terminal N-acetylgalactosamine residues. J Biol Chem. 1985;260:11944–52.

    CAS  PubMed  Google Scholar 

  21. Jones JT, Akita RW, Sliwkowski MX. Binding specificities and affinities of egf domains for ErbB receptors. FEBS Lett. 1999;447:227–31.

    Article  CAS  PubMed  Google Scholar 

  22. Tzahar E, Pinkas-Kramarski R, Moyer JD, et al. Bivalence of EGF-like ligands drives the ErbB signaling network. EMBO J. 1997;16:4938–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Garrett TP, McKern NM, Lou M, et al. Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor alpha. Cell. 2002;110:763–73.

    Article  CAS  PubMed  Google Scholar 

  24. Ogiso H, Ishitani R, Nureki O, et al. Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell. 2002;110:775–87.

    Article  CAS  PubMed  Google Scholar 

  25. Odaka M, Kohda D, Lax I, Schlessinger J, Inagaki F. Ligand-binding enhances the affinity of dimerization of the extracellular domain of the epidermal growth factor receptor. J Biochem. 1997;122:116–21.

    Article  CAS  PubMed  Google Scholar 

  26. Lemmon MA, Bu Z, Ladbury JE, et al. Two EGF molecules contribute additively to stabilization of the EGFR dimer. EMBO J. 1997;16:281–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Domagala T, Konstantopoulos N, Smyth F, et al. Stoichiometry, kinetic and binding analysis of the interaction between epidermal growth factor (EGF) and the extracellular domain of the EGF receptor. Growth Factors. 2000;18:11–29.

    Article  CAS  PubMed  Google Scholar 

  28. Sako Y, Minoghchi S, Yanagida T. Single-molecule imaging of EGFR signalling on the surface of living cells. Nat Cell Biol. 2000;2:168–72.

    Article  CAS  PubMed  Google Scholar 

  29. Moriki T, Maruyama H, Maruyama IN. Activation of preformed EGF receptor dimers by ligand-induced rotation of the transmembrane domain. J Mol Biol. 2001;311:1011–26.

    Article  CAS  PubMed  Google Scholar 

  30. Neelam B, Richter A, Chamberlin SG, et al. Structure-function studies of ligand-induced epidermal growth factor receptor dimerization. Biochemistry. 1998;37:4884–91.

    Article  CAS  PubMed  Google Scholar 

  31. Ge G, Wu J, Wang Y, Lin Q. Activation mechanism of solubilized epidermal growth factor receptor tyrosine kinase. Biochem Biophys Res Commun. 2002;290:914–20.

    Article  CAS  PubMed  Google Scholar 

  32. Frey MR, Dise RS, Edelblum KL, Polk DB. p38 kinase regulates epidermal growth factor receptor downregulation and cellular migration. EMBO J. 2006;25:5683–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Haugh JM, Lauffenburger DA. Analysis of receptor internalization as a mechanism for modulating signal transduction. J Theor Biol. 1998;195:187–218.

    Article  CAS  PubMed  Google Scholar 

  34. Herbst JJ, Opresko LK, Walsh BJ, Lauffenburger DA, Wiley HS. Regulation of postendocytic trafficking of the epidermal growth factor receptor through endosomal retention. J Biol Chem. 1994;269:12865–73.

    CAS  PubMed  Google Scholar 

  35. Sasaoka T, Langlois WJ, Leitner JW, Draznin B, Olefsky JM. The signaling pathway coupling epidermal growth factor receptors to activation of p21ras. J Biol Chem. 1994;269:32621–5.

    CAS  PubMed  Google Scholar 

  36. Batzer AG, Rotin D, Urena JM, Skolnik EY, Schlessinger J. Hierarchy of binding sites for Grb2 and Shc on the epidermal growth factor receptor. Mol Cell Biol. 1994;14:5192–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hallberg B, Rayter SI, Downward J. Interaction of Ras and Raf in intact mammalian cells upon extracellular stimulation. J Biol Chem. 1994;269:3913–6.

    CAS  PubMed  Google Scholar 

  38. Gardner AM, Vaillancourt RR, Lange-Carter CA, Johnson GL. MEK-1 phosphorylation by MEK kinase, Raf, and mitogen-activated protein kinase: analysis of phosphopeptides and regulation of activity. Mol Biol Cell. 1994;5:193–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Johnson GL, Vaillancourt RR. Sequential protein kinase reactions controlling cell growth and differentiation. Curr Opin Cell Biol. 1994;6:230–8.

    Article  CAS  PubMed  Google Scholar 

  40. Bonni A, Brunet A, West AE, et al. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science. 1999;286:1358–62.

    Article  CAS  PubMed  Google Scholar 

  41. Chang F, Lee JT, Navolanic PM, et al. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia. 2003;17:590–603.

    Article  CAS  PubMed  Google Scholar 

  42. Lee JY, Engelman JA, Cantley LC. Biochemistry. PI3K charges ahead. Science. 2007;317:206–7.

    Article  CAS  PubMed  Google Scholar 

  43. Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296:1655–7.

    Article  CAS  PubMed  Google Scholar 

  44. Carpenter CL, Auger KR, Chanudhuri M, et al. Phosphoinositide 3-kinase is activated by phosphopeptides that bind to the SH2 domains of the 85-kDa subunit. J Biol Chem. 1993;268:9478–83.

    CAS  PubMed  Google Scholar 

  45. Kim HH, Sierke SL, Koland JG. Epidermal growth factor-dependent association of phosphatidylinositol 3-kinase with the erbB3 gene product. J Biol Chem. 1994;269:24747–55.

    CAS  PubMed  Google Scholar 

  46. Ram TG, Ethier SP. Phosphatidylinositol 3-kinase recruitment by p185erbB-2 and erbB-3 is potently induced by neu differentiation factor/heregulin during mitogenesis and is constitutively elevated in growth factor-independent breast carcinoma cells with c-erbB-2 gene amplification. Cell Growth Differ. 1996;7:551–61.

    CAS  PubMed  Google Scholar 

  47. Jones PF, Jakubowicz T, Pitossi FJ, Maurer F, Hemmings BA. Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily. Proc Natl Acad Sci U S A. 1991;88:4171–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Datta SR, Dudek H, Tao X, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997;91:231–41.

    Article  CAS  PubMed  Google Scholar 

  49. Franke TF, Kaplan DR, Cantley LC. PI3K: downstream AKTion blocks apoptosis. Cell. 1997;88:435–7.

    Article  CAS  PubMed  Google Scholar 

  50. Scott PH, Brunn GJ, Kohn AD, Roth RA, Lawrence Jr JC. Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway. Proc Natl Acad Sci U S A. 1998;95:7772–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jiang BH, Zheng JZ, Aoki M, Vogt PK. Phosphatidylinositol 3-kinase signaling mediates angiogenesis and expression of vascular endothelial growth factor in endothelial cells. Proc Natl Acad Sci U S A. 2000;97:1749–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kamat A, Carpenter G. Phospholipase C-gamma1: regulation of enzyme function and role in growth factor-dependent signal transduction. Cytokine Growth Factor Rev. 1997;8:109–17.

    Article  CAS  PubMed  Google Scholar 

  53. Chattopadhyay A, Vecchi M, Ji Q, Mernaugh R, Carpenter G. The role of individual SH2 domains in mediating association of phospholipase C-gamma1 with the activated EGF receptor. J Biol Chem. 1999;274:26091–7.

    Article  CAS  PubMed  Google Scholar 

  54. Mackay HJ, Twelves CJ. Targeting the protein kinase C family: are we there yet? Nat Rev. 2007;7:554–62.

    Article  CAS  Google Scholar 

  55. Martiny-Baron G, Fabbro D. Classical PKC isoforms in cancer. Pharmacol Res. 2007;55:477–86.

    Article  CAS  PubMed  Google Scholar 

  56. Darnell Jr JE. STATs and gene regulation. Science. 1997;277:1630–5.

    Article  CAS  PubMed  Google Scholar 

  57. Darnell Jr JE. The JAK-STAT pathway: summary of initial studies and recent advances. Recent Prog Horm Res. 1996;51:391–403.

    CAS  PubMed  Google Scholar 

  58. Xia L, Wang L, Chung AS, et al. Identification of both positive and negative domains within the epidermal growth factor receptor COOH-terminal region for signal transducer and activator of transcription (STAT) activation. J Biol Chem. 2002;277:30716–23.

    Article  CAS  PubMed  Google Scholar 

  59. Olayioye MA, Beuvink I, Horsch K, Daly JM, Hynes NE. ErbB receptor-induced activation of stat transcription factors is mediated by Src tyrosine kinases. J Biol Chem. 1999;274:17209–18.

    Article  CAS  PubMed  Google Scholar 

  60. David M, Wong L, Flavell R, et al. STAT activation by epidermal growth factor (EGF) and amphiregulin. Requirement for the EGF receptor kinase but not for tyrosine phosphorylation sites or JAK1. J Biol Chem. 1996;271:9185–8.

    Article  CAS  PubMed  Google Scholar 

  61. Quesnelle KM, Boehm AL, Grandis JR. STAT-mediated EGFR signaling in cancer. J Cell Biochem. 2007;102:311–9.

    Article  CAS  PubMed  Google Scholar 

  62. Kloth MT, Laughlin KK, Biscardi JS, et al. STAT5b, a mediator of synergism between c-Src and the epidermal growth factor receptor. J Biol Chem. 2003;278:1671–9.

    Article  CAS  PubMed  Google Scholar 

  63. Biscardi JS, Belsches AP, Parsons SJ. Characterization of human epidermal growth factor receptor and c-Src interactions in human breast tumor cells. Mol Carcinog. 1998;21:261–72.

    Article  CAS  PubMed  Google Scholar 

  64. Belsches AP, Haskell MD, Parsons SJ. Role of c-Src tyrosine kinase in EGF-induced mitogenesis. Front Biosci. 1997;2:d501–18.

    Article  CAS  PubMed  Google Scholar 

  65. Zhang J, Kalyankrishna S, Wislez M, et al. SRC-family kinases are activated in non-small cell lung cancer and promote the survival of epidermal growth factor receptor-dependent cell lines. Am J Pathol. 2007;170:366–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Luttrell DK, Luttrell LM, Parsons SJ. Augmented mitogenic responsiveness to epidermal growth factor in murine fibroblasts that overexpress pp60c-src. Mol Cell Biol. 1988;8:497–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Maa MC, Leu TH, McCarley DJ, Schatzman RC, Parsons SJ. Potentiation of epidermal growth factor receptor-mediated oncogenesis by c-Src: implications for the etiology of multiple human cancers. Proc Natl Acad Sci U S A. 1995;92:6981–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Stover DR, Becker M, Liebetanz J, Lydon NB. Src phosphorylation of the epidermal growth factor receptor at novel sites mediates receptor interaction with Src and P85 alpha. J Biol Chem. 1995;270:15591–7.

    Article  CAS  PubMed  Google Scholar 

  69. Biscardi JS, Maa MC, Tice DA, et al. c-Src-mediated phosphorylation of the epidermal growth factor receptor on Tyr845 and Tyr1101 is associated with modulation of receptor function. J Biol Chem. 1999;274:8335–43.

    Article  CAS  PubMed  Google Scholar 

  70. Bhola NE, Grandis JR. Crosstalk between G-protein-coupled receptors and epidermal growth factor receptor in cancer. Front Biosci. 2008;13:1857–65.

    Article  CAS  PubMed  Google Scholar 

  71. Kalyankrishna S, Grandis JR. Epidermal growth factor receptor biology in head and neck cancer. J Clin Oncol. 2006;24:2666–72.

    Article  CAS  PubMed  Google Scholar 

  72. Ingram JL, Bonner JC. EGF and PDGF receptor tyrosine kinases as therapeutic targets for chronic lung diseases. Curr Mol Med. 2006;6:409–21.

    Article  CAS  PubMed  Google Scholar 

  73. Karamouzis MV, Papavassiliou AG. The IGF-1 network in lung carcinoma therapeutics. Trends Mol Med. 2006;12:595–602.

    Article  CAS  PubMed  Google Scholar 

  74. Gururaj AE, Rayala SK, Vadlamudi RK, Kumar R. Novel mechanisms of resistance to endocrine therapy: genomic and nongenomic considerations. Clin Cancer Res. 2006;12:1001s–7.

    Article  CAS  PubMed  Google Scholar 

  75. Hayman MJ, Enrietto PJ. Cell transformation by the epidermal growth factor receptor and v-erbB. Cancer Cells. 1991;3:302–7.

    CAS  PubMed  Google Scholar 

  76. Riedel H, Massoglia S, Schlessinger J, Ullrich A. Ligand activation of overexpressed epidermal growth factor receptors transforms NIH 3T3 mouse fibroblasts. Proc Natl Acad Sci U S A. 1988;85:1477–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Velu TJ, Vass WC, Lowy DR, Beguinot L. Functional heterogeneity of proto-oncogene tyrosine kinases: the C terminus of the human epidermal growth factor receptor facilitates cell proliferation. Mol Cell Biol. 1989;9:1772–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Vassar R, Fuchs E. Transgenic mice provide new insights into the role of TGF-alpha during epidermal development and differentiation. Genes Dev. 1991;5:714–27.

    Article  CAS  PubMed  Google Scholar 

  79. Dominey AM, Wang XJ, King Jr LE, et al. Targeted overexpression of transforming growth factor alpha in the epidermis of transgenic mice elicits hyperplasia, hyperkeratosis, and spontaneous, squamous papillomas. Cell Growth Differ. 1993;4:1071–82.

    CAS  PubMed  Google Scholar 

  80. Davies BR, Warren JR, Schmidt G, Rudland PS. Induction of a variety of preneoplasias and tumours in the mammary glands of transgenic rats. Biochem Soc Symp. 1998;63:167–84.

    Article  CAS  PubMed  Google Scholar 

  81. Amundadottir LT, Nass SJ, Berchem GJ, Johnson MD, Dickson RB. Cooperation of TGF alpha and c-Myc in mouse mammary tumorigenesis: coordinated stimulation of growth and suppression of apoptosis. Oncogene. 1996;13:757–65.

    CAS  PubMed  Google Scholar 

  82. Sugawa N, Ekstrand AJ, James CD, Collins VP. Identical splicing of aberrant epidermal growth factor receptor transcripts from amplified rearranged genes in human glioblastomas. Proc Natl Acad Sci U S A. 1990;87:8602–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ekstrand AJ, Sugawa N, James CD, Collins VP. Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N- and/or C-terminal tails. Proc Natl Acad Sci U S A. 1992;89:4309–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yamazaki H, Kijima H, Ohnishi Y, et al. Inhibition of tumor growth by ribozyme-mediated suppression of aberrant epidermal growth factor receptor gene expression. J Natl Cancer Inst. 1998;90:581–7.

    Article  CAS  PubMed  Google Scholar 

  85. Schlegel J, Merdes A, Stumm G, et al. Amplification of the epidermal-growth-factor-receptor gene correlates with different growth behaviour in human glioblastoma. Int J Cancer. 1994;56:72–7.

    Article  CAS  PubMed  Google Scholar 

  86. Moscatello DK, Holgado-Madruga M, Godwin AK, et al. Frequent expression of a mutant epidermal growth factor receptor in multiple human tumors. Cancer Res. 1995;55:5536–9.

    CAS  PubMed  Google Scholar 

  87. Olapade-Olaopa EO, Moscatello DK, MacKay EH, et al. A variant epidermal growth factor receptor protein is similarly expressed in benign hyperplastic and carcinomatous prostatic tissues in black and white men. West Afr J Med. 2007;26:42–7.

    CAS  PubMed  Google Scholar 

  88. Tang CK, Gong XQ, Moscatello DK, Wong AJ, Lippman ME. Epidermal growth factor receptor vIII enhances tumorigenicity in human breast cancer. Cancer Res. 2000;60:3081–7.

    CAS  PubMed  Google Scholar 

  89. Sok JC, Coppelli FM, Thomas SM, et al. Mutant epidermal growth factor receptor (EGFRvIII) contributes to head and neck cancer growth and resistance to EGFR targeting. Clin Cancer Res. 2006;12:5064–73.

    Article  CAS  PubMed  Google Scholar 

  90. Okamoto I, Kenyon LC, Emlet DR, et al. Expression of constitutively activated EGFRvIII in non-small cell lung cancer. Cancer Sci. 2003;94:50–6.

    Article  CAS  PubMed  Google Scholar 

  91. Weiner DB, Liu J, Cohen JA, Williams WV, Greene MI. A point mutation in the neu oncogene mimics ligand induction of receptor aggregation. Nature. 1989;339:230–1.

    Article  CAS  PubMed  Google Scholar 

  92. Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235:177–82.

    Article  CAS  PubMed  Google Scholar 

  93. Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350:2129–39.

    Article  CAS  PubMed  Google Scholar 

  94. Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304:1497–500.

    Article  CAS  PubMed  Google Scholar 

  95. Guo M, Liu S, Lu F. Gefitinib-sensitizing mutations in esophageal carcinoma. N Engl J Med. 2006;354:2193–4.

    Article  CAS  PubMed  Google Scholar 

  96. Willmore-Payne C, Holden JA, Layfield LJ. Detection of EGFR- and HER2-activating mutations in squamous cell carcinoma involving the head and neck. Mod Pathol. 2006;19:634–40.

    Article  CAS  PubMed  Google Scholar 

  97. Mulloy R, Ferrand A, Kim Y, et al. Epidermal growth factor receptor mutants from human lung cancers exhibit enhanced catalytic activity and increased sensitivity to gefitinib. Cancer Res. 2007;67:2325–30.

    Article  CAS  PubMed  Google Scholar 

  98. Sordella R, Bell DW, Haber DA, Settleman J. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science. 2004;305:1163–7.

    Article  CAS  PubMed  Google Scholar 

  99. Tsao MS, Sakurada A, Cutz JC, et al. Erlotinib in lung cancer—molecular and clinical predictors of outcome. N Engl J Med. 2005;353:133–44.

    Article  CAS  PubMed  Google Scholar 

  100. Reeves JR, Richards RC, Cooke T. The effects of intracolonic EGF on mucosal growth and experimental carcinogenesis. Br J Cancer. 1991;63:223–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Markowitz SD, Molkentin K, Gerbic C, et al. Growth stimulation by coexpression of transforming growth factor-alpha and epidermal growth factor-receptor in normal and adenomatous human colon epithelium. J Clin Invest. 1990;86:356–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Salomon DS, Brandt R, Ciardiello F, Normanno N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol. 1995;19:183–232.

    Article  CAS  PubMed  Google Scholar 

  103. Hayashi Y, Widjono YW, Ohta K, et al. Expression of EGF, EGF-receptor, p53, v-erb B and ras p21 in colorectal neoplasms by immunostaining paraffin-embedded tissues. Pathol Int. 1994;44:124–30.

    Article  CAS  PubMed  Google Scholar 

  104. Meropol NJ. Epidermal growth factor receptor inhibitors in colorectal cancer: it’s time to get back on target. J Clin Oncol. 2005;23:1791–3.

    Article  CAS  PubMed  Google Scholar 

  105. Radinsky R, Risin S, Fan D, et al. Level and function of epidermal growth factor receptor predict the metastatic potential of human colon carcinoma cells. Clin Cancer Res. 1995;1:19–31.

    CAS  PubMed  Google Scholar 

  106. Dazzi H, Hasleton PS, Thatcher N, et al. Expression of epidermal growth factor receptor (EGF-R) in non-small cell lung cancer. Use of archival tissue and correlation of EGF-R with histology, tumour size, node status and survival. Br J Cancer. 1989;59:746–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rusch V, Baselga J, Cordon-Cardo C, et al. Differential expression of the epidermal growth factor receptor and its ligands in primary non-small cell lung cancers and adjacent benign lung. Cancer Res. 1993;53:2379–85.

    CAS  PubMed  Google Scholar 

  108. Hwang DL, Tay YC, Lin SS, Lev-Ran A. Expression of epidermal growth factor receptors in human lung tumors. Cancer. 1986;58:2260–3.

    Article  CAS  PubMed  Google Scholar 

  109. Gorgoulis V, Aninos D, Mikou P, et al. Expression of EGF, TGF-alpha and EGFR in squamous cell lung carcinomas. Anticancer Res. 1992;12:1183–7.

    CAS  PubMed  Google Scholar 

  110. Volm M, Efferth T, Mattern J. Oncoprotein (c-myc, c-erbB1, c-erbB2, c-fos) and suppressor gene product (p53) expression in squamous cell carcinomas of the lung. Clinical and biological correlations. Anticancer Res. 1992;12:11–20.

    CAS  PubMed  Google Scholar 

  111. Veale D, Ashcroft T, Marsh C, Gibson GJ, Harris AL. Epidermal growth factor receptors in non-small cell lung cancer. Br J Cancer. 1987;55:513–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Pavelic K, Banjac Z, Pavelic J, Spaventi S. Evidence for a role of EGF receptor in the progression of human lung carcinoma. Anticancer Res. 1993;13:1133–7.

    CAS  PubMed  Google Scholar 

  113. Hirsch FR, Varella-Garcia M, McCoy J, et al. Increased epidermal growth factor receptor gene copy number detected by fluorescence in situ hybridization associates with increased sensitivity to gefitinib in patients with bronchioloalveolar carcinoma subtypes: a Southwest Oncology Group Study. J Clin Oncol. 2005;23:6838–45.

    Article  CAS  PubMed  Google Scholar 

  114. Hirsch FR, Varella-Garcia M, Bunn Jr PA, et al. Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol. 2003;21:3798–807.

    Article  CAS  PubMed  Google Scholar 

  115. Miyaguchi M, Olofsson J, Hellquist HB. Immunohistochemical study of epidermal growth factor receptor in severe dysplasia and carcinoma in situ of the vocal cords. Acta Otolaryngol. 1991;111:149–52.

    Article  CAS  PubMed  Google Scholar 

  116. Christensen ME, Therkildsen MH, Hansen BL, Hansen GN, Bretlau P. Immunohistochemical detection of epidermal growth factor receptor in laryngeal squamous cell carcinomas. Acta Otolaryngol. 1992;112:734–8.

    Article  CAS  PubMed  Google Scholar 

  117. Miyaguchi M, Olofsson J, Hellquist HB. Expression of epidermal growth factor receptor in laryngeal dysplasia and carcinoma. Acta Otolaryngol. 1990;110:309–13.

    Article  CAS  PubMed  Google Scholar 

  118. Christensen ME, Therkildsen MH, Hansen BL, et al. Epidermal growth factor receptor expression on oral mucosa dysplastic epithelia and squamous cell carcinomas. Eur Arch Otorhinolaryngol. 1992;249:243–7.

    Article  CAS  PubMed  Google Scholar 

  119. Higa GM. Signaling multiplex of the epidermal growth factor receptor. Expert Rev Anticancer Ther. 2004;4:1145–56.

    Article  CAS  PubMed  Google Scholar 

  120. Khazaie K, Schirrmacher V, Lichtner RB. EGF receptor in neoplasia and metastasis. Cancer Metastasis Rev. 1993;12:255–74.

    Article  CAS  PubMed  Google Scholar 

  121. Slichenmyer WJ, Fry DW. Anticancer therapy targeting the erbB family of receptor tyrosine kinases. Semin Oncol. 2001;28:67–79.

    Article  CAS  PubMed  Google Scholar 

  122. Mendelsohn J, Baselga J. Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J Clin Oncol. 2003;21:2787–99.

    Article  CAS  PubMed  Google Scholar 

  123. Mendelsohn J, Baselga J. Epidermal growth factor receptor targeting in cancer. Semin Oncol. 2006;33:369–85.

    Article  CAS  PubMed  Google Scholar 

  124. Grunwald V, Hidalgo M. The epidermal growth factor receptor: a new target for anticancer therapy. Curr Probl Cancer. 2002;26:109–64.

    Article  PubMed  Google Scholar 

  125. Ono M, Kuwano M. Molecular mechanisms of epidermal growth factor receptor (EGFR) activation and response to gefitinib and other EGFR-targeting drugs. Clin Cancer Res. 2006;12:7242–51.

    Article  CAS  PubMed  Google Scholar 

  126. Karamouzis MV, Grandis JR, Argiris A. Therapies directed against epidermal growth factor receptor in aerodigestive carcinomas. JAMA. 2007;298:70–82.

    Article  CAS  PubMed  Google Scholar 

  127. Raymond E, Faivre S, Armand JP. Epidermal growth factor receptor tyrosine kinase as a target for anticancer therapy. Drugs. 2000;60:15–23.

    Article  CAS  PubMed  Google Scholar 

  128. Ciardiello F, Tortora G. A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor. Clin Cancer Res. 2001;7:2958–70.

    CAS  PubMed  Google Scholar 

  129. Ciardiello F, Caputo R, Troiani T, et al. Antisense oligonucleotides targeting the epidermal growth factor receptor inhibit proliferation, induce apoptosis, and cooperate with cytotoxic drugs in human cancer cell lines. Int J Cancer. 2001;93:172–8.

    Article  CAS  PubMed  Google Scholar 

  130. Thomas SM, Ogagan MJ, Frelino ML, et al. Antitumor mechanisms of systemically administered epidermal growth factor receptor antisense oligonucleotides in combination with docetaxel in squamous cell carcinoma of the head and neck. Mol Pharmacol. 2007;73:627–38.

    Article  PubMed  CAS  Google Scholar 

  131. He Y, Zeng Q, Drenning SD, et al. Inhibition of human squamous cell carcinoma growth in vivo by epidermal growth factor receptor antisense RNA transcribed from the U6 promoter. J Natl Cancer Inst. 1998;90:1080–7.

    Article  CAS  PubMed  Google Scholar 

  132. Fry DW. Inhibition of the epidermal growth factor receptor family of tyrosine kinases as an approach to cancer chemotherapy: progression from reversible to irreversible inhibitors. Pharmacol Ther. 1999;82:207–18.

    Article  CAS  PubMed  Google Scholar 

  133. Ciardiello F. Epidermal growth factor receptor tyrosine kinase inhibitors as anticancer agents. Drugs. 2000;60 Suppl 1:25–32.

    Article  CAS  PubMed  Google Scholar 

  134. Albanell J, Gascon P. Small molecules with EGFR-TK inhibitor activity. Curr Drug Targets. 2005;6:259–74.

    Article  CAS  PubMed  Google Scholar 

  135. Von Pawel J. Gefitinib (Iressa, ZD1839): a novel targeted approach for the treatment of solid tumors. Bull Cancer. 2004;91:E70–6.

    Google Scholar 

  136. Baselga J, Averbuch SD. ZD1839 (“Iressa”) as an anticancer agent. Drugs. 2000;60 Suppl 1:33–40.

    Article  CAS  PubMed  Google Scholar 

  137. Slichenmyer WJ, Elliott WL, Fry DW. CI-1033, a pan-erbB tyrosine kinase inhibitor. Semin Oncol. 2001;28:80–5.

    Article  CAS  PubMed  Google Scholar 

  138. Khalil MY, Grandis JR, Shin DM. Targeting epidermal growth factor receptor: novel therapeutics in the management of cancer. Expert Rev Anticancer Ther. 2003;3:367–80.

    Article  CAS  PubMed  Google Scholar 

  139. Zinner RG, Nemunaitis J, Eiseman I, et al. Phase I clinical and pharmacodynamic evaluation of oral CI-1033 in patients with refractory cancer. Clin Cancer Res. 2007;13:3006–14.

    Article  CAS  PubMed  Google Scholar 

  140. Kim TE, Murren JR. Erlotinib OSI/Roche/Genentech. Curr Opin Investig Drugs. 2002;3:1385–95.

    CAS  PubMed  Google Scholar 

  141. Petty WJ, Dragnev KH, Memoli VA, et al. Epidermal growth factor receptor tyrosine kinase inhibition represses cyclin D1 in aerodigestive tract cancers. Clin Cancer Res. 2004;10:7547–54.

    Article  CAS  PubMed  Google Scholar 

  142. Di Gennaro E, Barbarino M, Bruzzese F, et al. Critical role of both p27KIP1 and p21CIP1/WAF1 in the antiproliferative effect of ZD1839 (“Iressa”), an epidermal growth factor receptor tyrosine kinase inhibitor, in head and neck squamous carcinoma cells. J Cell Physiol. 2003;195:139–50.

    Article  PubMed  CAS  Google Scholar 

  143. Harper ME, Goddard L, Glynne-Jones E, et al. Multiple responses to EGF receptor activation and their abrogation by a specific EGF receptor tyrosine kinase inhibitor. Prostate. 2002;52:59–68.

    Article  CAS  PubMed  Google Scholar 

  144. Ciardiello F, Caputo R, Bianco R, et al. Inhibition of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor. Clin Cancer Res. 2001;7:1459–65.

    CAS  PubMed  Google Scholar 

  145. Bruns CJ, Solorzano CC, Harbison MT, et al. Blockade of the epidermal growth factor receptor signaling by a novel tyrosine kinase inhibitor leads to apoptosis of endothelial cells and therapy of human pancreatic carcinoma. Cancer Res. 2000;60:2926–35.

    CAS  PubMed  Google Scholar 

  146. Oh HY, Kwon SM, Kim SI, Jae YW, Hong SJ. Antiangiogenic effect of ZD1839 against murine renal cell carcinoma (RENCA) in an orthotopic mouse model. Urol Int. 2005;75:159–66.

    Article  CAS  PubMed  Google Scholar 

  147. Chan KC, Knox WF, Gandhi A, et al. Blockade of growth factor receptors in ductal carcinoma in situ inhibits epithelial proliferation. Br J Surg. 2001;88:412–8.

    Article  CAS  PubMed  Google Scholar 

  148. Wakeling AE, Guy SP, Woodburn JR, et al. ZD1839 (Iressa): an orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res. 2002;62:5749–54.

    CAS  PubMed  Google Scholar 

  149. Ciardiello F, Caputo R, Borriello G, et al. ZD1839 (IRESSA), an EGFR-selective tyrosine kinase inhibitor, enhances taxane activity in bcl-2 overexpressing, multidrug-resistant MCF-7 ADR human breast cancer cells. Int J Cancer. 2002;98:463–9.

    Article  CAS  PubMed  Google Scholar 

  150. Ciardiello F, Caputo R, Bianco R, et al. Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor. Clin Cancer Res. 2000;6:2053–63.

    CAS  PubMed  Google Scholar 

  151. Tortora G, Caputo R, Damiano V, et al. Oral administration of a novel taxane, an antisense oligonucleotide targeting protein kinase A, and the epidermal growth factor receptor inhibitor Iressa causes cooperative antitumor and antiangiogenic activity. Clin Cancer Res. 2001;7:4156–63.

    CAS  PubMed  Google Scholar 

  152. Adjei AA. Novel combinations based on epidermal growth factor receptor inhibition. Clin Cancer Res. 2006;12:4446s–50.

    Article  CAS  PubMed  Google Scholar 

  153. Oliveira S, van Bergen en Henegouwen PM, Storm G, Schiffelers RM. Molecular biology of epidermal growth factor receptor inhibition for cancer therapy. Expert Opin Biol Ther. 2006;6:605–17.

    Article  CAS  PubMed  Google Scholar 

  154. Choe MS, Zhang X, Shin HJ, Shin DM, Chen ZG. Interaction between epidermal growth factor receptor- and cyclooxygenase 2-mediated pathways and its implications for the chemoprevention of head and neck cancer. Mol Cancer Ther. 2005;4:1448–55.

    Article  CAS  PubMed  Google Scholar 

  155. Dannenberg AJ, Lippman SM, Mann JR, Subbaramaiah K, DuBois RN. Cyclooxygenase-2 and epidermal growth factor receptor: pharmacologic targets for chemoprevention. J Clin Oncol. 2005;23:254–66.

    Article  CAS  PubMed  Google Scholar 

  156. Chen Z, Zhang X, Li M, et al. Simultaneously targeting epidermal growth factor receptor tyrosine kinase and cyclooxygenase-2, an efficient approach to inhibition of squamous cell carcinoma of the head and neck. Clin Cancer Res. 2004;10:5930–9.

    Article  CAS  PubMed  Google Scholar 

  157. Ali S, El-Rayes BF, Sarkar FH, Philip PA. Simultaneous targeting of the epidermal growth factor receptor and cyclooxygenase-2 pathways for pancreatic cancer therapy. Mol Cancer Ther. 2005;4:1943–51.

    Article  CAS  PubMed  Google Scholar 

  158. Patel BB, Sengupta R, Qazi S, et al. Curcumin enhances the effects of 5-fluorouracil and oxaliplatin in mediating growth inhibition of colon cancer cells by modulating EGFR and IGF-1R. Int J Cancer. 2008;122:267–73.

    Article  CAS  PubMed  Google Scholar 

  159. Steinbach JP, Eisenmann C, Klumpp A, Weller M. Co-inhibition of epidermal growth factor receptor and type 1 insulin-like growth factor receptor synergistically sensitizes human malignant glioma cells to CD95L-induced apoptosis. Biochem Biophys Res Commun. 2004;321:524–30.

    Article  CAS  PubMed  Google Scholar 

  160. Camirand A, Zakikhani M, Young F, Pollak M. Inhibition of insulin-like growth factor-1 receptor signaling enhances growth-inhibitory and proapoptotic effects of gefitinib (Iressa) in human breast cancer cells. Breast Cancer Res. 2005;7:R570–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Adjei AA, Hidalgo M. Intracellular signal transduction pathway proteins as targets for cancer therapy. J Clin Oncol. 2005;23:5386–403.

    Article  CAS  PubMed  Google Scholar 

  162. Steinbach JP, Klumpp A, Wolburg H, Weller M. Inhibition of epidermal growth factor receptor signaling protects human malignant glioma cells from hypoxia-induced cell death. Cancer Res. 2004;64:1575–8.

    Article  CAS  PubMed  Google Scholar 

  163. Goldman CK, Kim J, Wong WL, et al. Epidermal growth factor stimulates vascular endothelial growth factor production by human malignant glioma cells: a model of glioblastoma multiforme pathophysiology. Mol Biol Cell. 1993;4:121–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Maity A, Pore N, Lee J, Solomon D, O'Rourke DM. Epidermal growth factor receptor transcriptionally up-regulates vascular endothelial growth factor expression in human glioblastoma cells via a pathway involving phosphatidylinositol 3′-kinase and distinct from that induced by hypoxia. Cancer Res. 2000;60:5879–86.

    CAS  PubMed  Google Scholar 

  165. Herbst RS, Johnson DH, Mininberg E, et al. Phase I/II trial evaluating the anti-vascular endothelial growth factor monoclonal antibody bevacizumab in combination with the HER-1/epidermal growth factor receptor tyrosine kinase inhibitor erlotinib for patients with recurrent non-small-cell lung cancer. J Clin Oncol. 2005;23:2544–55.

    Article  CAS  PubMed  Google Scholar 

  166. Tortora G, Caputo R, Damiano V, et al. Combined targeted inhibition of bcl-2, bcl-XL, epidermal growth factor receptor, and protein kinase A type I causes potent antitumor, apoptotic, and antiangiogenic activity. Clin Cancer Res. 2003;9:866–71.

    CAS  PubMed  Google Scholar 

  167. Bianco R, Caputo R, Caputo R, et al. Combined targeting of epidermal growth factor receptor and MDM2 by gefitinib and antisense MDM2 cooperatively inhibit hormone-independent prostate cancer. Clin Cancer Res. 2004;10:4858–64.

    Article  CAS  PubMed  Google Scholar 

  168. Harding J, Burtness B. Cetuximab: an epidermal growth factor receptor chemeric human-murine monoclonal antibody. Drugs Today (Barc). 2005;41:107–27.

    Article  CAS  Google Scholar 

  169. Kawamoto T, Sato JD, Le A, et al. Growth stimulation of A431 cells by epidermal growth factor: identification of high-affinity receptors for epidermal growth factor by an anti-receptor monoclonal antibody. Proc Natl Acad Sci U S A. 1983;80:1337–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Sato JD, Kawamoto T, Le AD, et al. Biological effects in vitro of monoclonal antibodies to human epidermal growth factor receptors. Mol Biol Med. 1983;1:511–29.

    CAS  PubMed  Google Scholar 

  171. Sato GH, Sato JD. Growth factor receptor monoclonal antibodies and cancer immunotherapy. J Natl Cancer Inst. 1989;81:1600–1.

    Article  CAS  PubMed  Google Scholar 

  172. Gill GN, Kawamoto T, Cochet C, et al. Monoclonal anti-epidermal growth factor receptor antibodies which are inhibitors of epidermal growth factor binding and antagonists of epidermal growth factor binding and antagonists of epidermal growth factor-stimulated tyrosine protein kinase activity. J Biol Chem. 1984;259:7755–60.

    CAS  PubMed  Google Scholar 

  173. Fan Z, Lu Y, Wu X, Mendelsohn J. Antibody-induced epidermal growth factor receptor dimerization mediates inhibition of autocrine proliferation of A431 squamous carcinoma cells. J Biol Chem. 1994;269:27595–602.

    CAS  PubMed  Google Scholar 

  174. Lammerts van Bueren JJ, Bleeker WK, Bogh HO, et al. Effect of target dynamics on pharmacokinetics of a novel therapeutic antibody against the epidermal growth factor receptor: implications for the mechanisms of action. Cancer Res. 2006;66:7630–8.

    Article  CAS  PubMed  Google Scholar 

  175. Wu X, Rubin M, Fan Z, et al. Involvement of p27KIP1 in G1 arrest mediated by an anti-epidermal growth factor receptor monoclonal antibody. Oncogene. 1996;12:1397–403.

    CAS  PubMed  Google Scholar 

  176. Wu X, Fan Z, Masui H, Rosen N, Mendelsohn J. Apoptosis induced by an anti-epidermal growth factor receptor monoclonal antibody in a human colorectal carcinoma cell line and its delay by insulin. J Clin Invest. 1995;95:1897–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Petit AM, Rak J, Hung MC, et al. Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am J Pathol. 1997;151:1523–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Perrotte P, Matsumoto T, Inoue K, et al. Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice. Clin Cancer Res. 1999;5:257–65.

    CAS  PubMed  Google Scholar 

  179. O-charoenrat P, Modjtahedi H, Rhys-Evans P, et al. Epidermal growth factor-like ligands differentially up-regulate matrix metalloproteinase 9 in head and neck squamous carcinoma cells. Cancer Res. 2000;60:1121–8.

    CAS  PubMed  Google Scholar 

  180. Naramura M, Gillies SD, Mendelsohn J, Reisfeld RA, Mueller BM. Therapeutic potential of chimeric and murine anti-(epidermal growth factor receptor) antibodies in a metastasis model for human melanoma. Cancer Immunol Immunother. 1993;37:343–9.

    Article  CAS  PubMed  Google Scholar 

  181. Baselga J, Norton L, Masui H, et al. Antitumor effects of doxorubicin in combination with anti-epidermal growth factor receptor monoclonal antibodies. J Natl Cancer Inst. 1993;85:1327–33.

    Article  CAS  PubMed  Google Scholar 

  182. Fan Z, Baselga J, Masui H, Mendelsohn J. Antitumor effect of anti-epidermal growth factor receptor monoclonal antibodies plus cis-diamminedichloroplatinum on well established A431 cell xenografts. Cancer Res. 1993;53:4637–42.

    CAS  PubMed  Google Scholar 

  183. Matar P, Rojo F, Cassia R, et al. Combined epidermal growth factor receptor targeting with the tyrosine kinase inhibitor gefitinib (ZD1839) and the monoclonal antibody cetuximab (IMC-C225): superiority over single-agent receptor targeting. Clin Cancer Res. 2004;10:6487–501.

    Article  CAS  PubMed  Google Scholar 

  184. Carter TA, Wodicka LM, Shah NP, et al. Inhibition of drug-resistant mutants of ABL, KIT, and EGF receptor kinases. Proc Natl Acad Sci U S A. 2005;102:11011–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Verreault M, Webb MS, Ramsay EC, Bally MB. Gene silencing in the development of personalized cancer treatment: the targets, the agents and the delivery systems. Curr Gene Ther. 2006;6:505–33.

    Article  CAS  PubMed  Google Scholar 

  186. Fukuoka M, Yano S, Giaccone G, et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer. J Clin Oncol. 2003;21:2237–46.

    Article  CAS  PubMed  Google Scholar 

  187. Kris MG, Natale RB, Herbst RS, et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA. 2003;290:2149–58.

    Article  CAS  PubMed  Google Scholar 

  188. Thatcher N, Chang A, Parikh P, et al. Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet. 2005;366:1527–37.

    Article  CAS  PubMed  Google Scholar 

  189. Perez-Soler R, Chachoua A, Hammond LA, et al. Determinants of tumor response and survival with erlotinib in patients with non--small-cell lung cancer. J Clin Oncol. 2004;22:3238–47.

    Article  CAS  PubMed  Google Scholar 

  190. Shepherd FA, Rodrigues Pereira J, Ciuleanu T, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med. 2005;353:123–32.

    Article  CAS  PubMed  Google Scholar 

  191. Hanna N, Lilenbaum R, Ansari R, et al. Phase II trial of cetuximab in patients with previously treated non-small-cell lung cancer. J Clin Oncol. 2006;24:5253–8.

    Article  CAS  PubMed  Google Scholar 

  192. Herbst RS, Giaccone G, Schiller JH, et al. Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial—INTACT 2. J Clin Oncol. 2004;22:785–94.

    Article  CAS  PubMed  Google Scholar 

  193. Herbst RS, Prager D, Hermann R, et al. TRIBUTE: a phase III trial of erlotinib hydrochloride (OSI-774) combined with carboplatin and paclitaxel chemotherapy in advanced non-small-cell lung cancer. J Clin Oncol. 2005;23:5892–9.

    Article  CAS  PubMed  Google Scholar 

  194. Rosell R, Daniel C, Ramlau R, et al. Randomized phase II study of cetuximab in combination with cisplatin (C) and vinorelbine (V) vs. CV alone in the first-line treatment of patients (pts) with epidermal growth factor receptor (EGFR)-expressing advanced non-small-cell lung cancer (NSCLC). Proc Am Soc Clin Oncol. 2004;23:618.

    Google Scholar 

  195. Thienelt CD, Bunn Jr PA, Hanna N, et al. Multicenter phase I/II study of cetuximab with paclitaxel and carboplatin in untreated patients with stage IV non-small-cell lung cancer. J Clin Oncol. 2005;23:8786–93.

    Article  PubMed  Google Scholar 

  196. Belani CP, Ramalingam S, Schreeder R, et al. Phase II study of cetuximab in combination with carboplatin and docetaxel for patients with advanced/metastatic non-small cell lung cancer (NSCLC). J Clin Oncol. 2007;25:Abs # 7643.

    Google Scholar 

  197. Crawford J, Swanson P, Prager D, et al. Panitumumab, a fully human antibody, combined with paclitaxel and carboplatin versus paclitaxel and carboplatin alone for first line advanced non-small cell lung cancer (NSCLC): a primary analysis. Eur J Cancer. 2005;3:Abs # 1123, 1324.

    Google Scholar 

  198. Cohen EE, Rosen F, Stadler WM, et al. Phase II trial of ZD1839 in recurrent or metastatic squamous cell carcinoma of the head and neck. J Clin Oncol. 2003;21:1980–7.

    Article  CAS  PubMed  Google Scholar 

  199. Soulieres D, Senzer NN, Vokes EE, et al. Multicenter phase II study of erlotinib, an oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with recurrent or metastatic squamous cell cancer of the head and neck. J Clin Oncol. 2004;22:77–85.

    Article  CAS  PubMed  Google Scholar 

  200. Siu LL, Soulieres D, Chen EX, et al. Phase I/II trial of erlotinib and cisplatin in patients with recurrent or metastatic squamous cell carcinoma of the head and neck: a Princess Margaret Hospital phase II consortium and National Cancer Institute of Canada Clinical Trials Group Study. J Clin Oncol. 2007;25:2178–83.

    Article  CAS  PubMed  Google Scholar 

  201. Kim ES, Kies MS, Glisson BS, et al. Final results of a phase II study of erlotinib, docetaxel and cisplatin in patients with recurrent/metastatic head and neck cancer. J Clin Oncol. 2007;25:Abs # 6013.

    Google Scholar 

  202. Bonner JA, Maihle NJ, Folven BR, Christianson TJ, Spain K. The interaction of epidermal growth factor and radiation in human head and neck squamous cell carcinoma cell lines with vastly different radiosensitivities. Int J Radiat Oncol Biol Phys. 1994;29:243–7.

    Article  CAS  PubMed  Google Scholar 

  203. Bonner JA, Harari PM, Giralt J, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med. 2006;354:567–78.

    Article  CAS  PubMed  Google Scholar 

  204. Vermorken JB, Trigo J, Hitt R, et al. Open-label, uncontrolled, multicenter phase II study to evaluate the efficacy and toxicity of cetuximab as a single agent in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck who failed to respond to platinum-based therapy. J Clin Oncol. 2007;25:2171–7.

    Article  CAS  PubMed  Google Scholar 

  205. Baselga J, Trigo JM, Bourhis J, et al. Phase II multicenter study of the antiepidermal growth factor receptor monoclonal antibody cetuximab in combination with platinum-based chemotherapy in patients with platinum-refractory metastatic and/or recurrent squamous cell carcinoma of the head and neck. J Clin Oncol. 2005;23:5568–77.

    Article  CAS  PubMed  Google Scholar 

  206. Herbst RS, Arquette M, Shin DM, et al. Phase II multicenter study of the epidermal growth factor receptor antibody cetuximab and cisplatin for recurrent and refractory squamous cell carcinoma of the head and neck. J Clin Oncol. 2005;23:5578–87.

    Article  CAS  PubMed  Google Scholar 

  207. Burtness B, Goldwasser MA, Flood W, Mattar B, Forastiere AA. Phase III randomized trial of cisplatin plus placebo compared with cisplatin plus cetuximab in metastatic/recurrent head and neck cancer: an Eastern Cooperative Oncology Group study. J Clin Oncol. 2005;23:8646–54.

    Article  PubMed  Google Scholar 

  208. Vermorken J, Mesia R, Vega V, et al. Cetuximab extends survival of patients with recurrent or metastatic SCCHN when added to first line platinum based therapy—results of a randomized phase III (Extreme) study. J Clin Oncol. 2007;25:Abs # 6091.

    Google Scholar 

  209. Lenz HJ, Van Cutsem E, Khambata-Ford S, et al. Multicenter phase II and translational study of cetuximab in metastatic colorectal carcinoma refractory to irinotecan, oxaliplatin, and fluoropyrimidines. J Clin Oncol. 2006;24:4914–21.

    Article  CAS  PubMed  Google Scholar 

  210. Jonker DJ, O'Callaghan CJ, Karapetis CS, et al. Cetuximab for the treatment of colorectal cancer. N Engl J Med. 2007;357:2040–8.

    Article  CAS  PubMed  Google Scholar 

  211. Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med. 2004;351:337–45.

    Article  CAS  PubMed  Google Scholar 

  212. Prewett MC, Hooper AT, Bassi R, et al. Enhanced antitumor activity of anti-epidermal growth factor receptor monoclonal antibody IMC-C225 in combination with irinotecan (CPT-11) against human colorectal tumor xenografts. Clin Cancer Res. 2002;8:994–1003.

    CAS  PubMed  Google Scholar 

  213. Wilke H, Glynne-Jones RG, Thaler J, et al. MABEL—a large multinational study of cetuximab plus irinotecan in irinotecan resistant metastatic colorectal cancer. J Clin Oncol. 2006;24:Abs # 3549.

    Google Scholar 

  214. Van Cutsem E, Nowacki M, Lang I, et al. Randomized phase III study of irinotecan and 5-FU/FA with or without cetuximab in the first-line treatment of patients with metastatic colorectal cancer (mCRC): the CRYSTAL trial. J Clin Oncol. 2007;25:Abs # 4000.

    Google Scholar 

  215. Bokemeyer C, Bondarenko I, Makhson A, et al. Cetuximab plus 5-FU/FA/oxaliplatin (FOLFOX-4) versus FOLFOX-4 in the first-line treatment of metastatic colorectal cancer (mCRC): OPUS, a randomized phase II study. J Clin Oncol. 2007;25:Abs # 4035.

    Google Scholar 

  216. Saltz LB, Lenz H, Kindler H, et al. Interim report of randomized phase II trial of cetuximab/bevacizumab/irinotecan (CBI) versus cetuximab/bevacizumab (CB) in irinotecan-refractory colorectal cancer. Proc 2005 ASCO Gastrointest Cancers Symp. 2005;Abs # 169B.

    Google Scholar 

  217. Van Cutsem E, Peeters M, Siena S, et al. Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol. 2007;25:1658–64.

    Article  PubMed  CAS  Google Scholar 

  218. Townsley CA, Major P, Siu LL, et al. Phase II study of erlotinib (OSI-774) in patients with metastatic colorectal cancer. Br J Cancer. 2006;94:1136–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Meyerhardt JA, Xhu A, Enzinger PC, et al. Phase II study of capecitabine, oxaliplatin and erlotinib in previously treated patients with metastatic colorectal cancer (MCRC). J Clin Oncol. 2004;22:Abs # 3580.

    Google Scholar 

  220. Moore MJ, Goldstein D, Hamm J, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 2007;25:1960–6.

    Article  CAS  PubMed  Google Scholar 

  221. Philip PA, Benedetti J, Fenoglio-Preiser C, et al. Phase III study of gemcitabine [G] plus cetuximab [C] versus gemcitabine in patients [pts] with locally advanced or metastatic pancreatic adenocarcinoma [PC]: SWOG S0205 study. J Clin Oncol. 2007;25:Abs # 4509.

    Google Scholar 

  222. Spector NL, Blackwell K, Hurley J, et al. EGF103009, a phase II trial of lapatinib monotherapy in patients with relapsed/refractory inflammatory breast cancer (IBC): clinical activity and biologic predictors of response. J Clin Oncol. 2006;24:Abs # 502.

    Google Scholar 

  223. Jackman D, Lindeman NI, Lucca J, et al. Phase II study of erlotinib in chemo-naive women with advanced pulmonary adenocarcinoma. J Clin Oncol. 2007;25:Abs # 7591.

    Google Scholar 

  224. Mohamed MK, Ramalingam S, Lin Y, Gooding W, Belani CP. Skin rash and good performance status predict improved survival with gefitinib in patients with advanced non-small cell lung cancer. Ann Oncol. 2005;16:780–5.

    Article  CAS  PubMed  Google Scholar 

  225. Perez-Soler R, Saltz L. Cutaneous adverse effects with HER1/EGFR-targeted agents: is there a silver lining? J Clin Oncol. 2005;23:5235–46.

    Article  PubMed  Google Scholar 

  226. Chung KY, Shia J, Kemeny NE, et al. Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. J Clin Oncol. 2005;23:1803–10.

    Article  CAS  PubMed  Google Scholar 

  227. Scartozzi M, Bearzi I, Berardi R, et al. Epidermal growth factor receptor (EGFR) status in primary colorectal tumors does not correlate with EGFR expression in related metastatic sites: implications for treatment with EGFR-targeted monoclonal antibodies. J Clin Oncol. 2004;22:4772–8.

    Article  CAS  PubMed  Google Scholar 

  228. Hirsch FR, Gandara D, McCoy J, et al. Increased EGFR gene copy number detected by FISH is associated with increased sensitivity to gefitinib in patients with bronchioloalveolar carcinoma (S0126). J Clin Oncol. 2005;23:Abs# 7030, 7628.

    Google Scholar 

  229. Douillard JY, Kim ES, Hirsch V, et al. Gefitinib versus docetaxel in patients with locally advanced or metastatic non-small cell lung cancer pre-treated with platinum-based chemotherapy: a randomized, open-label phase III study (INTEREST). J Thorac Oncol. 2007;2:Abs # PRS-02, S305.

    Google Scholar 

  230. Crino L, Zatloukal P, Reck M, et al. Gefitinib versus vinorelbine in chemonaive elderly patients with advanced non-small cell lung cancer (INVITE): a randomized phase II study. J Thorac Oncol. 2007;2:Abs # B3-04, S 341.

    Google Scholar 

  231. Paz-Ares L, Sanchez JM, García-Velasco A, et al. A prospective phase II trial of erlotinib in advanced non-small cell lung cancer (NSCLC) patients (p) with mutations in the tyrosine kinase (TK) domain of the epidermal growth factor receptor (EGFR). J Clin Oncol. 2006;24:Abs # 7020.

    Google Scholar 

  232. Cappuzzo F, Toschi L, Trisolini R, et al. Clinical and biological effects of gefitinib in EGFR FISH positive/phospho-akt positive or never smoker non-small cell lung cancer (NSCLC): preliminary results of the ONCOBELL trial. J Clin Oncol. 2006;24:Abs # 7023.

    Google Scholar 

  233. Kris MG, Pao W, Zakowski MF, et al. Prospective trial with preoperative gefitinib to correlate lung cancer response with EGFR exon 19 and 21 mutations and to select patients for adjuvant therapy. J Clin Oncol. 2006;24:Abs # 7021.

    Google Scholar 

  234. Mukohara T, Engelman JA, Hanna NH, et al. Differential effects of gefitinib and cetuximab on non-small-cell lung cancers bearing epidermal growth factor receptor mutations. J Natl Cancer Inst. 2005;97:1185–94.

    Article  CAS  PubMed  Google Scholar 

  235. Eberhard DA, Johnson BE, Amler LC, et al. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol. 2005;23:5900–9.

    Article  CAS  PubMed  Google Scholar 

  236. Kobayashi S, Boggon TJ, Dayaram T, et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med. 2005;352:786–92.

    Article  CAS  PubMed  Google Scholar 

  237. Engelman JA, Zejnullahu K, Mitsudomi T, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316:1039–43.

    Article  CAS  PubMed  Google Scholar 

  238. Taguchi F, Solomon B, Gregorc V, et al. Mass spectrometry to classify non-small-cell lung cancer patients for clinical outcome after treatment with epidermal growth factor receptor tyrosine kinase inhibitors: a multicohort cross-institutional study. J Natl Cancer Inst. 2007;99:838–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong M. Shin M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chen, Z.(., Ramalingam, S., Shin, D.M. (2017). Biological Principles and Clinical Application of EGFR Inhibitors in Cancer. In: Coleman, W., Tsongalis, G. (eds) The Molecular Basis of Human Cancer. Humana Press, New York, NY. https://doi.org/10.1007/978-1-59745-458-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-458-2_37

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-934115-18-3

  • Online ISBN: 978-1-59745-458-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics