Skip to main content

Viral Mechanisms in Human Carcinogenesis

  • Chapter
  • First Online:
The Molecular Basis of Human Cancer
  • 3091 Accesses

Abstract

Infectious agents, including viruses, bacteria, and parasites, are thought to be the etiologic agents in approximately 20 % of human cancers. Human oncogenic viruses include hepatitis B and hepatitis C viruses (associated with hepatocellular carcinoma), Epstein–Barr virus (associated with B-cell lymphomas, nasopharyngeal, and gastric carcinomas), human papillomaviruses (associated with cervical carcinoma, other anogenital cancers, and a subset of head and neck cancers), human T-cell lymphotropic virus I (HTLV-1; associated with adult T-cell lymphomas), human herpesvirus type 8 (associated with Kaposi’s sarcoma and primary effusion lymphomas), and the newest identified human tumor virus, Merkel cell carcinoma-associated polyomavirus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pipas JM. SV40: cell transformation and tumorigenesis. Virology. 2009;384:294–303.

    Article  CAS  PubMed  Google Scholar 

  2. Baker SJ, Fearon ER, Nigro JM, et al. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science. 1989;244:217–21.

    Article  CAS  PubMed  Google Scholar 

  3. DeCaprio JA, Ludlow JW, Figge J, et al. SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell. 1988;54:275–83.

    Article  CAS  PubMed  Google Scholar 

  4. Schwarz E, Freese UK, Gissmann L, et al. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature. 1985;314:111–4.

    Article  CAS  PubMed  Google Scholar 

  5. Thierry F, Yaniv M. The BPV1-E2 trans-acting protein can be either an activator or a repressor of the HPV18 regulatory region. EMBO J. 1987;6:3391–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Jeon S, Lambert PF. Integration of human papillomavirus type 16 DNA into the human genome leads to increased stability of E6 and E7 mRNAs: implications for cervical carcinogenesis. Proc Natl Acad Sci U S A. 1995;92:1654–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McLaughlin-Drubin ME, Munger K. The human papillomavirus E7 oncoprotein. Virology. 2009;384:335–44.

    Article  CAS  PubMed  Google Scholar 

  8. Song S, Liem A, Miller JA, Lambert PF. Human papillomavirus types 16 E6 and E7 contribute differently to carcinogenesis. Virology. 2000;267:141–50.

    Article  CAS  PubMed  Google Scholar 

  9. Riley RR, Duensing S, Brake T, et al. Dissection of human papillomavirus E6 and E7 function in transgenic mouse models of cervical carcinogenesis. Cancer Res. 2003;63:4862–71.

    CAS  PubMed  Google Scholar 

  10. Strati K, Pitot HC, Lambert PF. Identification of biomarkers that distinguish human papillomavirus (HPV)-positive versus HPV-negative head and neck cancers in a mouse model. Proc Natl Acad Sci U S A. 2006;103:14152–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Talbert-Slagle K, DiMaio D. The bovine papillomavirus E5 protein and the PDGF beta receptor: it takes two to tango. Virology. 2009;384:345–51.

    Article  CAS  PubMed  Google Scholar 

  12. Maufort JP, Shai A, Pitot HC, Lambert PF. A role for HPV16 E5 in cervical carcinogenesis. Cancer Res. 2010;70:2924–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dyson N, Howley PM, Munger K, Harlow E. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science. 1989;243:934–7.

    Article  CAS  PubMed  Google Scholar 

  14. Jewers RJ, Hildebrandt P, Ludlow JW, Kell B, McCance DJ. Regions of human papillomavirus type 16 E7 oncoprotein required for immortalization of human keratinocytes. J Virol. 1992;66:1329–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Funk JO, Waga S, Harry JB, et al. Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein. Genes Dev. 1997;11:2090–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jones DL, Alani RM, Munger K. The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21Cip1-mediated inhibition of cdk2. Genes Dev. 1997;11:2101–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shin MK, Balsitis S, Brake T, Lambert PF. Human papillomavirus E7 oncoprotein overrides the tumor suppressor activity of p21Cip1 in cervical carcinogenesis. Cancer Res. 2009;69:5656–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huh KW, DeMasi J, Ogawa H, et al. Association of the human papillomavirus type 16 E7 oncoprotein with the 600-kDa retinoblastoma protein-associated factor, p600. Proc Natl Acad Sci U S A. 2005;102:11492–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Werness BA, Levine AJ, Howley PM. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science. 1990;248:76–9.

    Article  CAS  PubMed  Google Scholar 

  20. Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 1990;63:1129–36.

    Article  CAS  PubMed  Google Scholar 

  21. Shai A, Pitot HC, Lambert PF. E6-associated protein is required for human papillomavirus type 16 E6 to cause cervical cancer in mice. Cancer Res. 2010;70:5064–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Howie HL, Katzenellenbogen RA, Galloway DA. Papillomavirus E6 proteins. Virology. 2009;384:324–34.

    Article  CAS  PubMed  Google Scholar 

  23. Kiyono T, Foster SA, Koop JI, et al. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature. 1998;396:84–8.

    Article  CAS  PubMed  Google Scholar 

  24. Feng H, Shuda M, Chang Y, Moore PS. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science. 2008;319:1096–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Houben R, Shuda M, Weinkam R, et al. Merkel cell polyomavirus-infected Merkel cell carcinoma cells require expression of viral T antigens. J Virol. 2010;84:7064–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vereide D, Sugden B. Insights into the evolution of lymphomas induced by Epstein-Barr virus. Adv Cancer Res. 2010;108:1–19.

    Article  CAS  PubMed  Google Scholar 

  27. Diehl V, Henle G, Henle W, Kohn G. Demonstration of a herpes group virus in cultures of peripheral leukocytes from patients with infectious mononucleosis. J Virol. 1968;2:663–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yates JL, Warren N, Sugden B. Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature. 1985;313:812–5.

    Article  CAS  PubMed  Google Scholar 

  29. Lupton S, Levine AJ. Mapping genetic elements of Epstein-Barr virus that facilitate extrachromosomal persistence of Epstein-Barr virus-derived plasmids in human cells. Mol Cell Biol. 1985;5:2533–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hammerschmidt W, Sugden B. Genetic analysis of immortalizing functions of Epstein-Barr virus in human B lymphocytes. Nature. 1989;340:393–7.

    Article  CAS  PubMed  Google Scholar 

  31. Soni V, Cahir-McFarland E, Kieff E. LMP1 TRAFficking activates growth and survival pathways. Adv Exp Med Biol. 2007;597:173–87.

    Article  PubMed  Google Scholar 

  32. Dedicoat M, Newton R. Review of the distribution of Kaposi’s sarcoma-associated herpesvirus (KSHV) in Africa in relation to the incidence of Kaposi’s sarcoma. Br J Cancer. 2003;88:1–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chang Y, Cesarman E, Pessin MS, et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science. 1994;266:1865–9.

    Article  CAS  PubMed  Google Scholar 

  34. Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM. Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med. 1995;332:1186–91.

    Article  CAS  PubMed  Google Scholar 

  35. Soulier J, Grollet L, Oksenhendler E, et al. Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman's disease. Blood. 1995;86:1276–80.

    CAS  PubMed  Google Scholar 

  36. Mann DJ, Child ES, Swanton C, Laman H, Jones N. Modulation of p27(Kip1) levels by the cyclin encoded by Kaposi’s sarcoma-associated herpesvirus. EMBO J. 1999;18:654–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ellis M, Chew YP, Fallis L, et al. Degradation of p27(Kip) cdk inhibitor triggered by Kaposi’s sarcoma virus cyclin-cdk6 complex. EMBO J. 1999;18:644–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Verschuren EW, Klefstrom J, Evan GI, Jones N. The oncogenic potential of Kaposi’s sarcoma-associated herpesvirus cyclin is exposed by p53 loss in vitro and in vivo. Cancer Cell. 2002;2:229–41.

    Article  CAS  PubMed  Google Scholar 

  39. Cheng EH, Nicholas J, Bellows DS, et al. A Bcl-2 homolog encoded by Kaposi sarcoma-associated virus, human herpesvirus 8, inhibits apoptosis but does not heterodimerize with Bax or Bak. Proc Natl Acad Sci U S A. 1997;94:690–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Djerbi M, Screpanti V, Catrina AI, et al. The inhibitor of death receptor signaling. FLICE-inhibitory protein defines a new class of tumor progression factors. J Exp Med. 1999;190:1025–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Asou H, Said JW, Yang R, et al. Mechanisms of growth control of Kaposi’s sarcoma-associated herpes virus-associated primary effusion lymphoma cells. Blood. 1998;91:2475–81.

    CAS  PubMed  Google Scholar 

  42. Montaner S, Sodhi A, Molinolo A, et al. Endothelial infection with KSHV genes in vivo reveals that vGPCR initiates Kaposi’s sarcomagenesis and can promote the tumorigenic potential of viral latent genes. Cancer Cell. 2003;3:23–36.

    Article  CAS  PubMed  Google Scholar 

  43. Matsuoka M, Jeang KT (2010) Human T-cell leukemia virus type 1 (HTLV-1) and leukemic transformation: viral infectivity, Tax, HBZ and therapy. Oncogene. 2011;30:1379–89.

    Google Scholar 

  44. Hino S, Katamine S, Miyata H, et al. Primary prevention of HTLV-1 in Japan. Leukemia. 1997;11:57–9.

    PubMed  Google Scholar 

  45. Larouze B, Blumberg BS, London WT, et al. Forecasting the development of primary hepatocellular carcinoma by the use of risk factors: studies in West Africa. J Natl Cancer Inst. 1977;58:1557–61.

    CAS  PubMed  Google Scholar 

  46. Beasley RP, Hwang LY, Lin CC, Chien CS. Hepatocellular carcinoma and hepatitis B virus. A prospective study of 22,707 men in Taiwan. Lancet. 1981;2:1129–33.

    Google Scholar 

  47. Unsal H, Yakicier C, Marcais C, et al. Genetic heterogeneity of hepatocellular carcinoma. Proc Natl Acad Sci U S A. 1994;91:822–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang XW, Gibson MK, Vermeulen W, et al. Abrogation of p53-induced apoptosis by the hepatitis B virus X gene. Cancer Res. 1995;55:6012–6.

    CAS  PubMed  Google Scholar 

  49. Chisari FV. Hepatitis B virus transgenic mice: insights into the virus and the disease. Hepatology. 1995;22:1316–25.

    CAS  PubMed  Google Scholar 

  50. Yao F, Terrault N. Hepatitis C and hepatocellular carcinoma. Curr Treat Options Oncol. 2001;2:473–83.

    Article  CAS  PubMed  Google Scholar 

  51. Yen T, Keeffe EB, Ahmed A. The epidemiology of hepatitis C virus infection. J Clin Gastroenterol. 2003;36:47–53.

    Article  PubMed  Google Scholar 

  52. Di Bisceglie AM. Hepatitis C and hepatocellular carcinoma. Hepatology. 1997;26:34S–38S.

    Google Scholar 

  53. Rosenberg S. Recent advances in the molecular biology of hepatitis C virus. J Mol Biol. 2001;313:451–64.

    Article  CAS  PubMed  Google Scholar 

  54. Bukh J, Miller RH, Purcell RH. Genetic heterogeneity of hepatitis C virus: quasispecies and genotypes. Semin Liver Dis. 1995;15:41–63.

    Article  CAS  PubMed  Google Scholar 

  55. Lohmann V, Korner F, Koch J, et al. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science. 1999;285:110–3.

    Article  CAS  PubMed  Google Scholar 

  56. Bukh J, Pietschmann T, Lohmann V, et al. Mutations that permit efficient replication of hepatitis C virus RNA in Huh-7 cells prevent productive replication in chimpanzees. Proc Natl Acad Sci U S A. 2002;99:14416–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Aoki H, Hayashi J, Moriyama M, Arakawa Y, Hino O. Hepatitis C virus core protein interacts with 14-3-3 protein and activates the kinase Raf-1. J Virol. 2000;74:1736–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hayashi J, Aoki H, Kajino K, et al. Hepatitis C virus core protein activates the MAPK/ERK cascade synergistically with tumor promoter TPA, but not with epidermal growth factor or transforming growth factor alpha. Hepatology. 2000;32:958–61.

    Article  CAS  PubMed  Google Scholar 

  59. Yoshida T, Hanada T, Tokuhisa T, et al. Activation of STAT3 by the hepatitis C virus core protein leads to cellular transformation. J Exp Med. 2002;196:641–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul F. Lambert Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lambert, P.F. (2017). Viral Mechanisms in Human Carcinogenesis. In: Coleman, W., Tsongalis, G. (eds) The Molecular Basis of Human Cancer. Humana Press, New York, NY. https://doi.org/10.1007/978-1-59745-458-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-458-2_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-934115-18-3

  • Online ISBN: 978-1-59745-458-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics