Skip to main content

The Minimally Invasive Retina Implant Project

  • Chapter
Visual Prosthesis and Ophthalmic Devices

Part of the book series: Ophthalmology Research ((OPHRES))

Abstract

The idea of using electrical stimulation to treat defects of the visual system is by far not a new one (1). As early as 1755 LeRoy (2) elicited electrically evoked phosphenes in blind people, 36 yr before the first description of the principles of bioelectric stimulation by Galvani (3). Krause and Schum (4) and Foerster (5) proved the possibility to stimulate the human visual system reproducibly and potentially useful with reliable topographical coordinates. Button and Puttnam (6) were the first to test chronically implanted epicortical electrodes in blind patients followed by the famous and impressing trial of the Brindley group applying an epicortical multielectrode system (7) to the visual cortex of two patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Uhlig CE, Taneri S, Benner FP, Gerding H Electrical stimulation of the visual system. From empirical approaches to the development of visual implants. Ophthalmologe 2001;98:1089–1096.

    Article  PubMed  CAS  Google Scholar 

  2. LeRoy C. O ‘u’ L’on rend compte de quelques tentatives que L’on a faites pour guérir plusieurs maladies par l’électricité. Hist. Acad. Roy Sciencies (Paris), Mémoires Math Phys 1755;87–89.

    Google Scholar 

  3. Galvani L. De viribus electricitatis in motu musculary, commentaries. De Bononiensi Scientiarum et Artium Instituto atque Academia 1791;7:363–418.

    Google Scholar 

  4. Krause F, Schum H. Die epileptischen Erkrankungen, In: Kuttner H, ed., Neue Deutsche Chirurgie, Enke, Stuttgart, 1931:482–486.

    Google Scholar 

  5. Foerster O. Beiträge zur Pathophysiologie der Sehbahn und der Sehsphäre. J Psychol Neurol 1939;39:463–485.

    Google Scholar 

  6. Button J, Puttnam T. Visual responses to cortical stimulation in the blind. J Iowa St. Med Soc 1962;52:17–21.

    Google Scholar 

  7. Brindley GS, Rushton D. Implanted stimulators of the visual cortex as visual prosthetic devices. Trans Am Acad Ophthalmol Otolaryngol 1974;78:741–745.

    Google Scholar 

  8. Tassiker GE. Retinal stimulator, US patent, 351/1G0R, #2760483.1996.8.

    Google Scholar 

  9. Tassiker GE. Preliminary report on a retinal stimulator. Br J Physiol Opt 1656;13:102–105.

    Google Scholar 

  10. Potts AM, Inoue J. The electrical evoked response of the visual system (EER). Effect of adaptation and retinitis pigmentosa. Invest Ophthalmol Vis Sci 1969;8:605–612.

    CAS  Google Scholar 

  11. Brindley GS. The site of electrical excitation of the human eye. J Physiol 1962;127: 189–200.

    Google Scholar 

  12. Machemer R, Buettner H, Norton EWD, Parel JM. Vitrectomy, a pars plana approach. Trans Am Acad Ophthalmol Otolaryngol 1971;75:813–820.

    PubMed  CAS  Google Scholar 

  13. Dawson WW, Radtke ND. The electrical stimulation of the retina by indwelling electrodes. Invest Ophthalmol Vis Sci 1977;16:249–252.

    PubMed  CAS  Google Scholar 

  14. Chow AY. Artificial retina device. United States Patent no. 5,016,633, issued May 21, 1991.

    Google Scholar 

  15. Humayun MS, Probst RH, Hickingbotham D, de Juan E, Dagnelie G. Visual sensation produced by electrical stimulation of the retinal surface in patients with end-stage retinitis pigmentosa. Invest Ophthalmol Vis Sci 1993;34:S659.

    Google Scholar 

  16. Rizzo J, Socha A, Edell D, Antkowiak B, Brock D. Development of a silicon retinal implant: surgical methods and mechanical design. Invest Ophthalmol Vis Sci 1994;35:S1535.

    Google Scholar 

  17. Eckmiller R. Learning retina implants with epiretinal contacts. Ophthalmic Res 1997;29:281–289.

    PubMed  CAS  Google Scholar 

  18. Zrenner E, Miliczek KD, Gabel VP, et al. The development of subretinal microphotodiodes for replacement of degenerated photoreceptors. Ophthalmic Res 1997;29:269–280.

    Article  PubMed  CAS  Google Scholar 

  19. Wyatt J, Rizzo J. Ocular implants for the blind. IEEE Spectrum 5/1996;47–53.

    Google Scholar 

  20. Rizzo JF, Wyatt J. Prospect for a visual prosthesis. The Neuroscientist 1997;3:251–262.

    Article  Google Scholar 

  21. Kerdraon YA, Downie JA, Suaning GJ, Capon MR, Coroneo MT, Lovell NH. Development and surgical implantation of a vision prosthesis model into the ovine eye. Clin Experiment Ophthalmol 2002;30:36–40.

    Article  PubMed  Google Scholar 

  22. Chung H, Yu H, Yu Y, et al. Development of polyimide photodiode electrode array system for laser signaling retinal prosthesis. ARVO abstract no. 4470 at www.arvo.org 2002; accessed December, 2006.

    Google Scholar 

  23. Hornig R, Laube T, Walter P, et al. A method and technical equipment for an acute human trial to evaluate retina implant technology. J Neural Eng 2005;2:126–134.

    Article  Google Scholar 

  24. Walter P, Mokwa W. Epiretinal visual prosthesis. Ophthalmologe 2005;102:933–940.

    Article  PubMed  CAS  Google Scholar 

  25. Chow AY Chow VY. Subretinal electrical stimulation of the rabbit retina. Neurosci Lett 1997;225:13–16.

    Article  PubMed  CAS  Google Scholar 

  26. Peyman G, Chow AY, Liang C, Chow VY, Perlman JI, Peachey NS. Subretinal seminconductor microphotodiode array. Opthalmic Surg Lasers 1997;29:234–241.

    Google Scholar 

  27. Zrenner E. Will retina implants restore vision? Science 2002;295:2213.

    Article  CAS  Google Scholar 

  28. Peterman MC, Mehenti NZ, Bilbao KV, et al. The artificial synapse chip: a flexible retinal interface based on directed retinal cell growth and neurotransmitter stimulation. Artif Organs 2003;27:975–985.

    Article  PubMed  CAS  Google Scholar 

  29. Leng T, Wu P, Mehenti NZ, et al. Directed retinal nerve cell growth for use in a retinal prosthesis interface. Invest Ophthalmol Vis Sci 2004;45:4132–4137.

    Article  PubMed  Google Scholar 

  30. Palanker D, Vankov A, Huie P, Baccus S. Design of a high-resolution optoelectronic retinal prosthesis. J Neural Eng 2005;2:105–120.

    Article  Google Scholar 

  31. Palanker D, Huie P, Vankov A, et al. Migration of retinal cells through a perforated membrane: implications for a high-resolution prosthesis. Invest Ophthalmol Vis Sci 2004;45:3266–3270.

    Article  PubMed  Google Scholar 

  32. Fang X, Sakaguchi H, Fujikado T, et al. Electrophysiological and histological studies of chronically implanted intrapapillary microelectrodes in rabbit eyes. Graefes Arch Clin Exp Ophthalmol 2005;244:364–375.

    Article  PubMed  Google Scholar 

  33. Sakaguchi H, Fujikado T, Fang X, et al. Transretinal electrical stimulation with a suprachoroidal multichannel electrode in rabbit eyes. Jpn J Ophthalmol 2004;48:256–261.

    Article  PubMed  Google Scholar 

  34. Chowdhury V, Morley JW, Coroneo MT. Feasibility of extraocular stimulation for a retinal prosthesis. Can J Ophthalmol 2004;40:563–572.

    Google Scholar 

  35. Chowdhury V, Morley JW, Coroneo MT. Stimulation of the retina with a multielectrode extraocular visual prosthesis. ANZ J Surg 2005;75:697–704.

    Article  PubMed  Google Scholar 

  36. Chowdhury V, Morley JW, Coroneo MT. Evaluation of exraocular electrodes for a retinal prosthesis using evoked potentials in cat visual cortex. J Clin Neurosci 2005;12:574–579.

    Article  PubMed  Google Scholar 

  37. Yagi T, Watanabe M. A computational study on an electrode array in a hybrid retinal implant. Proc 1998 IEEE Int Joint Conf Neural Networks 1998;780–783.

    Google Scholar 

  38. Iezzi R, Safadi M, Miller J, McAllister JP, Auner G, Abrams GW. Feasibility of retinal and cortical prosthesis based upon spatiotemporally controlled release of L-glutamate. Invest Ophthalmol Vis Sci 2001;42:S941.

    Google Scholar 

  39. Peterman MC, Bloom DM, Lee C, et al. Localized neurotransmitter release for use in a prototype retinal interface. Invest Ophthalmol Vis Sci 2003;44:3144–3149.

    Article  PubMed  Google Scholar 

  40. Peterman MC, Noolandi J, Blumenkranz MS, Fishman HA. Localized chemical release from an artificial synapse chip. Proc Natl Acad Sci USA 2004;101:9951–9954.

    Article  PubMed  CAS  Google Scholar 

  41. Stone JL, Barlow WE, Humayun MS, de Juan E, Milam AH. Morphometric analysis of macular photoreceptors and ganglion cells in retinas with retinitis pigmentosa. Arch Ophthalmol 1992;110:1634–1639.

    PubMed  CAS  Google Scholar 

  42. Santos A, Humayun MS, deJuan E, Greenberg RJ, Marsh MJ, et al. Preservation of the inner retina in retinitis pigmentosa. Arch Ophthalmol 1997;115:511–515.

    PubMed  CAS  Google Scholar 

  43. Humayun MS, Prince M, deJuan E, et al. Morphometric analysis of the extracellular retina from post-mortem eyes with retinits pigmentosa. Invest Ophthalmol Vis Sci 1999;40:143–148.

    PubMed  CAS  Google Scholar 

  44. Cursiefen C, Holbach LM, Schlotzer-Schrehardt U, Naumann GOH. Persisting retinal ganglion cell axons in blind atrophic human eyes. Graefes Arch Clin Exp Ophthalmol 2001;239:158–164.

    PubMed  CAS  Google Scholar 

  45. Kim SY, Sadda S, Humayun MS, deJuan E, Melia BM, Green WR. Morphometric analysis of the macula in eyes with geographic atrophy due to age-related macular degeneration. Retina 2002;22:464–470.

    Article  PubMed  CAS  Google Scholar 

  46. Kim SY, Sadda S, Pearlman J, et al. Morphometric analysis of the macula in eyes with disciform age-related macular degeneration. Retina 2002;22:471–477.

    Article  PubMed  CAS  Google Scholar 

  47. Gerding H. Artificial human vision. MEJO 2003;11:22–33.

    Google Scholar 

  48. Marc RE, Jones BW, Watt CB, Strettoi E. Neural remodelling in retinal degeneration. Prog Retin Res 2003;22:607–655.

    Article  Google Scholar 

  49. Jones BW, Watt CB, Marc RE. Retinal remodelling. Clin Exp Optom 2005;88:282–291.

    Article  PubMed  Google Scholar 

  50. Wu HJ, Li XX, Dong JQ, Pei WH, Chen HD. Effects of subretinal implant materials on the viability, apoptosis and barrier function of cultured PRE cells. Graefes Arch Clin Exp Ophthalmol 2007;245:35–42.

    Article  Google Scholar 

  51. Gerding H, Eckmiller RE, Hornig R, Ortmann V, Kolck A, Taneri S. Safety assessment and acute clinical tests of epiretinal retina implants. 2002 Annual Meeting Abstract (on CD-ROM and www.arvo.org). Association for Research in Vision and Ophthalmology. ARVO abstract no. 4488 at www.arvo.org 2002; accessed December, 2006.

    Google Scholar 

  52. Rizzo JF, Wyatt J, Loewenstein J, Kelly S, Shire D. Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. Invest Ophthalmol Vis Sci 2003;44:5362–5369.

    Article  PubMed  Google Scholar 

  53. Rizzo JF, Wyatt J, Loewenstein J, Kelly S, Shire D. Methods and perceptual threshold for short-term electrical stimulation of human retina with microelectrode arrays. Invest Ophthalmol Vis Sci 2003;44:5355–5361.

    Article  PubMed  Google Scholar 

  54. Humayun MS, de Juan E, Weiland JD, et al. Pattern stimulation of the human retina. Vision Res 1999;39:2569–2576.

    Article  PubMed  CAS  Google Scholar 

  55. Hornig R, Laube P, Velikay-Parel M, et al. A method and technical equipment for an acute human trial to evaluate retinal implant technology. J Neural Eng 2005;2:29–34.

    Article  Google Scholar 

  56. Walter P, Kisvarday ZF, Gortz M, et al. Cortical activation via an implanted wireless retinal prosthesis. Invest Ophthalmol Vis Sci 2005;46:1780–1785.

    Article  PubMed  Google Scholar 

  57. Humayun MS, Weiland JD, Fujii GY, et al. Visual perception in a blind subject with a chronic microelectronic retinal prothesis. Vision Res 2003;43:2573–2581.

    Article  PubMed  Google Scholar 

  58. Guven D, Weiland JD, Fujii G, et al. Long-term stimulation by active epiretinal implants in normal and RCD1 dogs. J Neural Eng 2005;2:65–73.

    Article  Google Scholar 

  59. Hayes JS, Yin VT, Piyathaisere D, Weiland JD, Humayun MS, Dagnelie G. Visually guided performance of simple tasks using simulated prosthetic vision. Artif Organs 2003;27:1016–1028.

    Article  PubMed  Google Scholar 

  60. Dagnelie G, Barnett D, Humayun MS, Thompson RW. Paragraph text reading using a pixelized prosthetic vision stimulator: parameter dependence and task learning in free-viewing conditions. Invest Ophthalmol Vis Sci 2006;47:1241–1250.

    Article  PubMed  Google Scholar 

  61. Majii A, Humayun MS, Weiland JD, Suzuki SD, Anna SA, de Juan E. Long-term histological and electrsphysiological results of an inactive epiretinal electrode array implantation in dogs. Invest Ophthalmol Vis Sci 1999;40:2073–2081.

    Google Scholar 

  62. Walter P, Szurman P, Vobig M, et al. Successful long-term implantation of electrically inactive epiretinal microelectrode arrays in rabbits. Retina 1999;19:546–552.

    Article  PubMed  CAS  Google Scholar 

  63. Husain D, Loewenstein JI. Surgical approaches to retinal prosthesis implantation. Int Ophthalmol Clin 2004;44:105–111.

    Article  PubMed  Google Scholar 

  64. Chow AY, Chow VY, Pacho KH, Pollack JS, Peyman GA, Schuchard R. The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch Ophthalmol 2004;122:460–469.

    Article  PubMed  Google Scholar 

  65. Schanze T, Sachs HG, Wiesenack C, Brunner U, Sailer H. Implantation and testing of subretinal film electrodes in domestic pigs. Exp Eye Res 2006;82:1156–1157.

    Article  CAS  Google Scholar 

  66. Mahadevappa M, Weiland JD, Yanai D, Fine I, Greenberg RJ, Humayun MS. Perceptual threshold and electrode impedance in three retinal prosthesis subjects. IEEE Trans Neural Syst Rehabil Eng 2005;13:201–206.

    Article  PubMed  Google Scholar 

  67. Sachs HG, Gekeler F, Schwahn H, et al. Implantation of stimulation electrodes in the subretinal space to demonstrate cortical responses in Yucatan minipig in the course of visual prosthesis development. Eur J Ophthalmol 2005;15:493–499.

    PubMed  CAS  Google Scholar 

  68. Sachs HG, Schanze T, Brunner U, Sailer H, Wiesenack C. Transscleral implantation and neurophysiological testing of subretinal polyimide film electrodes in the domestic pig in visual prosthesis development. J Neural Eng 2005;2:57–64.

    Article  Google Scholar 

  69. Kolck A, Mueller-Kaempf S, Sellhaus B, Taneri S, Gerding H. Experimental implantation of combined anterior/posterior segment retinal prosthesis in rabbits: results of long-term observation. ARVO-abstract no. 4220 at www.arvo.org 2004; accessed December, 2006.

    Google Scholar 

  70. Ezelius H, Gerding H. The minimal invasive Retinal Implant (miRI) project: risk analysis of different retinal prosthetic devices and design of a new concept. ARVO abstract no. 3176 at www.arvo.org 2006; accessed December, 2006.

    Google Scholar 

  71. Büchele Rodrigues E. Retina implant project: chronic implantation of active epiretinal implants. Doctoral thesis, Medical Faculty, University of Marburg, 2003; available at www.d-nb.de, code: urn:nbn:de:hebis:04-Z.2004-1489.

    Google Scholar 

  72. Taneri S, Gerding H. Retinal detachment and phthisis bulbi after implantation of an iris prosthetic system. J Cataract Refract Surg 2003;29:1034–1038.

    Article  PubMed  Google Scholar 

  73. Rizzo JF, Wyatt JL, Loewenstein J, et al. Development of a wireless, ab externo retinal prosthesis. ARVO abstract no. 3399 at www.arvo.org 2004; accessed December, 2006.

    Google Scholar 

  74. Hornig R, Velikay-Parel M, Feucht M, Zehnder T, Richard G. Early clinical experience with a chronic retinal implant system for artificial vision. ARVO abstract no. 3216, 2006 (www.arvo.org; last accessed December, 2006).

    Google Scholar 

  75. Kamei M, Fujikado T, Kanda H, et al. Suprachoroidal-transretinal stimulation (STS) artificial vision system for patients with retinitis pigmentosa. ARVO abstract no. 1537, 2006 (www.arvo.org; last accessed December, 2006).

    Google Scholar 

  76. Yamauchi Y, Franco LM, Jackson DJ, et al. Comparison of electrically evoked cortical potential thresholds generated with subretinal or suprachoroidal placement of a microelectrode array in the rabbit. J Neural Eng 2005;2:48–56.

    Article  Google Scholar 

  77. Eckmiller R, Neumann D, Baruth O. Tunable retina encoders for retina implants: why and how. J Neural Eng 2005;2:91–104.

    Article  Google Scholar 

  78. Cottaris NP, Elfar SD. How the retinal network reacts to epiretinal stimulation to form the prosthetic visual input to the cortex. J Neural Eng 2005;2:74–90.

    Article  Google Scholar 

  79. Taneri S, Bollmann FP, Uhlig C, Thelen U, Gerding H. The Retina Implant—Project: in vitro and in vivo testing of different tack types for intraocular fixation of retina implants. Invest Ophthalmol Vis Sci 1999;40(S1):733.

    Google Scholar 

  80. Gerding H, Taneri S, Benner FP, Reichelt R, Thelen U, Uhlig CE. Successful long-term evaluation of intraocular titanium tacks for the mechanical stabilization of posterior segment ocular implants. Mat-wiss u Werkstofftechn 2001;32:903–912.

    Article  CAS  Google Scholar 

  81. Thelen U, Gerding H. The minimal invasive Retinal Implant (miRI) project: experimental testing of electrodes completely penetrating the sclera, choroid, and retina in rabbits. ARVO abstract no. 3214 at www.arvo.org 2006; last accessed December, 2006.

    Google Scholar 

  82. Gerding H. et al., unpublished data.

    Google Scholar 

  83. Stupp N, Niggemann B, Gerding H. The minimal invasive Retinal Implant (miRI) project: development of surgical techniques and experimental testing in a series of primate implantations. ARVO abstract no. 3191 at www.arvo.org 2006; last accessed December, 2006.

    Google Scholar 

  84. Gerding H, Ezelius H, Niggemann B. The minimal invasive Retinal Implant (miRI) project: a novel approach toward the restoration of vision in patients with degenerative retinal diseases. ARVO abstract no. 3214 at www.arvo.org 2006; last accessed December, 2006.

    Google Scholar 

  85. Niggemann B, Weinbauer GF, Gerding H. The minimal invasive Retinal Implant (miRI) project: first series of implantation with long-term follow-up in nonhuman primates. ARVO abstract no. 1031 at www.arvo.org 2006; last accessed December, 2006.

    Google Scholar 

  86. Friederichs-Gromoll S, Niggemann B, Gerding H. The minimal invasive Retinal Implant (miRI) project: histological results after long-term follow-up of implants in the nonhuman primate model. ARVO abstract no. 3163 at www.arvo.org 2006; last accessed December, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa NJ

About this chapter

Cite this chapter

Gerding, H. (2007). The Minimally Invasive Retina Implant Project. In: Tombran-Tink, J., Barnstable, C.J., Rizzo, J.F. (eds) Visual Prosthesis and Ophthalmic Devices. Ophthalmology Research. Humana Press. https://doi.org/10.1007/978-1-59745-449-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-449-0_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-16-9

  • Online ISBN: 978-1-59745-449-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics