Skip to main content

Development of a Visual Prosthesis

A Review of the Field and an Overview of the Boston Retinal Implant Project

  • Chapter
Book cover Visual Prosthesis and Ophthalmic Devices

Part of the book series: Ophthalmology Research ((OPHRES))

Abstract

Blindness is a major form of disability in the world. Loss of vision clearly compromises quality of life, and reduces independence for most patients. In addition, blindness often occurs with a host of other medical problems, including depression, obesity, and a variety of systemic conditions such as diabetes (1). The relatively high incidence of blindness and the impact of blindness on quality-of-life compel many researchers to seek new treatments for blindness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Margolis M, Coyne K, Kennedy-Martin T, Baker T, Schein O, Revicki D. Vision-Specific Instruments for the Assessment of Health-Related Quality of Life and Visual Functioning. Pharmacoeconomics 2002;20:791–811.

    Article  PubMed  Google Scholar 

  2. Dowling J. Artificial Human Vision. Expert Rev Med Devices 2005;2:73–85.

    Article  PubMed  Google Scholar 

  3. Huang Q, Xu P, Xia X, Hu H, Wang F, Li H. Subretinal transplantation of human fetal lung fibroblasts expressed cliliary neurotrophic factor gene prevent photoreceptor degeneration in RCS rats. Zhonghua Yan Ke Za Zhi 2006;42:127–130.

    PubMed  Google Scholar 

  4. Bennett J. Gene therapy for Leber congential amaurosis. Novartis Found Symp 2004;255:195–202.

    Article  PubMed  CAS  Google Scholar 

  5. Humayun MS, Prince M, de Juan E, et al. Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. Invest Ophthalmol Visual Sci 1999;40:143–148.

    CAS  Google Scholar 

  6. Santos A, Humayun MS, de Juan E Jr, et al. Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. Arch Ophthalmol 1997;115.

    Google Scholar 

  7. Stone JL, Barlow WE, Humayun WS, et al. Morphometric analysis of macular photoreceptors and ganglion cells in retinas with retinitis pigmentosa. Arch Ophthalmol 1992;110:1634–1639.

    PubMed  CAS  Google Scholar 

  8. Humayun MS, Weiland JD, Fujii GY, et al. Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Res 2003;43:2573–2581.

    Article  PubMed  Google Scholar 

  9. Chow A, Chow VY, Packo K, Pollack J, Peyman GA, Schuchard R. The artifical silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch Ophthalmol 2005;122:460–469.

    Article  Google Scholar 

  10. gekeler F, Szurman P, Grisanti S, et al. Compound subretinal prostheses with extra-ocular parts designed for human trials: successful long-term implantation in pigs. Graefes Arch Clin Exp Ophthalmol 2006 [Epub ahead of print].

    Google Scholar 

  11. Hornig R, Laube T, Walter P, et al. A method and technical equipment for an acute human trial to evaluate retinal implant technology. 2005;2:S129–S134.

    Google Scholar 

  12. Hubel D, Wiesel TN. Receptive fields, binocular interactions, and functional architeture in the cat’s visual cortex. J Physiol 1962;160:106–154.

    PubMed  CAS  Google Scholar 

  13. Penfiled W, Perot P. The brain’s record of auditory and visual experience. A final summary and discussion. Brain 1963;86:595–696.

    Article  Google Scholar 

  14. Douglas R, Mahowald M, Mead C. Neuromorphic Analogue VLSI. Ann Rev Neurosci 1995;18:255–281.

    Article  PubMed  CAS  Google Scholar 

  15. Tassiker G. US Patent 2,760,483, 1956.

    Google Scholar 

  16. Brindley GS. Effects of electrical stimulation of the visual cortex. Hum Neurobiol 1982;1:281–283.

    PubMed  CAS  Google Scholar 

  17. Brindley GS, Lewin WS. The sensations produced by electrical stimulation of the visual cortex. J Physiol 1968;196:479–493.

    PubMed  CAS  Google Scholar 

  18. Dobelle WH, Mladejovsky MG, Evans JR, Roberts TS, Girvin JP. “Braille” reading by a blind volunteer by visual cortex stimulation. Nature 1976;259:111–112.

    Article  PubMed  CAS  Google Scholar 

  19. Donoghue J, Nurmikko A, Friehs G, Black M. Development of neuromotor prostheses for humans. Suppl Clin Neurophysiol 2004;57:592–606.

    PubMed  Google Scholar 

  20. Hambrecht FT. Neural prostheses. Ann Rev Biophys Bioeng 1979;8:239–267.

    Article  CAS  Google Scholar 

  21. Bradley D, Troyk P, Berg J, et al. Visuotopic mapping through a multichannel stimulating implant in primate V1. J. Neurophysiol 2005;93:1659–1670.

    Article  PubMed  CAS  Google Scholar 

  22. Marc RE, Jones BW, Watt CB, Strettoi E. Neural remodeling in retina degeneration. Prog Retinal Eye Res 2003;22:607–655.

    Article  Google Scholar 

  23. Jensen RJ, Rizzo JF. Thresholds for activation of rabbit retinal ganglion cells with a subretinal electrode. Exp Eye Res 2005;submitted.

    Google Scholar 

  24. Jensen RJ, Ziv OR, Rizzo JF. Responses of rabbit retinal ganglion cells to electrical stimulation with an epiretinal electrode. J Neural Eng 2005;2:S16–S21.

    Article  PubMed  Google Scholar 

  25. Fried S, Hsueh H, Werblin F. A method for generating precise temporal patterns of retinal spiking using prosthetic stimulation. J Neurophysiol 2006;95:970–978.

    Article  PubMed  CAS  Google Scholar 

  26. Sekirjinak C, Hottowy P, Sher A, Dabrowski W, Chichilnisky E. Electrical stimulation of mammalian retinal ganglion cells with multi-electrode arrays. J Neurophysiol 2006;95:3311.

    Article  Google Scholar 

  27. Normann RA, Maynard EM, Rousche PJ, Warren DJ. A neural interface for a cortical vision prosthesis. Vision Res 1999;39:2577–2587.

    Article  PubMed  CAS  Google Scholar 

  28. Rizzo J. Embryology, anatomy, and physiology of the afferent visual pathway. In: Miller N, Newman N, eds. Walsh and Hoyt’s Clinical Neuro-Ophthalmology 6th ed., Philadelphia: Lippincott, Williams, and Wilkins, 2005;3–82.

    Google Scholar 

  29. Theogarajan LS. A low power wireless 15-channel implantable retinal stimulatorchip. Cambridge, MA: Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science, 2005.

    Google Scholar 

  30. Kelly S, Wyatt J. A power-efficient voltage-based neural tissue stimulator with energy recovery. IEEE Int Solid-State Circuits Conf: (ISSCC), 2004.

    Google Scholar 

  31. Gingerich M, Shire D, Karcich K, Schulz C, Wyatt J, Rizzo J. Assembly and packaging developments for an ab externo retinal prosthesis. ARVO. Fort Lauderdale, FL., 1004.

    Google Scholar 

  32. Robblee LS, Lefko Jl, Brummer SB. Activated Ir: An electrode suitable for reversible charge injection in saline solution. J Electrochem Soc 1983;130:731–732.

    Article  CAS  Google Scholar 

  33. Jensen R, Rizzo JF, Ziv O, Grumet A, Wyatt J. Thresholds for activation of rabbit retinal ganglion cells with an ultra-fine, extracellular microelectrode. Invest Ophthalmol Visual Sci 2003;44:3533–3543.

    Article  Google Scholar 

  34. Grumet AE, Wyatt JL, Rizzo JF. Multi-electrode stimulation and recording in the isolated retina. J Neurosci Methods 2000;101:31–42.

    Article  PubMed  CAS  Google Scholar 

  35. Grumet A. Electric stimulation parameters for an epi-retinal prosthesis. 1999.

    Google Scholar 

  36. Humayun MS, de Juan E Jr, Dagnelie G, Greenberg RJ, Propst RH, Phillips DH. Visual perception elicited by electrical stimulation of retina in blind humans. Arch Ophthalmol 1996;114:40–46.

    PubMed  CAS  Google Scholar 

  37. Rizzo J, WJ, Loewenstein J, Kelly S, Shire D. Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays. IOVS 2003.

    Google Scholar 

  38. Rizzo JF, Wyatt J, Loewenstein J, Kelly S, Shire D. Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. Invest Ophthalmol Visual Sci 2003;44:5362–5369.

    Article  Google Scholar 

  39. Montezuma SR, Loewenstein J, Scholz C, Rizzo JF. Biocompatibility of Subretinal Materials in Yucatan Pigs. Invest Ophthalmol Visual Sci 2004; submitted.

    Google Scholar 

  40. Zrenner E. Will Retinal Implants Restore Vision. Science 2002;295:1022.

    Article  PubMed  CAS  Google Scholar 

  41. McCall MA, DeMarco PJ, Crosby AL, et al. Visually Evoked Activity from a Subretinally placed artificial silicon retina. Assoc Res Vision Ophthalmol 2005.

    Google Scholar 

  42. Ball SL. Temporary trophic effect in two animal models (Chow group). In: Rizzo JF, ed., 2005.

    Google Scholar 

  43. Cheng Y, Yin H, Fernandes A, et al. Long-term neuroprotective effect of the subretinal implant in the RCS rat. Assoc Res Vision Ophthalmol 2004.

    Google Scholar 

  44. LaVail MM, Yasumura D, Matthes MT, et al. Protection of mouse photoreceptors by survival factors in retinal degenerations. Invest Ophthalmol Visual Sci 1998;39:592–602.

    CAS  Google Scholar 

  45. Husson-Danan A, Leveillard S, Mohand-Said S, Chalmel F, Poch O, Sahel JA. Rod-derived cone viability factor/Txnl-6 expression in the transgenic P23H rat, an autosomal dominant model of retinitis pigmentosa. Invest Ophthalmol Visual Sci 2005;46:E-Abstract 5185.

    Google Scholar 

  46. Wickelgren I. A Vision for the Blind. Science 2006;312:1124–1126.

    Article  PubMed  CAS  Google Scholar 

  47. Zrenner E. Subretinal stimulation for retinal prosthesis. ARVO. Fort Lauderdale, FL, 2006.

    Google Scholar 

  48. Loewenstein J, Montezuma S, Rizzo JF. Outer retinal degeneration: an electronic retinal prosthesis as a treatment strategy. Arch Ophthalmol 2003.

    Google Scholar 

  49. Loewenstein J, Montezuma SR, Rizzo JF. Outer retinal degeneration: an electronic retinal prosthesis as a treatment strategy. Arch Ophthalmol 2004;122:587–596.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa NJ

About this chapter

Cite this chapter

Rizzo, J.F., Snebold, L., Kenney, M. (2007). Development of a Visual Prosthesis. In: Tombran-Tink, J., Barnstable, C.J., Rizzo, J.F. (eds) Visual Prosthesis and Ophthalmic Devices. Ophthalmology Research. Humana Press. https://doi.org/10.1007/978-1-59745-449-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-449-0_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-16-9

  • Online ISBN: 978-1-59745-449-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics