Skip to main content

Subretinal Artificial Silicon Retina Microchip Implantation in Retinitis Pigmentosa

  • Chapter
Visual Prosthesis and Ophthalmic Devices

Part of the book series: Ophthalmology Research ((OPHRES))

Abstract

Retinitis pigmentosa (RP) is a progressive condition that causes both central and peripheral vision loss ((1)–(3)). This genetically diverse disease presents with a variable phenotypic onset, but eventually affects both eyes. No treatment is effective in restoring vision once it is lost. Although, a variety of patterns can be observed, vision loss typically occurs first in the midperiphery and progresses to involve the peripheral and finally, the central visual fields creating a funduscopic pattern of pigmented “bone spicules.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. National Advisory Eye Council. Report of the Retinal Diseases Panel: Vision Research: A National Plan, 1994–1998. Bethesda, Md: United States Dept of Health and Human Services; 1993. Publication NIH 93-3186.

    Google Scholar 

  2. Pagon RA. Retinitis pigmentosa. Surv Ophthalmol. 1988;33:137–177.

    Article  PubMed  CAS  Google Scholar 

  3. Berson EL, Sandberg MA, Rosner B, et al. Natural course of retinitis pigmentosa over a three-year interval. Am J Ophthalmol 1985;99:240–251.

    PubMed  CAS  Google Scholar 

  4. Flannery JG, Farber DB, Bird AC, Bok D. Degenerative changes in a retina affected with autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 1989;30:191–211.

    PubMed  CAS  Google Scholar 

  5. Santos A, Humayun MS, de Juan E Jr., et al. Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. Arch Ophthalmol 1997;115:511–515.

    PubMed  CAS  Google Scholar 

  6. Brindley GS. The site of electrical excitation of the human eye. J Physiol 1955;127: 189–200.

    PubMed  CAS  Google Scholar 

  7. Potts AM, Inoue J, Buffum D. The electrically evoked response (EER) of the visual system. Invest Ophthalmol Vis Sci 1968;7:269–278.

    CAS  Google Scholar 

  8. Carpenter RH. Electrical stimulation of the human eye in different adaptational states. J Physiol 1972;221:137–148.

    PubMed  CAS  Google Scholar 

  9. Potts AM, Inoue J. The electrically evoked response (EER) of the visual system—II: Effect of adaptation and retinitis pigmentosa. Invest Ophthalmol Vis Sci 1968;8:605–612.

    Google Scholar 

  10. Potts AM, Inoue J. The electrically evoked response (EER) of the visual system—III: Further contribution to the origin of the EER. Invest Ophthalmol Vis Sci 1970;9:814–819.

    CAS  Google Scholar 

  11. Dowling JE, Sidman RL. Inherited retinal dystrophy in the rat. J Cell Biol 1962;14:73–109.

    Article  PubMed  CAS  Google Scholar 

  12. Humayun MS, de Juan E Jr., Dagnelie G, et al. Visual perception elicited by electrical stimulation of retina in blind humans. Arch Ophthalmol 1996;114:40–46.

    PubMed  CAS  Google Scholar 

  13. Dawson WW, Radtke ND. The electrical stimulation of the retina by indwelling electrodes. Invest Ophthalmol Vis Sci 1977;16:249–252.

    PubMed  CAS  Google Scholar 

  14. Knighton RW. An electrically evoked slow potential of the frog’s retina—I: Properties of the response. J Neurophysiol 1975;38:185–197.

    PubMed  CAS  Google Scholar 

  15. Chow AY, Chow VY. Subretinal electrical stimulation of the rabbit retina. Neurosci Lett 1997;225:13–16.

    Article  PubMed  CAS  Google Scholar 

  16. Chow AY. Electrical stimulation of the rabbit retina with subretinal electrodes and high density microphotodiode array implants. Invest Ophthalmol Vis Sci 1993;34(Suppl):835.

    Google Scholar 

  17. Peachey NS, Chow AY. Subretinal implantation of semiconductor-based photodiodes: Progress and challenges. J Rehabil Res Dev 1999;36:372–378.

    Google Scholar 

  18. Chow AY, Pardue MT, Chow VY, et al. Implantation of silicon chip microphotodiode arrays into the cat subretinal space. IEEE Trans Neural Syst Rehabil Eng 2001;9:86–95.

    Article  PubMed  CAS  Google Scholar 

  19. Peyman GA, Chow AY, Liang C, et al. Subretinal semiconductor microphotodiode array. Ophthalmic Surg Lasers 1998;29:234–241.

    PubMed  CAS  Google Scholar 

  20. Pardue MT, Stubbs EB, Perlman JI, et al. Immunohistochemical studies of the retina following long-term implantation with subretinal microphotodiode arrays. Exp Eye Res 2001;73:333–343.

    Article  PubMed  CAS  Google Scholar 

  21. Chow AY. Artificial retina device. US Patents No. 5,016,633. 1991, No. 5,024,223. 1991.

    Google Scholar 

  22. Chow AY, Chow VY. Independent photoelectric artificial retina device and method of using same. US Patents No. 5,397,350. 1995, No 5,556,423. 1996.

    Google Scholar 

  23. Chow AY, Peachey NS. The subretinal microphotodiode array retinal prosthesis. Ophthalmic Res 1998;30:195–196.

    Article  PubMed  CAS  Google Scholar 

  24. Zrenner E, Miliczek KD, Gabel VP, et al. The development of subretinal microphotodiodes for replacement of degenerated photoreceptors. Ophthalmic Res 1997;29:269–280.

    Article  PubMed  CAS  Google Scholar 

  25. Zrenner E, Stett A, Weiss A, et al. Can subretinal microphotodiodes successfully replace degenerated photoreceptors? Vision Res 1999;39:2555–2567.

    Article  PubMed  CAS  Google Scholar 

  26. Pardue MT, Ball SL, Phillips MJ, et al. Status of the feline retina after subretinal implantation of an artificial silicon retina for three years. Presentation at 4th Annual VA Rehabil Res Develop Conf. Arlington, Virginia, 2002.

    Google Scholar 

  27. Lagey CL, Roelofs JM, Janssen LW, et al. Electrical stimulation of bone growth with direct current. Clin Orthop 1986;204:303–312.

    PubMed  Google Scholar 

  28. Kane WJ. Direct current electrical bone growth stimulation for spinal fusion. Spine 1988;13:363–365.

    Article  PubMed  CAS  Google Scholar 

  29. Politis MJ, Zanakis MF. Short term efficacy of applied electric fields in the repair of the damaged rodent spinal cord: behavioral and morphological results. Neurosurgery 1988;23:582–588.

    Article  PubMed  CAS  Google Scholar 

  30. Leake PA, Hradek GT, Snyder RL. Chronic electrical stimulation by a cochlear implant promotes survival of spiral ganglion neurons after neonatal deafness. J Comp Neurol 1999;412:543–562.

    Article  PubMed  CAS  Google Scholar 

  31. Leake PA, Hradek GT, Rebscher SJ, Snyder RL. Chronic intracochlear electrical stimulation induces selective survival of spiral ganglion neurons in neonatally deafened cats. Hear Res 1991;54:251–271.

    Article  PubMed  CAS  Google Scholar 

  32. The Deep-Brain Stimulation for Parkinson’s Disease Study Group. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med 2001;345:956–963.

    Article  Google Scholar 

  33. Carvalho GA, Nikkhah G. Subthalamic nucleus lesions are neuroprotective against terminal 6-OHDA-induced striatal lesions and restore postural balancing reactions. Exp Neurol 2001;171:405–417.

    Article  PubMed  CAS  Google Scholar 

  34. Andrews RJ. Neuroprotection for the new millennium. Matchmaking pharmacology and technology. Ann N Y Acad Sci 2001;939:114–125.

    Article  PubMed  CAS  Google Scholar 

  35. Bosco A, Linden R. BDNF and NT-4 differentially modulate neurite outgrowth in developing retinal ganglion cells. J Neurosci Res 1999;57:759–769.

    Article  PubMed  CAS  Google Scholar 

  36. Frasson M, Picaud S, Leveillard T, et al. Glial cell line-derived neurotrophic factor induces histologic and functional protection of rod photoreceptors in the rd/rd mouse. Invest Ophthalmol 1999;40:2724–2734.

    CAS  Google Scholar 

  37. LaVail MM, Yasumura D, Matthes MT, et al. Protection of mouse photoreceptors by survival factors in retinal degenerations. Invest Ophthalmol Vis Sci 1998;39:592–602.

    PubMed  CAS  Google Scholar 

  38. Lambiase A, Aloe L. Nerve growth factor delays retinal degeneration in C3H mice. Graefes Arch Clin Exp Ophthalmol. 1996;234(Suppl):S96.

    Article  PubMed  CAS  Google Scholar 

  39. Reh TA, McCabe K, Kelley MW, Bermingham-McDonogh O. Growth factors in the treatment of degenerative retinal disorders. Ciba Found Symp. 1996;196:120–131; discussion 131–134.

    PubMed  CAS  Google Scholar 

  40. Wen R, Song Y, Cheng T, et al. Injury-induced upregulation of bFGF and CNTF mRNAs in the rat retina. J Neurosci 1995;15:7377–7385.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa NJ

About this chapter

Cite this chapter

Chow, A.Y., Chow, V.Y. (2007). Subretinal Artificial Silicon Retina Microchip Implantation in Retinitis Pigmentosa. In: Tombran-Tink, J., Barnstable, C.J., Rizzo, J.F. (eds) Visual Prosthesis and Ophthalmic Devices. Ophthalmology Research. Humana Press. https://doi.org/10.1007/978-1-59745-449-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-449-0_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-16-9

  • Online ISBN: 978-1-59745-449-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics