Skip to main content

The Molecular Basis of Prostate Carcinogenesis

  • Chapter
  • First Online:

Abstract

This review on prostate cancer is an attempt to update the reader on the current information we have on the disease. There are no definite cures yet for prostate cancer and the exact mechanism of development is far from clear. However, over the years, the information obtained on the disease has increased due to the unceasing flow of research data. In the following pages, you will be briefed on the basic characteristics of prostate cancer, the characterization of the genomic regions affected, the candidate genes involved, the secondary sites of metastases such as bone and the models that have been developed to investigate the disease in detail.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Denmeade SR, Isaacs JT. A history of prostate cancer treatment. Nat Rev Cancer. 2002;2:389–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tricoli JV, Schoenfeldt M, Conley BA. Detection of prostate cancer and predicting progression: current and future diagnostic markers. Clin Cancer Res. 2004;10:3943–53.

    Article  PubMed  Google Scholar 

  3. Chokkalingam AP, Stanczyk FZ, Reichardt JK, Hsing AW. Molecular epidemiology of prostate cancer: hormone-related genetic loci. Front Biosci. 2007;12:3436–60.

    Article  CAS  PubMed  Google Scholar 

  4. Selley S, Donovan J, Faulkner A, Coast J, Gillatt D. Diagnosis, management and screening of early localised prostate cancer. Health Technol Assess. 1997;1:1–96.

    Google Scholar 

  5. Neal DE, Leung HY, Powell PH, Hamdy FC, Donovan JL. Unanswered questions in screening for prostate cancer. Eur J Cancer. 2000;36:1316–21.

    Article  CAS  PubMed  Google Scholar 

  6. Brothman AR. Cytogenetics and molecular genetics of cancer of the prostate. Am J Med Genet. 2002;115:150–6.

    Article  PubMed  Google Scholar 

  7. Pickle LW, Hao Y, Jemal A, et al. A new method of estimating United States and state-level cancer incidence counts for the current calendar year. CA Cancer J Clin. 2007;57:30–42.

    Article  PubMed  Google Scholar 

  8. Smith RA, Cokkinides V, Eyre HJ. Cancer screening in the United States, 2007: a review of current guidelines, practices, and prospects. CA Cancer J Clin. 2007;57:90–104.

    Article  CAS  PubMed  Google Scholar 

  9. Abate-Shen C, Shen MM. Molecular genetics of prostate cancer. Genes Dev. 2000;14:2410–34.

    Article  CAS  PubMed  Google Scholar 

  10. Carter HB, Coffey DS. The prostate: an increasing medical problem. Prostate. 1990;16:39–48.

    Article  CAS  PubMed  Google Scholar 

  11. McNeal JE. Origin and development of carcinoma in the prostate. Cancer. 1969;23:24–34.

    Article  CAS  PubMed  Google Scholar 

  12. Hsing AW, Reichardt JK, Stanczyk FZ. Hormones and prostate cancer: current perspectives and future directions. Prostate. 2002;52:213–35.

    Article  CAS  PubMed  Google Scholar 

  13. Platz EA, Giovannucci E. The epidemiology of sex steroid hormones and their signaling and metabolic pathways in the etiology of prostate cancer. J Steroid Biochem Mol Biol. 2004;92:237–53.

    Article  CAS  PubMed  Google Scholar 

  14. Isaacs WB, Xu J, Walsh PC. Hereditary prostate cancer, in prostate cancer-biology, genetics and the new therapeutics. 2001. p. 13–28.

    Google Scholar 

  15. Rubin MA, De Marzo AM. Molecular genetics of human prostate cancer. Mod Pathol. 2004;17:380–8.

    Article  CAS  PubMed  Google Scholar 

  16. Goeman L, Joniau S, Ponette D, et al. Is low-grade prostatic intraepithelial neoplasia a risk factor for cancer? Prostate Cancer Prostatic Dis. 2003;6:305–10.

    Article  CAS  PubMed  Google Scholar 

  17. Gleason DF. Classification of prostatic carcinomas. Cancer Chemother Rep. 1966;50:125–8.

    CAS  PubMed  Google Scholar 

  18. Gleason DF, Mellinger GT. Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J Urol. 1974;111:58–64.

    CAS  PubMed  Google Scholar 

  19. Partin AW, Borland RN, Epstein JI, Brendler CB. Influence of wide excision of the neurovascular bundle(s) on prognosis in men with clinically localized prostate cancer with established capsular penetration. J Urol. 1993;150:142–6.

    CAS  PubMed  Google Scholar 

  20. McNeal JE. Normal histology of the prostate. Am J Surg Pathol. 1988;12:619–33.

    Article  CAS  PubMed  Google Scholar 

  21. McNeal JE. The zonal anatomy of the prostate. Prostate. 1981;2:35–49.

    Article  CAS  PubMed  Google Scholar 

  22. Cunha GR, Donjacour A. Stromal-epithelial interactions in normal and abnormal prostatic development. Prog Clin Biol Res. 1987;239:251–72.

    CAS  PubMed  Google Scholar 

  23. Litvinov IV, De Marzo AM, Isaacs JT. Is the Achilles’ heel for prostate cancer therapy a gain of function in androgen receptor signaling? J Clin Endocrinol Metab. 2003;88:2972–82.

    Article  CAS  PubMed  Google Scholar 

  24. di Sant'Agnese PA. Neuroendocrine differentiation in human prostatic carcinoma. Hum Pathol. 1992;23:287–96.

    Article  PubMed  Google Scholar 

  25. De Marzo AM, DeWeese TL, Platz EA, et al. Pathological and molecular mechanisms of prostate carcinogenesis: implications for diagnosis, detection, prevention, and treatment. J Cell Biochem. 2004;91:459–77.

    Article  PubMed  CAS  Google Scholar 

  26. Bartoletti R, Mondaini N, Pavone C, Dinelli N, Prezioso D. Introduction to chronic prostatitis and chronic pelvic pain syndrome (CP/CPPS). Arch Ital Urol Androl. 2007;79:55–7.

    PubMed  Google Scholar 

  27. Habermacher GM, Chason JT, Schaeffer AJ. Prostatitis/chronic pelvic pain syndrome. Annu Rev Med. 2006;57:195–206.

    Article  CAS  PubMed  Google Scholar 

  28. Hochreiter WW, Weidner W. Prostatitis—a frequently unrecognized disease. Ther Umsch. 2006;63:117–21.

    Article  CAS  PubMed  Google Scholar 

  29. Schroder FH, Blom JH. Natural history of benign prostatic hyperplasia (BPH). Prostate Suppl. 1989;2:17–22.

    Article  CAS  PubMed  Google Scholar 

  30. Isaacs JT, Coffey DS. Etiology and disease process of benign prostatic hyperplasia. Prostate Suppl. 1989;2:33–50.

    Article  CAS  PubMed  Google Scholar 

  31. Ekman P. BPH epidemiology and risk factors. Prostate Suppl. 1989;2:23–31.

    Article  CAS  PubMed  Google Scholar 

  32. Nelson WG, De Marzo AM, Isaacs WB. Prostate cancer. N Engl J Med. 2003;349:366–81.

    Article  CAS  PubMed  Google Scholar 

  33. De Marzo AM, Putzi MJ, Nelson WG. New concepts in the pathology of prostatic epithelial carcinogenesis. Urology. 2001;57:103–14.

    Article  PubMed  Google Scholar 

  34. Brawer MK. Prostatic intraepithelial neoplasia: a premalignant lesion. Hum Pathol. 1992;23:242–8.

    Article  CAS  PubMed  Google Scholar 

  35. Montironi R, Mazzucchelli R, Lopez-Beltran A, Cheng L, Scarpelli M. Mechanisms of disease: high-grade prostatic intraepithelial neoplasia and other proposed preneoplastic lesions in the prostate. Nat Clin Pract Urol. 2007;4:321–32.

    Article  PubMed  Google Scholar 

  36. Zhigang Z, Wenlu S. Prostate stem cell antigen (PSCA) mRNA expression in prostatic intraepithelial neoplasia: implications for the development of prostate cancer. Prostate. 2007;67:1143–51.

    Article  PubMed  CAS  Google Scholar 

  37. Duray PH, Ornstein DK, Vocke CD, et al. Genetic alterations in prostatic intraepithelial neoplasia. In: Chung LWK, Isaacs WB, Simons JW, editors. Prostate cancer-biology, genetics, and the new therapeutics. New York: Springer Press; 2001. p. 141–61.

    Google Scholar 

  38. Cohen RJ, Wheeler TM, Bonkhoff H, Rubin MA. A proposal on the identification, histologic reporting, and implications of intraductal prostatic carcinoma. Arch Pathol Lab Med. 2007;131:1103–9.

    PubMed  Google Scholar 

  39. Bostwick DG, Kindrachuk RW, Rouse RV. Prostatic adenocarcinoma with endometrioid features. Clinical, pathologic, and ultrastructural findings. Am J Surg Pathol. 1985;9:595–609.

    Article  CAS  PubMed  Google Scholar 

  40. Christensen WN, Steinberg G, Walsh PC, Epstein JI. Prostatic duct adenocarcinoma. Findings at radical prostatectomy. Cancer. 1991;67:2118–24.

    Article  CAS  PubMed  Google Scholar 

  41. Dawkins HJ, Sellner LN, Turbett GR, et al. Distinction between intraductal carcinoma of the prostate (IDC-P), high-grade dysplasia (PIN), and invasive prostatic adenocarcinoma, using molecular markers of cancer progression. Prostate. 2000;44:265–70.

    Article  CAS  PubMed  Google Scholar 

  42. McNeal JE, Yemoto CE. Spread of adenocarcinoma within prostatic ducts and acini. Morphologic and clinical correlations. Am J Surg Pathol. 1996;20:802–14.

    Article  CAS  PubMed  Google Scholar 

  43. Epstein JI, Woodruff JM. Adenocarcinoma of the prostate with endometrioid features. A light microscopic and immunohistochemical study of ten cases. Cancer. 1986;57:111–9.

    Article  CAS  PubMed  Google Scholar 

  44. Huggins C, Hodges CV. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res. 1941; 293–297.

    Google Scholar 

  45. Dehm SM, Tindall DJ. Regulation of androgen receptor signaling in prostate cancer. Expert Rev Anticancer Ther. 2005;5:63–74.

    Article  CAS  PubMed  Google Scholar 

  46. Feldman BJ, Feldman D. The development of androgen-independent prostate cancer. Nat Rev Cancer. 2001;1:34–45.

    Article  CAS  PubMed  Google Scholar 

  47. Pienta KJ, Bradley D. Mechanisms underlying the development of androgen-independent prostate cancer. Clin Cancer Res. 2006;12:1665–71.

    Article  CAS  PubMed  Google Scholar 

  48. Arnold JT, Isaacs JT. Mechanisms involved in the progression of androgen-independent prostate cancers: it is not only the cancer cell’s fault. Endocr Relat Cancer. 2002;9:61–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Grossmann ME, Huang H, Tindall DJ. Androgen receptor signaling in androgen-refractory prostate cancer. J Natl Cancer Inst. 2001;93:1687–97.

    Article  CAS  PubMed  Google Scholar 

  50. Shi XB, Ma AH, Tepper CG, et al. Molecular alterations associated with LNCaP cell progression to androgen independence. Prostate. 2004;60:257–71.

    Article  CAS  PubMed  Google Scholar 

  51. Chen Q, Watson JT, Marengo SR, et al. Gene expression in the LNCaP human prostate cancer progression model: progression associated expression in vitro corresponds to expression changes associated with prostate cancer progression in vivo. Cancer Lett. 2006;244:274–88.

    Article  CAS  PubMed  Google Scholar 

  52. Akakura K, Bruchovsky N, Goldenberg SL, et al. Effects of intermittent androgen suppression on androgen-dependent tumors. Apoptosis and serum prostate-specific antigen. Cancer. 1993;71:2782–90.

    Article  CAS  PubMed  Google Scholar 

  53. Hendriksen PJ, Dits NF, Kokame K, et al. Evolution of the androgen receptor pathway during progression of prostate cancer. Cancer Res. 2006;66:5012–20.

    Article  CAS  PubMed  Google Scholar 

  54. Li LC, Carroll PR, Dahiya R. Epigenetic changes in prostate cancer: implication for diagnosis and treatment. J Natl Cancer Inst. 2005;97:103–15.

    Article  CAS  PubMed  Google Scholar 

  55. Dobosy JR, Roberts JL, Fu VX, Jarrard DF. The expanding role of epigenetics in the development, diagnosis and treatment of prostate cancer and benign prostatic hyperplasia. J Urol. 2007;177:822–31.

    Article  CAS  PubMed  Google Scholar 

  56. Yegnasubramanian S, Kowalski J, Gonzalgo ML, et al. Hypermethylation of CpG islands in primary and metastatic human prostate cancer. Cancer Res. 2004;64:1975–86.

    Article  CAS  PubMed  Google Scholar 

  57. Lodygin D, Epanchintsev A, Menssen A, Diebold J, Hermeking H. Functional epigenomics identifies genes frequently silenced in prostate cancer. Cancer Res. 2005;65:4218–27.

    Article  CAS  PubMed  Google Scholar 

  58. Murillo H, Schmidt LJ, Karter M, et al. Prostate cancer cells use genetic and epigenetic mechanisms for progression to androgen independence. Genes Chromosomes Cancer. 2006;45:702–16.

    Article  CAS  PubMed  Google Scholar 

  59. Bergerheim US, Kunimi K, Collins VP, Ekman P. Deletion mapping of chromosomes 8, 10, and 16 in human prostatic carcinoma. Genes Chromosomes Cancer. 1991;3:215–20.

    Article  CAS  PubMed  Google Scholar 

  60. Carter BS, Ewing CM, Ward WS, et al. Allelic loss of chromosomes 16q and 10q in human prostate cancer. Proc Natl Acad Sci U S A. 1990;87:8751–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Joos S, Bergerheim US, Pan Y, et al. Mapping of chromosomal gains and losses in prostate cancer by comparative genomic hybridization. Genes Chromosomes Cancer. 1995;14:267–76.

    Article  CAS  PubMed  Google Scholar 

  62. Kunimi K, Bergerheim US, Larsson IL, Ekman P, Collins VP. Allelotyping of human prostatic adenocarcinoma. Genomics. 1991;11:530–6.

    Article  CAS  PubMed  Google Scholar 

  63. MacGrogan D, Levy A, Bostwick D, et al. Loss of chromosome arm 8p loci in prostate cancer: mapping by quantitative allelic imbalance. Genes Chromosomes Cancer. 1994;10:151–9.

    Article  CAS  PubMed  Google Scholar 

  64. Von Knobloch R, Konrad L, Barth PJ, et al. Genetic pathways and new progression markers for prostate cancer defined by microsatellite allelotyping. Urologe A. 2004;43:149–52.

    Article  Google Scholar 

  65. Gelmann EP. Searching for the gatekeeper oncogene of prostate cancer. Crit Rev Oncol Hematol. 2003;46:S11–20.

    Article  PubMed  Google Scholar 

  66. Nelson WG, De Marzo AM, Deweese TL, et al. Preneoplastic prostate lesions: an opportunity for prostate cancer prevention. Ann N Y Acad Sci. 2001;952:135–44.

    Article  CAS  PubMed  Google Scholar 

  67. Gelmann EP. Molecular biology of the androgen receptor. J Clin Oncol. 2002;20:3001–15.

    Article  CAS  PubMed  Google Scholar 

  68. Taplin ME, Balk SP. Androgen receptor: a key molecule in the progression of prostate cancer to hormone independence. J Cell Biochem. 2004;91:483–90.

    Article  CAS  PubMed  Google Scholar 

  69. Litvinov IV, Vander Griend DJ, Antony L, et al. Androgen receptor as a licensing factor for DNA replication in androgen-sensitive prostate cancer cells. Proc Natl Acad Sci U S A. 2006;103:15085–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Reddy GP, Barrack ER, Dou QP, et al. Regulatory processes affecting androgen receptor expression, stability, and function: potential targets to treat hormone-refractory prostate cancer. J Cell Biochem. 2006;98:1408–23.

    Article  CAS  PubMed  Google Scholar 

  71. Buchanan G, Irvine RA, Coetzee GA, Tilley WD. Contribution of the androgen receptor to prostate cancer predisposition and progression. Cancer Metastasis Rev. 2001;20:207–23.

    Article  CAS  PubMed  Google Scholar 

  72. Ross RK, Pike MC, Coetzee GA, et al. Androgen metabolism and prostate cancer: establishing a model of genetic susceptibility. Cancer Res. 1998;58:4497–504.

    CAS  PubMed  Google Scholar 

  73. Lee SO, Lou W, Hou M, et al. Interleukin-6 promotes androgen-independent growth in LNCaP human prostate cancer cells. Clin Cancer Res. 2003;9:370–6.

    CAS  PubMed  Google Scholar 

  74. Lee SO, Lou W, Johnson CS, Trump DL, Gao AC. Interleukin-6 protects LNCaP cells from apoptosis induced by androgen deprivation through the Stat3 pathway. Prostate. 2004;60:178–86.

    Article  CAS  PubMed  Google Scholar 

  75. Karin M, Cao Y, Greten FR, Li ZW. NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer. 2002;2:301–10.

    Article  CAS  PubMed  Google Scholar 

  76. Nishikori M. Classical and alternative NF-kB activation pathways and their roles in lymphoid malignancies. J Clin Exp Hematopathol. 2005;45:15–24.

    Article  Google Scholar 

  77. Domingo-Domenech J, Mellado B, Ferrer B, et al. Activation of nuclear factor-kappaB in human prostate carcinogenesis and association to biochemical relapse. Br J Cancer. 2005;93:1285–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sweeney C, Li L, Shanmugam R, et al. Nuclear factor-kappaB is constitutively activated in prostate cancer in vitro and is overexpressed in prostatic intraepithelial neoplasia and adenocarcinoma of the prostate. Clin Cancer Res. 2004;10:5501–7.

    Article  CAS  PubMed  Google Scholar 

  79. Catz SD, Johnson JL. Transcriptional regulation of bcl-2 by nuclear factor kappa B and its significance in prostate cancer. Oncogene. 2001;20:7342–51.

    Article  CAS  PubMed  Google Scholar 

  80. Huang S, Pettaway CA, Uehara H, Bucana CD, Fidler IJ. Blockade of NF-kappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene. 2001;20:4188–97.

    Article  CAS  PubMed  Google Scholar 

  81. Andela VB, Gordon AH, Zotalis G, et al. NFkappaB: a pivotal transcription factor in prostate cancer metastasis to bone. Clin Orthop Relat Res. 2003; S75–85.

    Google Scholar 

  82. Nadiminty N, Lou W, Lee SO, et al. Stat3 activation of NF-{kappa}B p100 processing involves CBP/p300-mediated acetylation. Proc Natl Acad Sci U S A. 2006;103:7264–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nadiminty N, Chun JY, Hu Y, et al. LIGHT, a member of the TNF superfamily, activates Stat3 mediated by NIK pathway. Biochem Biophys Res Commun. 2007;359:379–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lee SO, Gao AC. STAT3 and transactivation of steroid hormone receptors. Vitam Horm. 2005;70:333–57.

    Article  CAS  PubMed  Google Scholar 

  85. Huang HF, Murphy TF, Shu P, Barton AB, Barton BE. Stable expression of constitutively-activated STAT3 in benign prostatic epithelial cells changes their phenotype to that resembling malignant cells. Mol Cancer. 2005;4:2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Tam L, McGlynn LM, Traynor P, et al. Expression levels of the JAK/STAT pathway in the transition from hormone-sensitive to hormone-refractory prostate cancer. Br J Cancer. 2007;97:378–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Matsuda T, Junicho A, Yamamoto T, et al. Cross-talk between signal transducer and activator of transcription 3 and androgen receptor signaling in prostate carcinoma cells. Biochem Biophys Res Commun. 2001;283:179–87.

    Article  CAS  PubMed  Google Scholar 

  88. Azare J, Leslie K, Al-Ahmadie H, et al. Constitutively activated Stat3 induces tumorigenesis and enhances cell motility of prostate epithelial cells through integrin beta 6. Mol Cell Biol. 2007;27:4444–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhou W, Grandis JR, Wells A. STAT3 is required but not sufficient for EGF receptor-mediated migration and invasion of human prostate carcinoma cell lines. Br J Cancer. 2006;95:164–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Aaronson DS, Muller M, Neves SR, et al. An androgen-IL-6-Stat3 autocrine loop re-routes EGF signal in prostate cancer cells. Mol Cell Endocrinol. 2007;270:50–6.

    Article  CAS  PubMed  Google Scholar 

  91. Li L, Ittmann MM, Ayala G, et al. The emerging role of the PI3-K-Akt pathway in prostate cancer progression. Prostate Cancer Prostatic Dis. 2005;8:108–18.

    Article  CAS  PubMed  Google Scholar 

  92. Yamaguchi H, Wang HG. The protein kinase PKB/Akt regulates cell survival and apoptosis by inhibiting Bax conformational change. Oncogene. 2001;20:7779–86.

    Article  CAS  PubMed  Google Scholar 

  93. Lin HK, Yeh S, Kang HY, Chang C. Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor. Proc Natl Acad Sci U S A. 2001;98:7200–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Edwards J, Bartlett JM. The androgen receptor and signal-transduction pathways in hormone-refractory prostate cancer. Part 2: androgen-receptor cofactors and bypass pathways. BJU Int. 2005;95:1327–35.

    Article  CAS  PubMed  Google Scholar 

  95. Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999;96:857–68.

    Article  CAS  PubMed  Google Scholar 

  96. Henrique R, Jeronimo C, Hoque MO, et al. Frequent 14-3-3 sigma promoter methylation in benign and malignant prostate lesions. DNA Cell Biol. 2005;24:264–9.

    Article  CAS  PubMed  Google Scholar 

  97. Shukla S, Maclennan GT, Hartman DJ, et al. Activation of PI3K-Akt signaling pathway promotes prostate cancer cell invasion. Int J Cancer. 2007;121:1424–32.

    Article  CAS  PubMed  Google Scholar 

  98. Chen CD, Sawyers CL. NF-kappa B activates prostate-specific antigen expression and is upregulated in androgen-independent prostate cancer. Mol Cell Biol. 2002;22:2862–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bedolla R, Prihoda TJ, Kreisberg JI, et al. Determining risk of biochemical recurrence in prostate cancer by immunohistochemical detection of PTEN expression and Akt activation. Clin Cancer Res. 2007;13:3860–7.

    Article  CAS  PubMed  Google Scholar 

  100. Shukla S, Maclennan GT, Marengo SR, Resnick MI, Gupta S. Constitutive activation of P I3 K-Akt and NF-kappaB during prostate cancer progression in autochthonous transgenic mouse model. Prostate. 2005;64:224–39.

    Article  CAS  PubMed  Google Scholar 

  101. Kitagawa Y, Dai J, Zhang J, et al. Vascular endothelial growth factor contributes to prostate cancer-mediated osteoblastic activity. Cancer Res. 2005;65:10921–9.

    Article  CAS  PubMed  Google Scholar 

  102. Storey JA, Torti FM. Bone metastases in prostate cancer: a targeted approach. Curr Opin Oncol. 2007;19:254–8.

    Article  PubMed  Google Scholar 

  103. Emami KH, Corey E. When prostate cancer meets bone: control by wnts. Cancer Lett. 2007;253:170–9.

    Article  CAS  PubMed  Google Scholar 

  104. Hall CL, Bafico A, Dai J, Aaronson SA, Keller ET. Prostate cancer cells promote osteoblastic bone metastases through Wnts. Cancer Res. 2005;65:7554–60.

    CAS  PubMed  Google Scholar 

  105. Logothetis CJ, Lin SH. Osteoblasts in prostate cancer metastasis to bone. Nat Rev Cancer. 2005;5:21–8.

    Article  CAS  PubMed  Google Scholar 

  106. Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2002;2:584–93.

    Article  CAS  PubMed  Google Scholar 

  107. Karsenty G. The genetic transformation of bone biology. Genes Dev. 1999;13:3037–51.

    Article  CAS  PubMed  Google Scholar 

  108. Keller ET, Brown J. Prostate cancer bone metastases promote both osteolytic and osteoblastic activity. J Cell Biochem. 2004;91:718–29.

    Article  CAS  PubMed  Google Scholar 

  109. Sikes RA, Nicholson BE, Koeneman KS, et al. Cellular interactions in the tropism of prostate cancer to bone. Int J Cancer. 2004;110:497–503.

    Article  CAS  PubMed  Google Scholar 

  110. Thalmann GN, Sikes RA, Wu TT, et al. LNCaP progression model of human prostate cancer: androgen-independence and osseous metastasis. Prostate. 2000;44:91–103.

    Google Scholar 

  111. Cheville JC, Tindall D, Boelter C, et al. Metastatic prostate carcinoma to bone: clinical and pathologic features associated with cancer-specific survival. Cancer. 2002;95:1028–36.

    Article  PubMed  Google Scholar 

  112. Berruti A, Dogliotti L, Bitossi R, et al. Incidence of skeletal complications in patients with bone metastatic prostate cancer and hormone refractory disease: predictive role of bone resorption and formation markers evaluated at baseline. J Urol. 2000;164:1248–53.

    Article  CAS  PubMed  Google Scholar 

  113. Noble RL. The development of prostatic adenocarcinoma in Nb rats following prolonged sex hormone administration. Cancer Res. 1977;37:1929–33.

    CAS  PubMed  Google Scholar 

  114. Smolev JK, Heston WD, Scott WW, Coffey DS. Characterization of the Dunning R3327H prostatic adenocarcinoma: an appropriate animal model for prostatic cancer. Cancer Treat Rep. 1977;61:273–87.

    CAS  PubMed  Google Scholar 

  115. Greenberg NM, DeMayo F, Finegold MJ, et al. Prostate cancer in a transgenic mouse. Proc Natl Acad Sci U S A. 1995;92:3439–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gingrich JR, Barrios RJ, Kattan MW, et al. Androgen-independent prostate cancer progression in the TRAMP model. Cancer Res. 1997;57:4687–91.

    CAS  PubMed  Google Scholar 

  117. Wang Z. Novel animal models to study the role of the growth hormone insulin-like growth factor I axis in prostate cancer. Crit Rev Oncog. 2006;12:291–2.

    Article  CAS  PubMed  Google Scholar 

  118. Ellwood-Yen K, Wongvipat J, Sawyers C. Transgenic mouse model for rapid pharmacodynamic evaluation of antiandrogens. Cancer Res. 2006;66:10513–6.

    Article  CAS  PubMed  Google Scholar 

  119. Webber MM, Bello D, Quader S. Immortalized and tumorigenic adult human prostatic epithelial cell lines: characteristics and applications part 2. Tumorigenic cell lines. Prostate. 1997;30:58–64.

    Article  CAS  PubMed  Google Scholar 

  120. Lee SO, Dutt SS, Nadiminty N, et al. Development of an androgen-deprivation induced and androgen suppressed human prostate cancer cell line. Prostate. 2007;67:1293–300.

    Article  CAS  PubMed  Google Scholar 

  121. Lapouge G, Erdmann E, Marcias G, et al. Unexpected paracrine action of prostate cancer cells harboring a new class of androgen receptor mutation—a new paradigm for cooperation among prostate tumor cells. Int J Cancer. 2007;121:1238–44.

    Article  CAS  PubMed  Google Scholar 

  122. Iwasa Y, Mizokami A, Miwa S, Koshida K, Namiki M. Establishment and characterization of androgen-independent human prostate cancer cell lines, LN-REC4 and LNCaP-SF, from LNCaP. Int J Urol. 2007;14:233–9.

    Article  CAS  PubMed  Google Scholar 

  123. Kawada M, Inoue H, Usami I, et al. Establishment of a highly tumorigenic LNCaP cell line having inflammatory cytokine resistance. Cancer Lett. 2006;242:46–52.

    Article  CAS  PubMed  Google Scholar 

  124. van Bokhoven A, Varella-Garcia M, Korch C, Hessels D, Miller GJ. Widely used prostate carcinoma cell lines share common origins. Prostate. 2001;47:36–51.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen C. Gao M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dutt, S., Gao, A.C. (2017). The Molecular Basis of Prostate Carcinogenesis. In: Coleman, W., Tsongalis, G. (eds) The Molecular Basis of Human Cancer. Humana Press, New York, NY. https://doi.org/10.1007/978-1-59745-458-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-458-2_27

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-934115-18-3

  • Online ISBN: 978-1-59745-458-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics