Skip to main content

Development of an Intraocular Retinal Prosthesis to Benefit the Visually Impaired

  • Chapter
Visual Prosthesis and Ophthalmic Devices

Part of the book series: Ophthalmology Research ((OPHRES))

  • 1154 Accesses

Abstract

Neural prostheses have been used as treatment for a variety of neurological disorders, motivating engineers and scientists to pursue prostheses for presently incurable human diseases related to the nervous system. A retinal prosthesis is based on the principle of activating nerve cells using a device implanted on the retina. In an intraocular retinal prosthesis, the stimulation device is placed internal to the eye. Retinal prosthesis potentially targets the restoration of vision in persons affected by outer retinal degenerative diseases. The most common diseases are age-related macular degeneration (AMD) and retinitis pigmentosa (RP) (1). RP is a collective name for a number of genetic defects that result in photoreceptor loss. RP affects the rods (used in night vision) first and then the cones (used in ambient daylight levels). AMD results from abnormal aging of the retinal pigment epithelium and retina. Persons with AMD will start to have distorted vision and eventually, lose most of the vision in the central 30°. In both the diseases, the vision is impaired because of the damage to the photoreceptors that convert photons to neural signals. Postmortem evaluations of retina with RP or AMD have shown that a large number of cells remain healthy in the inner retina compared with the outer retina (2,3). The inner retina is made up of horizontal, bipolar, amacrine, and ganglion cells. Further, electrical stimulation of humans with RP and AMD results in the perception of light; so the neural cells can be activated, providing the hope of restoring lost vision in blind persons (4). A chronic implant with 16 electrode sites on the retina in three blind patients has yielded promising results (5). After being implanted with the prosthetic device, the patients were able to detect motion of a white bar (up, down, left, or right), detect a rectangular object, count objects, discriminate the orientation of two white bars in an “L” configuration regarding where the corner of the L was positioned, and discriminate between a dessert plate, a coffee cup, and a plastic knife.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Margalit E, Sadda SR. Retinal and optic nerve diseases. Artificial Organs 2003;27(11):963–974.

    Article  PubMed  Google Scholar 

  2. Humayun MS, Prince M, de Juan E Jr, et al. Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. Invest Ophthalmol Vis Sci 1999;40(1):143–148.

    PubMed  CAS  Google Scholar 

  3. Kim S, Sadda S, Pearlman J, et al. Morphometric analysis of the macula in eyes with geographic atrophy due to age-related macular degeneration. Retina 2002;22(4):464–470.

    Article  PubMed  CAS  Google Scholar 

  4. Humayun MS, de Juan EJ, Weiland JD, et al. Pattern electrical stimulation of the human retina. Vision Res 1999;39:2569–2576.

    Article  PubMed  CAS  Google Scholar 

  5. Humayun MS, Weiland J, Fujii G, et al. Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Res 2003;43(24):2573–2581.

    Article  PubMed  Google Scholar 

  6. Weiland JD, Yanai D, Mahadevappa M, et al. Visual task performance in Blind Humans with Retinal Prosthetic Implants. Conf Proc IEEE Eng Med Biol Soc 2004;6:4172–4173.

    PubMed  CAS  Google Scholar 

  7. Cha K, Horch K, Normann RA. Simulation of a phosphene-based visual field: visual acuity in a pixelized vision system. Ann Biomed Eng 1992;20(4):439–449.

    Article  PubMed  CAS  Google Scholar 

  8. Cha K, Horch KW, Normann RA, Boman DK. Reading speed with a pixelized vision system. J Opt Soc Am 1992;9(5):673–677.

    Article  CAS  Google Scholar 

  9. Cha K, Horch KW, Normann RA. Mobility performance with a pixelized vision system. Vision Res 1992;32(7):1367–1372.

    Article  PubMed  CAS  Google Scholar 

  10. Hayes JS, Yin JT, Piyathaisere DV, Weiland J, Humayun MS, Dagnelie G. Visually guided performance of simple tasks using simulated prosthetic vision. Artificial Organs 2003;27(11):1016–1028.

    Article  PubMed  Google Scholar 

  11. Dobelle WH, Mladejovsky MG, Girvin JP. Artifical vision for the blind: electrical stimulation of visual cortex offers hope for a functional prosthesis. Science 1974;183(123):440–444.

    Article  PubMed  CAS  Google Scholar 

  12. Veraart C, Wanet-Defalque MC, Gerard B, Vanlierde A, Delbeke J. Pattern recognition with the optic nerve visual prosthesis. Artificial Organs 2003;11:996–1004.

    Article  Google Scholar 

  13. Peterman MC, Mehenti NZ, Bilbao KV, et al. The artificial synapse chip: a flexible retinal interface based on directed retinal cell growth and neurotransmitter stimulation. Artificial Organs 2003;27(11):975–985.

    Article  PubMed  CAS  Google Scholar 

  14. Zrenner E, Stett A, Weiss S, et al. Can subretinal microphotodiodes successfully replace degenerated photoreceptors? Vision Res 1999;39:2555–2567.

    Article  PubMed  CAS  Google Scholar 

  15. Eckmiller R. Learning retina implants with epiretinal contacts. Ophthalmic Res 1997;29(5):281–289.

    Article  PubMed  CAS  Google Scholar 

  16. Fink W, Tarbell M, Weiland JD, Humayun MS. DORA: Digital Object Recognition Audio-Assistant for the visually impaired. ARVO. 2004.

    Google Scholar 

  17. Weiland JD, Cogan S, Humayun MS. Micro-Machined, Polyimide Stimulating Electrodes with Electroplated Iridium Oxide. Conf Proc IEEE Eng Med Biol Soc 1999;1:13–16.

    Google Scholar 

  18. Weiland JD, Guven D, Magrhibi M, et al. Chronic implantation of an inactive poly (dimethyl siloxane) electrode array in dogs. Invest Ophthalmol Vis Sci 2004;45:4210.

    Article  Google Scholar 

  19. Xu X, Tai YC, Huang A, Ho C. IC-integrated Flexible Shear-tress Sensor Skin. Technical Digest, Solid State Sensor and actuator Workshop 2002;12(5):740–747.

    Google Scholar 

  20. Rose TL, Robblee LS. Electrical stimulation with Pt electrodes. VIII. Electrochemically safe charge injection limits with 0.2 ms pulses. IEEE Trans Biomed Eng 1990;37(11):1118–1120.

    Article  PubMed  CAS  Google Scholar 

  21. Weiland JD, Humayun MS, Anderson DJ. In Vitro Electrical Properties for Iridium Oxide vs. Titanium Nitride Stimulating Electrodes. IEEE Trans Biomed Eng 2002;49(12):1574–1579.

    Article  PubMed  Google Scholar 

  22. Yuan F, Wiler JA, Wise KD, Anderson DJ. Micromachined Multichannel microelectrodes with titanium nitride sites. Proc 21st Int Conf IEEE EMBS 1999.

    Google Scholar 

  23. Nichols M. The challenges for hermetic encapsulation of implanted devices—a review. Crit Rev Biomed Eng 1994;22(1):39–67.

    PubMed  CAS  Google Scholar 

  24. Wise KD, Anderson DJ, Hetke JF, Kipke DR, Najafi K. Wireless implantable microsystems: high-density electronic interfaces to the nervous system. Proc IEEE 2004;92(1):76–97.

    Article  CAS  Google Scholar 

  25. Stieglitz T, Haberer W, Lau C, Goertz M. Development of an inductively coupled epiretinal visual prosthesis. Conf Proc IEEE Eng Med Biol 2004;2:4178–4181.

    Google Scholar 

  26. Bashirullah R, Liu W, Ji Y, et al. A smart bi-directional telemetry unit for retinal prosthetic device. Proc Int Symp Circuits Syst 2003;5:5–8.

    Google Scholar 

  27. Kendir A, Liu W, Wang G, et al. An optimal design methodology for inductive power link with class-E amplifier. IEEE Trans Circuits Syst I 52:857–866.

    Google Scholar 

  28. Sokal NO, Sokal AD. Class-E-A new class of high-efficiency tuned single-ended switching power amplifiers. IEEE J Solid-State Circuits 1975;10:168–176.

    Article  Google Scholar 

  29. Wang G, Liu W, Bashirullah R, et al. A closed loop transcutaneous power transfer system for implantable devices with enhanced stability. Proc IEEE Int Symp Circuits Syst 2004;4:17–20.

    Google Scholar 

  30. Wang G, Liu W, Sivaprakasam M, Kendir GA. Design and Analysis of an adaptive transcutaneous power telemetry for biomedical implants. IEEE Trans Circuits and Syst I;52:2109–2117.

    Google Scholar 

  31. Proakis J. Digital Communications (4th ed.), McGraw-Hill, 2000.

    Google Scholar 

  32. Sivaprakasam M, Liu W, Humayun MS, Weiland JD. A variable range bi-phasic current stimulus driver circuitry for an Implantable Retinal Prosthetic Device. IEEE J Solid-State Circuits 2005;41:763–771.

    Article  Google Scholar 

  33. Liu W, Humayun MS. Retinal prosthesis. IEEE Int Solid-State Circuits Conf Dig Tech Pap 2004;218–219.

    Google Scholar 

  34. Zeng FG. Trends in cochlear implants. Trends Amplif 2004;8(1):1–34.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa NJ

About this chapter

Cite this chapter

Liu, W., Sivaprakasam, M., Wang, G., Zhou, M., Weiland, J.D., Humayun, M.S. (2007). Development of an Intraocular Retinal Prosthesis to Benefit the Visually Impaired. In: Tombran-Tink, J., Barnstable, C.J., Rizzo, J.F. (eds) Visual Prosthesis and Ophthalmic Devices. Ophthalmology Research. Humana Press. https://doi.org/10.1007/978-1-59745-449-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-449-0_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-16-9

  • Online ISBN: 978-1-59745-449-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics