Skip to main content

Essential Concepts and Techniques in Molecular Biology

  • Chapter
  • First Online:
The Molecular Basis of Human Cancer

Abstract

Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are macromolecules that convey genetic information. Both DNA and RNA are made up of nucleotides, molecules that in turn are composed of a nitrogenous base, a sugar, and one or more phosphate groups. There are five nitrogenous bases found in nucleic acids: adenine, guanine, cytosine, thymine, and uracil. Adenine, guanine, and cytosine are found in both DNA and RNA; thymine is found only in DNA and uracil is found only in RNA. A second difference between DNA and RNA is the sugars that are incorporated into the nucleotides. The sugar in the nucleotides of DNA is deoxyribose, RNA nucleotides contain ribose. Finally, DNA molecules are double-stranded, while RNA molecules are usually single-stranded.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Watson JD, Crick FH. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 1953;171:737–8.

    Article  CAS  PubMed  Google Scholar 

  2. Schumm DE. Core concepts in clinical molecular biology. Philadelphia: Lippincott-Raven; 1997.

    Google Scholar 

  3. Schumm DE. Essentials of biochemistry. 2nd ed. Boston: Little & Brown; 1995.

    Google Scholar 

  4. Thoma F, Koller T. Influence of histone H1 on chromatin structure. Cell. 1977;12:101–7.

    Article  CAS  PubMed  Google Scholar 

  5. Varshavsky AJ, Bakayev VV, Nedospasov SA, Georgiev GP. On the structure of eukaryotic, prokaryotic, and viral chromatin. Cold Spring Harb Symp Quant Biol. 1978;42:457–73.

    Article  PubMed  Google Scholar 

  6. Lamond AI, Earnshaw WC. Structure and function in the nucleus. Science. 1998;280:547–53.

    Article  CAS  PubMed  Google Scholar 

  7. Long EO, Dawid IB. Repeated genes in eukaryotes. Annu Rev Biochem. 1980;49:727–64.

    Article  CAS  PubMed  Google Scholar 

  8. Jordan EG. The nucleolus. 2nd ed. Oxford: Oxford University Press; 1978.

    Google Scholar 

  9. Carmo-Fonseca M, Mendes-Soares L, Campos I. To be or not to be in the nucleolus. Nat Cell Biol. 2000;2:E107–12.

    Article  CAS  PubMed  Google Scholar 

  10. Tyler-Smith C, Willard HF. Mammalian chromosome structure. Curr Opin Genet Dev. 1993;3:390–7.

    Article  CAS  PubMed  Google Scholar 

  11. Biessmann H, Mason JM. Telomeric repeat sequences. Chromosoma. 1994;103:154–61.

    Google Scholar 

  12. Counter CM. The roles of telomeres and telomerase in cell life span. Mutat Res. 1996;366:45–63.

    Article  PubMed  Google Scholar 

  13. Arzimanoglou II, Gilbert F, Barber HR. Microsatellite instability in human solid tumors. Cancer. 1998;82:1808–20.

    Article  CAS  PubMed  Google Scholar 

  14. Sutherland GR, Richards RI. Simple tandem DNA repeats and human genetic disease. Proc Natl Acad Sci U S A. 1995;92:3636–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Craig I. Human genetics. Methylation and the fragile X. Nature. 1991;349:742–3.

    Article  CAS  PubMed  Google Scholar 

  16. The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993;72:971–83.

    Article  Google Scholar 

  17. Hoffmann-Berling H. DNA unwinding enzymes. Prog Clin Biol Res. 1982;102:89–98.

    CAS  PubMed  Google Scholar 

  18. Kato S, Kikuchi A. DNA topoisomerase: the key enzyme that regulates DNA super structure. Nagoya J Med Sci. 1998;61:11–26.

    CAS  PubMed  Google Scholar 

  19. Heywood LA, Burke JF. Mismatch repair in mammalian cells. Bioessays. 1990;12:473–7.

    Article  CAS  PubMed  Google Scholar 

  20. Auerbach AD, Verlander PC. Disorders of DNA replication and repair. Curr Opin Pediatr. 1997;9:600–16.

    Article  CAS  PubMed  Google Scholar 

  21. Nojima H. Cell cycle checkpoints, chromosome stability and the progression of cancer. Hum Cell. 1997;10:221–30.

    CAS  PubMed  Google Scholar 

  22. Fotedar R, Fotedar A. Cell cycle control of DNA replication. Prog Cell Cycle Res. 1995;1:73–89.

    Article  CAS  PubMed  Google Scholar 

  23. Green R, Noller HF. Ribosomes and translation. Annu Rev Biochem. 1997;66:679–716.

    Article  CAS  PubMed  Google Scholar 

  24. Persson BC. Modification of tRNA as a regulatory device. Mol Microbiol. 1993;8:1011–6.

    Article  CAS  PubMed  Google Scholar 

  25. Sharp SJ, Schaack J, Cooley L, Burke DJ, Soll D. Structure and transcription of eukaryotic tRNA genes. CRC Crit Rev Biochem. 1985;19:107–44.

    Article  CAS  PubMed  Google Scholar 

  26. Goldberg S, Schwartz H, Darnell Jr JE. Evidence from UV transcription mapping in HeLa cells that heterogeneous nuclear RNA is the messenger RNA precursor. Proc Natl Acad Sci U S A. 1977;74:4520–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sharp PA. RNA splicing and genes. JAMA. 1988;260:3035–41.

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Stricker HM, Gou D, Liu L. MicroRNA: past and present. Front Biosci. 2007;12:2316–29.

    Article  CAS  PubMed  Google Scholar 

  29. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2004;431:931–45.

    Article  CAS  Google Scholar 

  30. Chou KC, Kezdy FJ, Reusser F. Kinetics of processive nucleic acid polymerases and nucleases. Anal Biochem. 1994;221:217–30.

    Article  CAS  PubMed  Google Scholar 

  31. Kollmar R, Farnham PJ. Site-specific initiation of transcription by RNA polymerase II. Proc Soc Exp Biol Med. 1993;203:127–39.

    Article  CAS  PubMed  Google Scholar 

  32. Tantravahi J, Alvira M, Falck-Pedersen E. Characterization of the mouse beta maj globin transcription termination region: a spacing sequence is required between the poly(A) signal sequence and multiple downstream termination elements. Mol Cell Biol. 1993;13:578–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Varani G. A cap for all occasions. Structure. 1997;5:855–8.

    Article  CAS  PubMed  Google Scholar 

  34. Munroe D, Jacobson A. Tales of poly(A): a review. Gene. 1990;91:151–8.

    Article  CAS  PubMed  Google Scholar 

  35. Gorlach M, Burd CG, Dreyfuss G. The mRNA poly(A)-binding protein: localization, abundance, and RNA-binding specificity. Exp Cell Res. 1994;211:400–7.

    Article  CAS  PubMed  Google Scholar 

  36. Balvay L, Libri D, Fiszman MY. Pre-mRNA secondary structure and the regulation of splicing. Bioessays. 1993;15:165–9.

    Article  CAS  PubMed  Google Scholar 

  37. Staley JP, Guthrie C. Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell. 1998;92:315–26.

    Article  CAS  PubMed  Google Scholar 

  38. Edwalds-Gilbert G, Veraldi KL, Milcarek C. Alternative poly(A) site selection in complex transcription units: means to an end? Nucleic Acids Res. 1997;25:2547–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Morrissey JP, Tollervey D. Birth of the snoRNPs: the evolution of RNase MRP and the eukaryotic pre-rRNA-processing system. Trends Biochem Sci. 1995;20:78–82.

    Article  CAS  PubMed  Google Scholar 

  40. Cech TR. Self-splicing of group I introns. Annu Rev Biochem. 1990;59:543–68.

    Article  CAS  PubMed  Google Scholar 

  41. Jacquier A. Self-splicing group II and nuclear pre-mRNA introns: how similar are they? Trends Biochem Sci. 1990;15:351–4.

    Article  CAS  PubMed  Google Scholar 

  42. Schwartz DC, Cantor CR. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell. 1984;37:67–75.

    Article  CAS  PubMed  Google Scholar 

  43. Sader HS, Hollis RJ, Pfaller MA. The use of molecular techniques in the epidemiology and control of infectious diseases. Clin Lab Med. 1995;15:407–31.

    CAS  PubMed  Google Scholar 

  44. Anand R. Pulsed field gel electrophoresis: a technique for fractionating large DNA molecules. Trends Genet. 1986;2:278–83.

    Article  CAS  Google Scholar 

  45. Thomas R. The denaturation of DNA. Gene. 1993;135:77–9.

    Article  CAS  PubMed  Google Scholar 

  46. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989.

    Google Scholar 

  47. Presnell SC. Nucleic acid blotting techniques. In: Coleman WB, Tsongalis GJ, editors. Molecular diagnostics for the clinical laboratorian. Totowa, NJ: Humana Press; 1997. p. 63–88.

    Google Scholar 

  48. Boltz EM, Kefford RF, Leary JA, Houghton CR, Friedlander ML. Amplification of c-ras-Ki oncogene in human ovarian tumours. Int J Cancer. 1989;43:428–30.

    Article  CAS  PubMed  Google Scholar 

  49. Hynes NE. Amplification and overexpression of the erbB-2 gene in human tumors: its involvement in tumor development, significance as a prognostic factor, and potential as a target for cancer therapy. Semin Cancer Biol. 1993;4:19–26.

    CAS  PubMed  Google Scholar 

  50. Sorscher DH. DNA amplification techniques. In: Coleman WB, Tsongalis GJ, editors. Molecular diagnostics for the clinical laboratorian. Totowa, NJ: Humana Press; 1997. p. 89–101.

    Google Scholar 

  51. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985;230:1350–4.

    Article  CAS  PubMed  Google Scholar 

  52. Mullis KB, Faloona FA. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 1987;155:335–50.

    Article  CAS  PubMed  Google Scholar 

  53. Wallace RB, Shaffer J, Murphy RF, Bonner J, Hirose T, Itakura K. Hybridization of synthetic oligodeoxyribonucleotides to phi chi 174 DNA: the effect of single base pair mismatch. Nucleic Acids Res. 1979;6:3543–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lawyer FC, Stoffel S, Saiki RK, Chang SY, Landre PA, Abramson RD, Gelfand DH. High-level expression, purification, and enzymatic characterization of full-length Thermus aquaticus DNA polymerase and a truncated form deficient in 5′ to 3′ exonuclease activity. PCR Methods Appl. 1993;2:275–87.

    Article  CAS  PubMed  Google Scholar 

  55. Lawyer FC, Stoffel S, Saiki RK, Myambo K, Drummond R, Gelfand DH. Isolation, characterization, and expression in Escherichia coli of the DNA polymerase gene from Thermus aquaticus. J Biol Chem. 1989;264:6427–37.

    CAS  PubMed  Google Scholar 

  56. Fanning S, Gibbs RA. PCR in genome analysis. In: Birren B, Green ED, Klapholz S, Myers RM, Roskams J, editors. Genome analysis, vol 1. Analyzing DNA, vol. 1. Plainview, NY: Cold Spring Harbor Laboratory Press; 1997. p. 249–99.

    Google Scholar 

  57. Kaijalainen S, Karhunen PJ, Lalu K, Lindstrom K. An alternative hot start technique for PCR in small volumes using beads of wax-embedded reaction components dried in trehalose. Nucleic Acids Res. 1993;21:2959–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bassam BJ, Caetano-Anolles G. Automated “hot start” PCR using mineral oil and paraffin wax. Biotechniques. 1993;14:30–4.

    CAS  PubMed  Google Scholar 

  59. Roux KH. Using mismatched primer-template pairs in touchdown PCR. Biotechniques. 1994;16:812–4.

    CAS  PubMed  Google Scholar 

  60. Don RH, Cox PT, Wainwright BJ, Baker K, Mattick JS. ‘Touchdown’ PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res. 1991;19:4008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Foord OS, Rose EA. Long-distance PCR. PCR Methods Appl. 1994;3:S149–61.

    Article  CAS  PubMed  Google Scholar 

  62. Barnes WM. PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates. Proc Natl Acad Sci U S A. 1994;91:2216–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ferre F. Quantitative or semi-quantitative PCR: reality versus myth. PCR Methods Appl. 1992;2:1–9.

    Article  CAS  PubMed  Google Scholar 

  64. Raeymaekers L. A commentary on the practical applications of competitive PCR. Genome Res. 1995;5:91–4.

    Article  CAS  PubMed  Google Scholar 

  65. Wittwer CT, Herrmann MG, Moss AA, Rasmussen RP. Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques. 1997;22:130–1.

    CAS  PubMed  Google Scholar 

  66. Heid CA, Stevens J, Livak KJ, Williams PM. Real time quantitative PCR. Genome Res. 1996;6:986–94.

    Article  CAS  PubMed  Google Scholar 

  67. Holland PM, Abramson RD, Watson R, Gelfand DH. Detection of specific polymerase chain reaction product by utilizing the 5′–3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A. 1991;88:7276–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AAM, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999–2009.

    Article  PubMed  Google Scholar 

  69. Pollack JR. A perspective on DNA microarrays in pathology research and practice. Am J Pathol. 2007;171:375–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pillai R, Deeter R, Rigl CT, et al. Validation and reproducibility of a microarray-based gene expression test for tumor identification in formalin-fixed, paraffin-embedded specimens. J Mol Diagn. 2011;13:48–56.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Erlander MG, Ma XJ, Kesty NC, et al. Performance and clinical evaluation of the 92-gene real-time PCR assay for tumor classification. J Mol Diagn. 2011;13:493–503.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wang L, Luhm R, Lei M. SNP and mutation analysis. Adv Exp Med Biol. 2007;593:105–16.

    Article  PubMed  Google Scholar 

  73. Maurice CB, Barua PK, Simses D, Smith P, Howe JG, Stack G. Comparison of assay systems for warfarin-related CYP2C9 and VKORC1 genotyping. Clin Chim Acta. 2010;411:947–54.

    Article  CAS  PubMed  Google Scholar 

  74. Lefferts JA, Jannetto P, Tsongalis GJ. Evaluation of the Nanosphere Verigene system and the Verigene F5/F2/MTHFR nucleic acid tests. Exp Mol Pathol. 2009;87:105–8.

    Article  CAS  PubMed  Google Scholar 

  75. Kearney HM, South ST, Wolff DJ, Lamb A, Hamosh A, Rao KW. American College of Medical Genetics recommendations for the design and performance expectations for clinical genomic copy number microarrays intended for use in the postnatal setting for detection of constitutional abnormalities. Genet Med. 2011;13:676–9.

    Article  PubMed  Google Scholar 

  76. Lee C, Lafrate AJ, Brothman AR. Copy number variations and clinical cytogenetic diagnosis of constitutional disorders. Nat Genet. 2007;39:S48–54.

    Article  CAS  PubMed  Google Scholar 

  77. de Ravel TJL, Devriendt K, Fryns J-P, Vermeesch JR. What’s new in karyotyping? The move towards array comparative genomic hybridisation (CGH). Eur J Pediatr. 2007;166:637–43.

    Google Scholar 

  78. Shendure JA, Porreca GJ, Church GM, Gardner AF, Hendrickson CL, Kieleczawa J, Slatko BE. Overview of DNA sequencing strategies. Curr Protoc Mol Biol. 2011;96:7.1.1–7.1.23.

    Google Scholar 

  79. Woo PC, Lau SK, Teng JL, Tse H, Yuen KY. Then and now: Use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin Microbiol Infect. 2008;14:908–34.

    Article  CAS  PubMed  Google Scholar 

  80. Dunn DT, Coughlin K, Cane PA. Genotypic resistance testing in routine clinical care. Curr Opin HIV & AIDS. 2011;6:251–7.

    Article  Google Scholar 

  81. Franklin WA, Haney J, Sugita M, Bemis L, Jimeno A, Messersmith WA. KRAS mutation: comparison of testing methods and tissue sampling techniques in colon cancer. J Mol Diagn. 2010;12:43–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Niedringhaus TP, Milanova D, Kerby MB, Snyder MP, Barron AE. Landscape of next-generation sequencing technologies. Anal Chem. 2011;83:4327–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. ten Bosch JR, Grody WW. Keeping up with the next generation: massively parallel sequencing in clinical diagnostics. J Mol Diagn. 2008;10:484–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mertes F, Elsharawy A, Sauer S, et al. Targeted enrichment of genomic DNA regions for next-generation sequencing. Brief Funct Genomics. 2011;10:374–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Head SR, Komori HK, LaMere SA, Whisenant T, Van Nieuwerburgh F, Salomon DR, et al. Library construction for next-generation sequencing: overviews and challenges. Biotechniques. 2014;56:61–77.

    Google Scholar 

  86. Hagemann IS, Cottrell CE, Lockwood CM. Design of targeted, capture-based, next generation sequencing tests for precision cancer therapy. Canc Genet. 2013;206:420–31.

    Google Scholar 

  87. Nguyen L. and L. Burnett, Automation of molecular-based analyses: a primer on massively parallel sequencing. Clin Biochem Rev. 2014;35:169–76.

    Google Scholar 

  88. Chang F. and M.M. Li, Clinical application of amplicon-based next-generation sequencing in cancer. Cancer Genetics, 2013;206:413–9.

    Google Scholar 

  89. Duzkale H., J. Shen, H. McLaughlin, A. et al. A systematic approach to assessing the clinical significance of genetic variants. Clinical Genetics, 2013;84:453–63.

    Google Scholar 

  90. Rehm H.L., S.J. Bale, P. Bayrak-Toydemir, et al. ACMG clinical laboratory standards for next-generation sequencing. Genetics in Medicine, 2013;15:733–47.

    Google Scholar 

  91. Roy S., M.B. Durso, A. Wald, Y.E. Nikiforov, M.N. Nikiforova, SeqReporter: automating next-generation sequencing result interpretation and reporting workflow in a clinical laboratory. Journal of Molecular Diagnostics, 2014;16:11–22.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel A. Lefferts Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lefferts, C.L., Lefferts, J.A. (2017). Essential Concepts and Techniques in Molecular Biology. In: Coleman, W., Tsongalis, G. (eds) The Molecular Basis of Human Cancer. Humana Press, New York, NY. https://doi.org/10.1007/978-1-59745-458-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-458-2_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-934115-18-3

  • Online ISBN: 978-1-59745-458-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics