Skip to main content

Erionite and Asbestos in the Pathogenesis of Human Malignant Mesotheliomas

  • Chapter
  • First Online:
The Molecular Basis of Human Cancer

Abstract

Unlike chemical carcinogens that can interact with DNA, and be metabolized or detoxified by cells, erionite and asbestos fibers are poorly soluble, naturally occurring fibers that may persist in the lung or pleura for decades after inhalation. Thus, they are commonly referred to as physical carcinogens. Historically, their mechanisms of action have been compared to foreign body carcinogenesis in which plastics or other materials are injected under the skin of rodents and produce sarcomas. In reality, the complex mechanisms of fiber carcinogenesis are still unclear despite decades of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mossman BT, Bignon J, Corn M, Seaton A, Gee JB. Asbestos: scientific developments and implications for public policy. Science. 1990;247:294–301.

    Article  CAS  PubMed  Google Scholar 

  2. Dogan AU, Baris YI, Dogan M, et al. Genetic predisposition to fiber carcinogenesis causes a mesothelioma epidemic in Turkey. Cancer Res. 2006;66:5063–8.

    Article  CAS  PubMed  Google Scholar 

  3. Emri S, Demir AU. Malignant pleural mesothelioma in Turkey, 2000-2002. Lung Cancer. 2004;45:S17–20.

    Article  PubMed  Google Scholar 

  4. Baris YI. Fibrous zeolite (erionite)-related diseases in Turkey. Am J Ind Med. 1991;19:374–8.

    Article  CAS  PubMed  Google Scholar 

  5. Thomas JA, Ballantyne B. Toxicological assessment of zeolites. Int J Toxicol. 1992;11:259–73.

    Article  CAS  Google Scholar 

  6. IARC. Silica and some silicates. IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans. Lyon, France: International Agency for Research on Cancer; 1987. p. 289.

    Google Scholar 

  7. Fach E, Waldman WJ, Williams M, et al. Analysis of the biological and chemical reactivity of zeolite-based aluminosilicate fibers and particulates. Environ Health Perspect. 2002;110:1087–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Eborn SK, Aust AE. Effect of iron acquisition on induction of DNA single-strand breaks by erionite, a carcinogenic mineral fiber. Arch Biochem Biophys. 1995;316:507–14.

    Article  CAS  PubMed  Google Scholar 

  9. Dogan AU, Dogan M. Re-evaluation and re-classification of erionite series minerals. Environ Geochem Health. 2008;30:355–66.

    Article  CAS  PubMed  Google Scholar 

  10. Guthrie GD, Mossman BT. Health effects of mineral dusts. In: Ribbe PH, editor. Reviews in mineralogy, vol. 28. Washington, DC: Mineralogical Society of America; 1993.

    Google Scholar 

  11. Mossman BT, Craighead JE, MacPherson BV. Asbestos-induced epithelial changes in organ cultures of hamster trachea: Inhibition by retinyl methyl ether. Science. 1980;207:311–3.

    Article  CAS  PubMed  Google Scholar 

  12. Woodworth CD, Mossman BT, Craighead JE. Induction of squamous metaplasia in organ cultures of hamster trachea by naturally occurring and synthetic fibers. Cancer Res. 1983;43:4906–12.

    CAS  PubMed  Google Scholar 

  13. Mossman BT, Kamp DW, Weitzman SA. Mechanisms of carcinogenesis and clinical features of asbestos-associated cancers. Cancer Invest. 1996;14:466–80.

    Article  CAS  PubMed  Google Scholar 

  14. Health Effects Institute. Asbestos in public and commercial buildings: a literature review and synthesis of current knowledge. Cambridge, MA: Health Effects Institute-Asbestos Research; 1991.

    Google Scholar 

  15. Mossman B, Light W, Wei E. Asbestos: mechanisms of toxicity and carcinogenicity in the respiratory tract. Annu Rev Pharmacol Toxicol. 1983;23:595–615.

    Article  CAS  PubMed  Google Scholar 

  16. Craighead JE, Mossman BT, Bradley BJ. Comparative studies on the cytotoxicity of amphibole and serpentine asbestos. Environ Health Perspect. 1980;34:37–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Carthew P, Hill RJ, Edwards RE, Lee PN. Intrapleural administration of fibres induces mesothelioma in rats in the same relative order of hazard as occurs in man after exposure. Hum Exp Toxicol. 1992;11:530–4.

    Article  CAS  PubMed  Google Scholar 

  18. Wagner JC, Skidmore JW, Hill RJ, Griffiths DM. Erionite exposure and mesotheliomas in rats. Br J Cancer. 1985;51:727–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Baris E, Baris YI. Environmental exposure to fibrous zeolite in Turkey: an appraisal of the epidemiological and environmental evidence. In: Peters GA, Peters W, editors. Asbestos risks and medical advances. Salem, NH: Butterworth Legal Publishers; 1993. p. 53–72.

    Google Scholar 

  20. Maples KR, Johnson NF. Fiber-induced hydroxyl radical formation: correlation with mesothelioma induction in rats and humans. Carcinogenesis. 1992;13:2035–9.

    Article  CAS  PubMed  Google Scholar 

  21. Robinson BW, Lake RA. Advances in malignant mesothelioma. N Engl J Med. 2005;353:1591–603.

    Article  CAS  PubMed  Google Scholar 

  22. Jett JR. Malignant pleural mesotheliomas. In: Albert RK, Spiro SG, Jett JR, editors. Clinical respiratory medicine. Dearborn, MI: Mosby; 2004. p. 735–41.

    Google Scholar 

  23. Yates DH, Corrin B, Stidolph PN, Browne K. Malignant mesothelioma in south east England: clinicopathological experience of 272 cases. Thorax. 1997;52:507–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McGavin C, Hughes P. Finger clubbing in malignant mesothelioma and benign asbestos pleural disease. Respir Med. 1998;92:691–2.

    Article  CAS  PubMed  Google Scholar 

  25. Moore AJ, Parker RJ, Wiggins J. Malignant mesothelioma. Orphanet J Rare Dis. 2008;3:34.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wiggins J. BTS statement on malignant mesothelioma in the UK. Thorax. 2007;62:ii1–19.

    Google Scholar 

  27. Emri S, Demir A, Dogan M, et al. Lung diseases due to environmental exposures to erionite and asbestos in Turkey. Toxicol Lett. 2002;127:251–7.

    Article  CAS  PubMed  Google Scholar 

  28. Baris I, Simonato L, Artvinli M, et al. Epidemiological and environmental evidence of the health effects of exposure to erionite fibres: a four-year study in the Cappadocian region of Turkey. Int J Cancer. 1987;39:10–7.

    Article  CAS  PubMed  Google Scholar 

  29. Baris B, Demir AU, Shehu V, et al. Environmental fibrous zeolite (erionite) exposure and malignant tumors other than mesothelioma. J Environ Pathol Toxicol Oncol. 1996;15:183–9.

    CAS  PubMed  Google Scholar 

  30. Metintas M, Hillerdal G, Metintas S. Malignant mesothelioma due to environmental exposure to erionite: follow-up of a Turkish emigrant cohort. Eur Respir J. 1999;13:523–6.

    Article  CAS  PubMed  Google Scholar 

  31. Dogan AU. Cappadocian mesothelioma villages. In: The symposium on nutrition, environment, and cancer. Ankara, Turkey; 2002.

    Google Scholar 

  32. Carbone M, Bedrossian CW. The pathogenesis of mesothelioma. Semin Diagn Pathol. 2006;23:56–60.

    Article  PubMed  Google Scholar 

  33. Tweedale G, Hansen P. Protecting the workers: the medical board and the asbestos industry, 1930s-1960s. Med Hist. 1998;42:439–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gloyne SR. Two cases of squamous carcinoma of the lung occurring in asbestosis. Tubercle. 1935;17:5–10.

    Article  Google Scholar 

  35. Wagner JC, Sleggs CA, Marchand P. Diffuse pleural mesothelioma and asbestos exposure in the North Western Cape Province. Br J Ind Med. 1960;17:260–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. McDonald JC, McDonald AD, Hughes JM, Rando RJ, Weill H. Mortality from lung and kidney disease in a cohort of North American industrial sand workers: an update. Ann Occup Hyg. 2005;49:367–73.

    Article  PubMed  Google Scholar 

  37. Selikoff IJ, Churg J, Hammond EC. Asbestos exposure and Neoplasia. JAMA. 1964;188:22–6.

    Article  CAS  PubMed  Google Scholar 

  38. Selikoff IJ, Churg J, Hammond EC. Relation between exposure to asbestos and mesothelioma. N Engl J Med. 1965;272:560–5.

    Article  CAS  PubMed  Google Scholar 

  39. Selikoff IJ, Churg J, Hammond EC. The occurrence of asbestosis among insulation workers in the United States. Ann NY Acad Sci. 1965;132:139–55.

    Article  CAS  PubMed  Google Scholar 

  40. Newhouse ML, Thompson H. Mesothelioma of pleura and peritoneum following exposure to asbestos in the London area. Br J Ind Med. 1965;22:261–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gazdar AF, Butel JS, Carbone M. SV40 and human tumours: myth, association or causality? Nat Rev. 2002;2:957–64.

    Article  CAS  Google Scholar 

  42. Lopez-Rios F, Illei PB, Rusch V, Ladanyi M. Evidence against a role for SV40 infection in human mesotheliomas and high risk of false-positive PCR results owing to presence of SV40 sequences in common laboratory plasmids. Lancet. 2004;364:1157–66.

    Article  CAS  PubMed  Google Scholar 

  43. Carbone M, Burck C, Rdzanek M, et al. Different susceptibility of human mesothelial cells to polyomavirus infection and malignant transformation. Cancer Res. 2003;63:6125–9.

    CAS  PubMed  Google Scholar 

  44. Pardee JT, Larsen JS. Deposits of vermiculite and other minerals in the Rainy Creek District near Libby, Montana. US Geol Surv Bull. 1929;805:17–28.

    Google Scholar 

  45. Ward TJ, Spear T, Hart J, et al. Trees as reservoirs for amphibole fibers in Libby, Montana. Sci Total Environ. 2006;367:460–5.

    Article  CAS  PubMed  Google Scholar 

  46. Hart JF, Ward TJ, Spear TM, Crispen K, Zolnikov TR. Evaluation of asbestos exposures during firewood-harvesting simulations in Libby, MT, USA—preliminary data. Ann Occup Hyg. 2007;51:717–23.

    Article  PubMed  Google Scholar 

  47. Hart JF, Spear TM, Ward TJ, et al. An evaluation of potential occupational exposure to asbestiform amphiboles near a former vermiculite mine. J Environ Publ Health. 2009;2009:189509.

    Article  CAS  Google Scholar 

  48. Dixon GH, Doria J, Freed JR, et al. Exposure assessment for asbestos-contaminated vermiculite. Washington, DC: US EPA Office of Pesticides and Toxic Substances; 1985.

    Google Scholar 

  49. Hillegass JM, Shukla A, MacPherson MB, et al. Mechanisms of oxidative stress and alterations in gene expression by Libby six-mix in human mesothelial cells. Part Fibre Toxicol. 2010;7:26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  PubMed  Google Scholar 

  51. Schar P. Spontaneous DNA damage, genome instability, and cancer—when DNA replication escapes control. Cell. 2001;104:329–32.

    Article  CAS  PubMed  Google Scholar 

  52. Mossman BT, Lippmann M, Hesterberg TW, et al. Pulmonary endpoints (lung carcinomas and asbestosis) following inhalation exposure to asbestos. J Toxicol Environ Health. 2011;14:76–121.

    Article  CAS  Google Scholar 

  53. Eastman A, Mossman BT, Bresnick E. Influence of asbestos on the uptake of benzo(a)pyrene and DNA alkylation in hamster tracheal epithelial cells. Cancer Res. 1983;43:1251–5.

    CAS  PubMed  Google Scholar 

  54. Dostert C, Petrilli V, Van Bruggen R, et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science. 2008;320:674–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Haegens A, van der Vliet A, Butnor KJ, et al. Asbestos-induced lung inflammation and epithelial cell proliferation are altered in myeloperoxidase-null mice. Cancer Res. 2005;65:9670–7.

    Article  CAS  PubMed  Google Scholar 

  56. Landesman JM, Mossman BT. Induction of ornithine decarboxylase in hamster tracheal epithelial cells exposed to asbestos and 12-O-tetradecanoylphorbol-13-acetate. Cancer Res. 1982;42:3669–75.

    CAS  PubMed  Google Scholar 

  57. Perderiset M, Marsh JP, Mossman BT. Activation of protein kinase C by crocidolite asbestos in hamster tracheal epithelial cells. Carcinogenesis. 1991;12:1499–502.

    Article  CAS  PubMed  Google Scholar 

  58. Sesko A, Cabot M, Mossman B. Hydrolysis of inositol phospholipids precedes cellular proliferation in asbestos-stimulated tracheobronchial epithelial cells. Proc Natl Acad Sci U S A. 1990;87:7385–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Timblin CR, Guthrie GD, Janssen YW, et al. Patterns of c-fos and c-jun proto-oncogene expression, apoptosis, and proliferation in rat pleural mesothelial cells exposed to erionite or asbestos fibers. Toxicol Appl Pharmacol. 1998;151:88–97.

    Article  CAS  PubMed  Google Scholar 

  60. Mossman BT, Cameron GS, Yotti LP. Cocarcinogenic and tumor promoting properties of asbestos and other minerals in tracheobronchial epithelium. In: Mass MJ et al., editors. Cancer: a comprehensive survey. New York, NY: Raven Press; 1985. p. 217–38.

    Google Scholar 

  61. Christensen BC, Houseman EA, Godleski JJ, et al. Epigenetic profiles distinguish pleural mesothelioma from normal pleura and predict lung asbestos burden and clinical outcome. Cancer Res. 2009;69:227–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ivanova AV, Ivanov SV, Prudkin L, et al. Mechanisms of FUS1/TUSC2 deficiency in mesothelioma and its tumorigenic transcriptional effects. Mol Cancer. 2009;8:91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sekido Y, Pass HI, Bader S, et al. Neurofibromatosis type 2 (NF2) gene is somatically mutated in mesothelioma but not in lung cancer. Cancer Res. 1995;55:1227–31.

    CAS  PubMed  Google Scholar 

  64. Fleury-Feith J, Lecomte C, Renier A, et al. Hemizygosity of Nf2 is associated with increased susceptibility to asbestos-induced peritoneal tumours. Oncogene. 2003;22:3799–805.

    Article  CAS  PubMed  Google Scholar 

  65. Metcalf RA, Welsh JA, Bennett WP, et al. p53 and Kirsten-ras mutations in human mesothelioma cell lines. Cancer Res. 1992;52:2610–5.

    CAS  PubMed  Google Scholar 

  66. Vaslet CA, Messier NJ, Kane AB. Accelerated progression of asbestos-induced mesotheliomas in heterozygous p53+/- mice. Toxicol Sci. 2002;68:331–8.

    Article  CAS  PubMed  Google Scholar 

  67. Heintz NH, Janssen-Heininger YM, Mossman BT. Asbestos, lung cancers, and mesotheliomas: from molecular approaches to targeting tumor survival pathways. Am J Respir Cell Mol Biol. 2010;42:133–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shukla A, Gulumian M, Hei TK, et al. Multiple roles of oxidants in the pathogenesis of asbestos-induced diseases. Free Radic Biol Med. 2003;34:1117–29.

    Article  CAS  PubMed  Google Scholar 

  69. Pache JC, Janssen YM, Walsh ES, et al. Increased epidermal growth factor-receptor protein in a human mesothelial cell line in response to long asbestos fibers. Am J Pathol. 1998;152:333–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Zanella CL, Posada J, Tritton TR, Mossman BT. Asbestos causes stimulation of the extracellular signal-regulated kinase 1 mitogen-activated protein kinase cascade after phosphorylation of the epidermal growth factor receptor. Cancer Res. 1996;56:5334–8.

    CAS  PubMed  Google Scholar 

  71. Zanella CL, Timblin CR, Cummins A, et al. Asbestos-induced phosphorylation of epidermal growth factor receptor is linked to c-fos and apoptosis. Am J Physiol. 1999;277:L684–93.

    CAS  PubMed  Google Scholar 

  72. Scapoli L, Ramos-Nino ME, Martinelli M, Mossman BT. Src-dependent ERK5 and Src/EGFR-dependent ERK1/2 activation is required for cell proliferation by asbestos. Oncogene. 2004;23:805–13.

    Article  CAS  PubMed  Google Scholar 

  73. Heintz NH, Janssen YM, Mossman BT. Persistent induction of c-fos and c-jun expression by asbestos. Proc Natl Acad Sci U S A. 1993;90:3299–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Timblin CR, Janssen YW, Mossman BT. Transcriptional activation of the proto-oncogene c-jun by asbestos and H2O2 is directly related to increased proliferation and transformation of tracheal epithelial cells. Cancer Res. 1995;55:2723–6.

    CAS  PubMed  Google Scholar 

  75. Altomare DA, You H, Xiao GH, et al. Human and mouse mesotheliomas exhibit elevated AKT/PKB activity, which can be targeted pharmacologically to inhibit tumor cell growth. Oncogene. 2005;24:6080–9.

    Article  CAS  PubMed  Google Scholar 

  76. Janssen YM, Barchowsky A, Treadwell M, Driscoll KE, Mossman BT. Asbestos induces nuclear factor kappa B (NF-kappa B) DNA-binding activity and NF-kappa B-dependent gene expression in tracheal epithelial cells. Proc Natl Acad Sci U S A. 1995;92:8458–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Janssen YM, Driscoll KE, Howard B, et al. Asbestos causes translocation of p65 protein and increases NF-kappa B DNA binding activity in rat lung epithelial and pleural mesothelial cells. Am J Pathol. 1997;151:389–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Hillegass JM, Shukla A, Lathrop SA, et al. Inflammation precedes the development of human malignant mesotheliomas in a SCID mouse xenograft model. Ann NY Acad Sci. 2010;1203:7–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hillegass JM, Shukla A, MacPherson MB, et al. Utilization of gene profiling and proteomics to determine mineral pathogenicity in a human mesothelial cell line (LP9/TERT-1). J Toxicol Environ Health. 2010;73:423–36.

    Article  CAS  Google Scholar 

  80. Janssen YM, Heintz NH, Marsh JP, Borm PJ, Mossman BT. Induction of c-fos and c-jun proto-oncogenes in target cells of the lung and pleura by carcinogenic fibers. Am J Respir Cell Mol Biol. 1994;11:522–30.

    Article  CAS  PubMed  Google Scholar 

  81. Bertino P, Marconi A, Palumbo L, et al. Erionite and asbestos differently cause transformation of human mesothelial cells. Int J Cancer. 2007;121:12–20.

    Article  CAS  PubMed  Google Scholar 

  82. Goldberg JL, Zanella CL, Janssen YM, et al. Novel cell imaging techniques show induction of apoptosis and proliferation in mesothelial cells by asbestos. Am J Respir Cell Mol Biol. 1997;17:265–71.

    Article  CAS  PubMed  Google Scholar 

  83. Ramos-Nino ME, Blumen SR, Sabo-Attwood T, et al. HGF mediates cell proliferation of human mesothelioma cells through a PI3K/MEK5/Fra-1 pathway. Am J Respir Cell Mol Biol. 2008;38:209–17.

    Article  CAS  PubMed  Google Scholar 

  84. Gerwin BI, Lechner JF, Reddel RR, et al. Comparison of production of transforming growth factor-beta and platelet-derived growth factor by normal human mesothelial cells and mesothelioma cell lines. Cancer Res. 1987;47:6180–4.

    CAS  PubMed  Google Scholar 

  85. Dikensoy O. Mesothelioma due to environmental exposure to erionite in Turkey. Curr Opin Pulm Med. 2008;14:322–5.

    Article  CAS  PubMed  Google Scholar 

  86. Woodworth CD, Mossman BT, Craighead JE. Interaction of asbestos with metaplastic squamous epithelium developing in organ cultures of hamster trachea. Environ Health Perspect. 1983;51:27–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors appreciate the assistance of Maximilian MacPherson in the preparation of figures and the diligence of Jennifer Díaz in manuscript preparation. Research in Dr. Mossman’s laboratory has been funded by grants from the NIH, ACS, and EPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brooke T. Mossman Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sayan, M., Mossman, B.T. (2017). Erionite and Asbestos in the Pathogenesis of Human Malignant Mesotheliomas. In: Coleman, W., Tsongalis, G. (eds) The Molecular Basis of Human Cancer. Humana Press, New York, NY. https://doi.org/10.1007/978-1-59745-458-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-458-2_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-934115-18-3

  • Online ISBN: 978-1-59745-458-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics