Skip to main content

Donor Lymphocyte Infusions Clinical Applications and the Graft‐versus‐Leukemia Effect

  • Chapter
Hematopoietic Stem Cell Transplantation

Part of the book series: Contemporary Hematology ((CH))

  • 1293 Accesses

The success of donor lymphocyte infusion (DLI) in inducing long lasting remissions in patients’ chronic myelogenous leukemia provided the first direct evidence of the existence of a Graft‐versus‐Leukemia (GVL) effect. In the decade since the first reports of DLI’s use by Kolb and Slavin, the diseases which response to DLI have been identified and efforts to further enhance the GVL response have been explored [1, 2]. Graft‐versus‐Host‐Disease (GVHD) is the major complication of DLI and strategies aimed at limiting this toxicity have been investigated. Demonstrating the profound antitumor effect mediated by the donor graft has led to the development of nonmyeloablative, or minitransplants, which depend upon the GVL response for success.

Extensive laboratory efforts to identify the effector mechanism of response and potential targets of the GVL reaction have been undertaken. Interestingly, despite the dramatic clinical responses that have been observed, the targets and effector mechanisms of the GVL effect remain unclear. Many potential targets have been proposed including alloantigens, such as minor histocompatibility antigens, as well as tumor‐specific antigens. Responses may be mediated either by cellular mediated direct cytotoxicity, or indirectly via inflammatory cytokines. The role of humoral immunity is also now being explored, and may also play a role in the response to DLI. This chapter will review the clinical applications and outcomes of DLI. We will also discuss future strategies to enhance the GVL response mediated by DLI, with focus on potential targets of the GVL effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Slavin S, Naparstek E, Nagler A et al. Allogeneic cell therapy with donor peripheral blood cells and recombinant human interleukin‐2 to treat leukemia relapse after allogeneic bone marrow transplantation. Blood. 1996;87:2195–2204.

    PubMed  CAS  Google Scholar 

  2. Kolb HJ, Schattenberg A, Goldman JM et al. Graft‐versus‐leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood. 1995;86: 2041–2050.

    PubMed  CAS  Google Scholar 

  3. Barnes DWH, Loutit JF. Immunological and histological response following spleen treatment in irradiated mice. In: Mitchel JS, Holmes BE, and SCL, eds. Progress in Radiobiology. Edinburgh: Oliver and Boyd; 1956:291.

    Google Scholar 

  4. Barnes DWH, Loutit JF. Treatment of murine leukaemia with X‐rays and homologous bone marrow: II. British Journal of Haematology. 1957;3:241–252.

    Article  PubMed  CAS  Google Scholar 

  5. Truitt RL, Johnson BD. Principles of graft‐vs.‐leukemia reactivity. Biol Blood Marrow Transplant. 1995;1:61–68.

    PubMed  CAS  Google Scholar 

  6. Gale RP, Horowitz MM, Ash RC et al. Identical‐twin bone marrow transplants for leukemia. Annals of Internal Medicine. 1994;120:646–652.

    PubMed  CAS  Google Scholar 

  7. Horowitz MM, Gale RP, Sondel PM et al. Graft‐versus‐leukemia reactions after bone marrow transplantation. Blood. 1990;75:555–562.

    PubMed  CAS  Google Scholar 

  8. Goldman JM, Gale RP, Horowitz MM et al. Bone marrow transplantation for chronic myelogenous leukemia in chronic phase. Increased risk for relapse associated with T‐cell depletion. Annals of Internal Medicine. 1988;108:806–814.

    PubMed  CAS  Google Scholar 

  9. Apperley JF, Mauro FR, Goldman JM et al. Bone marrow transplantation for chronic myeloid leukaemia in first chronic phase, importance of a graft‐versus-leukaemia effect. British Journal of Haematology. 1988;69:239–245.

    Article  PubMed  CAS  Google Scholar 

  10. Marmont A, Horowitz MM, Gale RP et al. T‐cell depletion of HLA‐identical transplants in leukemia. Blood. 1991;78:2120–2130.

    PubMed  CAS  Google Scholar 

  11. Weiden PL, Flournoy N, Thomas ED, Prentice R, Buckner CD, Storb R. Antileukemic effect of graft‐versus‐host disease in recipients of allogeneic‐marrow grafts. New England Journal of Medicine. 1979;300:1068–1073.

    Article  PubMed  CAS  Google Scholar 

  12. Weiden PL, Sullivan K, Flournoy N, Storb R, Thomas ED, Team SMT. Antileukemic effect of chronic graft‐versus‐host disease. Contribution to improved survival after allogeneic marrow transplantation. New England Journal of Medicine. 1981;304:1529–1533.

    Article  PubMed  CAS  Google Scholar 

  13. Odom LF, August CS, Githens JH et al. Remission of relapsed leukaemia during a graft‐versus‐host reaction. A “graft‐versus‐leukaemia reaction” in man? Lancet. 1978;2:537–540.

    Article  PubMed  CAS  Google Scholar 

  14. Higano CS, Brixey M, Bryant EM et al. Durable complete remission of acute nonlymphocytic leukemia associated with discontinuation of immunosuppression following relapse after allogeneic bone marrow transplantation. A case report of a probable graft‐versus‐leukemia effect. Transfusion. 1990;50:175–177.

    CAS  Google Scholar 

  15. Collins RH, Rogers ZR, Bennett M, Kumar V, Nikein A, Fay JW. Hematologic relapse of chronic myelogenous leukemia following allogeneic bone marrow transplantation. Apparent graft‐versus‐leukemia effect following abrupt discontinuation of immunosuppression. Bone Marrow Transplantation. 1992;10:391–395.

    PubMed  Google Scholar 

  16. Kolb H, Mittermuller J, Clemm C et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood. 1990;76:2462–2465.

    PubMed  CAS  Google Scholar 

  17. Porter DL, Roth MS, McGarigle C, Ferrara JLM, Antin JH. Induction of graft‐vs‐host disease as immunotherapy for relapsed chronic myelogenous leukemia. New England Journal of Medicine. 1994;330:100–106.

    Article  PubMed  CAS  Google Scholar 

  18. Frassoni F, Fagioli F, Sessarego M et al. The effect of donor leucocyte infusion in patients with leukemia following allogeneic bone marrow transplantation. Experimental Hematology. 1992;20:712.

    Google Scholar 

  19. Helg C, Roux E, Beris P et al. Adoptive immunotherapy for recurrent CML after BMT. Bone Marrow Transplantation. 1993;12:125–129.

    PubMed  CAS  Google Scholar 

  20. Drobyski WR, Keever CA, Roth MS et al. Salvage immunotherapy using donor leukocyte infusions as treatment for relapsed chronic myelogenous leukemia after allogeneic bone marrow transplantation: efficacy and toxicity of a defined T‐cell dose. Blood. 1993;82:2310–2318.

    PubMed  CAS  Google Scholar 

  21. Jiang YZ, Kanfer EJ, Macdonald D, Cullis JO, Goldman JM, Barrett AJ. Graft-versus‐leukaemia following allogeneic bone marrow transplantation: emergence of cytotoxic T lymphocytes reacting to host leukaemia cells. Bone Marrow Transplant. 1991;8:253–258.

    PubMed  CAS  Google Scholar 

  22. Collins R, Shpilberg O, Drobyski W et al. Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J Clin Oncol. 1997;15:433–444.

    PubMed  Google Scholar 

  23. Raiola AM, Van Lint MT, Valbonesi M et al. Factors predicting response and graft-versus‐host disease after donor lymphocyte infusions: a study on 593 infusions. Bone Marrow Transplant. 2003;31:687–693.

    Article  PubMed  CAS  Google Scholar 

  24. Porter DL, Collins RH, Jr., Shpilberg O et al. Long‐term follow‐up of patients who achieved complete remission after donor leukocyte infusions. Biol Blood Marrow Transplant. 1999;5:253–261.

    Article  PubMed  CAS  Google Scholar 

  25. Dazzi F, Szydlo RM, Cross NC et al. Durability of responses following donor lymphocyte infusions for patients who relapse after allogeneic stem cell transplantation for chronic myeloid leukemia. Blood. 2000;96:2712–2716.

    PubMed  CAS  Google Scholar 

  26. Porter DL, Collins RH, Jr., Hardy C et al. Treatment of relapsed leukemia after unrelated donor marrow transplantation with unrelated donor leukocyte infusions. Blood. 2000;95:1214–1221.

    PubMed  CAS  Google Scholar 

  27. Chiorean EG, DeFor TE, Weisdorf DJ et al. Donor chimerism does not predict response to donor lymphocyte infusion for relapsed chronic myelogenous leukemia after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2004;10:171–177.

    Article  PubMed  Google Scholar 

  28. Guglielmi C, Arcese W, Dazzi F et al. Donor lymphocyte infusion for relapsed chronic myelogenous leukemia: prognostic relevance of the initial cell dose. Blood. 2002;100:397–405.

    Article  PubMed  CAS  Google Scholar 

  29. Mackinnon S, Papadapoulos EB, Carabasi MH et al. Adoptive immunotherapy evaluating escalating doses of donor leukocytes for relapse of chronic myeloid leukemia after bone marrow transplantation: separation of graft‐versus‐leukemia responses from graft‐versus‐host disease. Blood. 1995;86:1261–1268.

    PubMed  CAS  Google Scholar 

  30. Dazzi F, Szydlo RM, Craddock C et al. Comparison of single‐dose and escalating‐dose regimens of donor lymphocyte infusion for relapse after allografting for chronic myeloid leukemia. Blood. 2000;95:67–71.

    PubMed  CAS  Google Scholar 

  31. Vela‐Ojeda J, Garcia‐Ruiz Esparza MA, Reyes‐Maldonado E et al. Donor lymphocyte infusions for relapse of chronic myeloid leukemia after allogeneic stem cell transplantation: prognostic significance of the dose of CD3(+) and CD4(+) lymphocytes. Ann Hematol. 2004;83:295–301.

    Article  PubMed  CAS  Google Scholar 

  32. Posthuma EF, Marijt EW, Barge RM et al. Alpha‐interferon with very‐low‐dose donor lymphocyte infusion for hematologic or cytogenetic relapse of chronic myeloid leukemia induces rapid and durable complete remissions and is associated with acceptable graft‐versus‐host disease. Biol Blood Marrow Transplant. 2004;10:204–212.

    Article  PubMed  CAS  Google Scholar 

  33. Alyea E P, Soiffer RJ, Canning C et al. Toxicity and efficacy of defined doses of CD4(+) donor lymphocytes for treatment of relapse after allogeneic bone marrow transplant. Blood. 1998;91:3671–3680.

    PubMed  CAS  Google Scholar 

  34. Bensinger WI, Buckner CD, Anasetti C et al. Allogeneic marrow transplantation for multiple myeloma: an analysis of risk factors on outcome. Blood. 1996;88:2787– 2793.

    PubMed  CAS  Google Scholar 

  35. Bjorkstrand B, Ljungman P, Svensson H et al. Allogeneic bone marrow transplantation versus autologous stem cell transplantation in multiple myeloma: a retrospective case‐matched study from the European Group for Blood and Marrow Transplantation. Blood. 1996;88:4711–4718.

    PubMed  CAS  Google Scholar 

  36. Le Blanc R, Montminy‐Metivier S, Belanger R et al. Allogeneic transplantation for multiple myeloma: further evidence for a GVHD‐associated graft‐versus‐myeloma effect. Bone Marrow Transplant. 2001;28:841–848.

    Article  PubMed  CAS  Google Scholar 

  37. Lokhorst HM, Schattenberg A, Cornelissen JJ et al. Donor lymphocyte infusions for relapsed multiple myeloma after allogeneic stem‐cell transplantation: predictive factors for response and long‐term outcome. J Clin Oncol. 2000;18:3031–3037.

    PubMed  CAS  Google Scholar 

  38. Alyea E, Schossman R, Canning C et al. CD6 T cell depleted allogeneic bone marrow transplant followed by CD4+ donor lymphocyte infusion for patients with multiple myeloma. Blood. 1999;94:609a.

    Google Scholar 

  39. Huff CA, Fuchs EJ, Noga SJ et al. Long‐term follow‐up of T cell‐depleted alloge‐ neic bone marrow transplantation in refractory multiple myeloma: importance of allogeneic T cells. Biol Blood Marrow Transplant. 2003;9:312–319.

    Article  PubMed  Google Scholar 

  40. Peggs KS, Mackinnon S, Williams CD et al. Reduced‐intensity transplantation with in vivo T‐cell depletion and adjuvant dose‐escalating donor lymphocyte infusions for chemotherapy‐sensitive myeloma: limited efficacy of graft‐versus‐tumor activity. Biol Blood Marrow Transplant. 2003;9:257–265.

    Article  PubMed  Google Scholar 

  41. van de Donk NW, Kroger N, Hegenbart U et al. Prognostic factors for donor lymphocyte infusions following non‐myeloablative allogeneic stem cell transplantation in multiple myeloma. Bone Marrow Transplant. 2006;37:1135–1141.

    Article  PubMed  Google Scholar 

  42. Kroger N, Shimoni A, Zagrivnaja M et al. Low‐dose thalidomide and donor lymphocyte infusion as adoptive immunotherapy after allogeneic stem cell transplantation in patients with multiple myeloma. Blood. 2004;104:3361–3363.

    Article  PubMed  CAS  Google Scholar 

  43. Kolb HJ. Donor leukocyte transfusions for treatment of leukemic relapse after bone marrow transplantation. EBMT Immunology and Chronic Leukemia Working Parties. Vox Sang. 1998;74 Suppl 2:321–329.

    PubMed  CAS  Google Scholar 

  44. Levine JE, Braun T, Penza SL et al. Prospective trial of chemotherapy and donor leukocyte infusions for relapse of advanced myeloid malignancies after allogeneic stem‐cell transplantation. J Clin Oncol. 2002;20:405–412.

    Article  PubMed  CAS  Google Scholar 

  45. Takami A, Okumura H, Yamazaki H et al. Prospective trial of high‐dose chemotherapy followed by infusions of peripheral blood stem cells and dose‐escalated donor lymphocytes for relapsed leukemia after allogeneic stem cell transplantation. Int J Hematol. 2005;82:449–455.

    Article  PubMed  CAS  Google Scholar 

  46. Alyea E, Canning C, Houde H et al. A pilot study of CD8+ cell depletion of donor lymphocyte infusions (DLI) using CD8 monoclonal antibody coated high density microparticles (HDM). Blood. 1999;94:161a.

    Google Scholar 

  47. Mandigers CM, Meijerink JP, Raemaekers JM, Schattenberg AV, Mensink EJ. Graft‐versus‐lymphoma effect of donor leucocyte infusion shown by real‐time quantitative PCR analysis of t(14;18). Lancet. 1998;352:1522–1523.

    Article  PubMed  CAS  Google Scholar 

  48. Mandigers CM, Verdonck LF, Meijerink JP, Dekker AW, Schattenberg AV, Raemaekers JM. Graft‐versus‐lymphoma effect of donor lymphocyte infusion in indolent lymphomas relapsed after allogeneic stem cell transplantation. Bone Marrow Transplant. 2003;32:1159–1163.

    Article  PubMed  CAS  Google Scholar 

  49. Peggs KS, Hunter A, Chopra R et al. Clinical evidence of a graft‐versus‐Hodgkin’s‐lymphoma effect after reduced‐intensity allogeneic transplantation. Lancet. 2005;365:1934–1941.

    Article  PubMed  Google Scholar 

  50. Papadapoulos EB, Ladanyi M, Emmanuel D et al. Infusions of donor leukocytes to treat Epstein‐Barr‐associated lymphoproliferative disorders after allogeneic bone marrow transplantation. New England Journal of Medicine. 1994;330:1185–1191.

    Article  Google Scholar 

  51. Heslop HE, Brenner MK, Rooney C et al. Administration of neomycin‐resistance-gene‐marked EBV‐specific cytotoxic T lymphocytes to recipients of mismatched-related or phenotypically similar unrelated donor marrow grafts. Hum Gene Ther. 1994;5:381–397.

    Article  PubMed  CAS  Google Scholar 

  52. Rooney CM, Smith CA, Ng CY et al. Use of gene‐modified virus‐specific T lymphocytes to control Epstein‐Barr‐virus‐related lymphoproliferation. Lancet. 1995;345:9–13.

    Article  PubMed  CAS  Google Scholar 

  53. Rooney CM, Smith CA, Ng CY et al. Infusion of cytotoxic T cells for the prevention and treatment of Epstein‐Barr virus‐induced lymphoma in allogeneic transplant recipients. Blood. 1998;92:1549–1555.

    PubMed  CAS  Google Scholar 

  54. Gustafsson A, Levitsky V, Zou JZ et al. Epstein‐Barr virus (EBV) load in bone marrow transplant recipients at risk to develop posttransplant lymphoprolif-erative disease: prophylactic infusion of EBV‐specific cytotoxic T cells. Blood. 2000;95:807–814.

    PubMed  CAS  Google Scholar 

  55. Yoshihara S, Kato R, Inoue T et al. Successful treatment of life‐threatening human herpesvirus‐6 encephalitis with donor lymphocyte infusion in a patient who had undergone human leukocyte antigen‐haploidentical nonmyeloablative stem cell transplantation. Transplantation. 2004;77:835–838.

    Article  PubMed  Google Scholar 

  56. Bethge WA, Hegenbart U, Stuart MJ et al. Adoptive immunotherapy with donor lymphocyte infusions after allogeneic hematopoietic cell transplantation following nonmyeloablative conditioning. Blood. 2004;103:790–795.

    Article  PubMed  CAS  Google Scholar 

  57. Peggs KS, Thomson K, Hart DP et al. Dose‐escalated donor lymphocyte infusions following reduced intensity transplantation: toxicity, chimerism, and disease responses. Blood. 2004;103:1548–1556.

    Article  PubMed  CAS  Google Scholar 

  58. Schmid C, Schleuning M, Ledderose G, Tischer J, Kolb HJ. Sequential regimen of chemotherapy, reduced‐intensity conditioning for allogeneic stem‐cell transplantation, and prophylactic donor lymphocyte transfusion in high‐risk acute myeloid leukemia and myelodysplastic syndrome. J Clin Oncol. 2005; 23:5675–5687.

    Article  PubMed  Google Scholar 

  59. Meyer RG, Britten CM, Wehler D et al. Prophylactic transfer of CD8‐depleted donor lymphocytes after T‐cell‐depleted reduced‐intensity transplantation. Blood. 2007;109:374–382.

    Article  PubMed  CAS  Google Scholar 

  60. Antin JH. Graft‐versus‐leukemia: no longer an epiphenomenon. Blood. 1993;82:2273–2277.

    PubMed  CAS  Google Scholar 

  61. Akpek G, Boitnott JK, Lee LA et al. Hepatitic variant of graft‐versus‐host disease after donor lymphocyte infusion. Blood. 2002;100:3903–3907.

    Article  PubMed  CAS  Google Scholar 

  62. Sullivan KM, Storb R, Buckner CD et al. Graft‐versus‐host disease as adoptive immunotherapy in patients with advanced hematologic neoplasms. New England Journal of Medicine. 1989;320:828–834.

    Article  PubMed  CAS  Google Scholar 

  63. Barrett AJ, Mavroudis D, Tisdale J et al. T cell‐depleted bone marrow transplantation and delayed T cell add‐back to control acute GVHD and conserve a graft‐versus‐leukemia effect. Bone Marrow Transplant. 1998;21:543–551.

    Article  PubMed  CAS  Google Scholar 

  64. Soiffer RJ, Gonin R, Murray C et al. Prediction of graft‐versus‐host disease by phenotypic analysis of early immune reconstitution after CD6‐depleted allogeneic bone marrow transplantation. Blood. 1993;82:2216–2223.

    PubMed  CAS  Google Scholar 

  65. Nimer SD, Giorgi J, Gajewski JL et al. Selective depletion of CD8+ cells for prevention of graft‐versus‐host disease after bone marrow transplantation. A randomized controlled trial. Transplantation. 1994;57:82–87.

    Article  PubMed  CAS  Google Scholar 

  66. Giralt S, Hester J, Huh Y et al. CD8‐depleted donor lymphocyte infusion as treatment for relapsed chronic myelogenous leukemia after allogeneic bone marrow transplantation. Blood. 1995;86:4337–4343.

    PubMed  CAS  Google Scholar 

  67. Shimoni A, Gajewski JA, Donato M et al. Long‐term follow‐up of recipients of CD8‐depleted donor lymphocyte infusions for the treatment of chronic myelogenous leukemia relapsing after allogeneic progenitor cell transplantation. Biol Blood Marrow Transplant. 2001;7:568–575.

    Article  PubMed  CAS  Google Scholar 

  68. Bonini C, Ferrari G, Verzeletti S et al. HSV‐TK gene transfer into donor lymphocytes for control of allogeneic graft‐versus‐leukemia. Science. 1997;276:1719–1724.

    Article  PubMed  CAS  Google Scholar 

  69. Verzeletti S, Bonini C, Traversari C et al. Transfer of the HSV‐tK gene into donor peripheral blood lymphocytes for in vivo immunomodulation of donor antitumor immunity after allo‐ BMT (Meeting abstract). Gene Ther. 1994;1:S24 1994.

    Google Scholar 

  70. Verzeletti S, Bonini C, Traversari C et al. Retroviral vector gene transfer into donor peripheral blood lymphocytes for in vitro selection and in vivo immunomodulation of donor antitumor immunity after allo‐BMT (Meeting abstract). J Cell Biochem. 1995;Suppl 21A:356 1995.

    Google Scholar 

  71. Marktel S, Magnani Z, Ciceri F et al. Immunologic potential of donor lymphocytes expressing a suicide gene for early immune reconstitution after hematopoietic T‐cell‐depleted stem cell transplantation. Blood. 2003;101:1290–1298.

    Article  PubMed  CAS  Google Scholar 

  72. Glazier A, Tutschka PJ, Farmer ER, Santos GW. Graft versus host disease in cyclosporine treated rats after syngeneic and autologous bone marrow reconstitution. Journal of Experimental Medicine. 1983;158:1.

    Article  PubMed  CAS  Google Scholar 

  73. Kwak LW, Taub DD, Duffey PL et al. Transfer of myeloma idiotype‐specific immunity from an actively immunized marrow donor. Lancet. 1995;345:1016–1020.

    Article  PubMed  CAS  Google Scholar 

  74. Bendandi M, Rodriguez‐Calvillo M, Inoges S et al. Combined vaccination with idiotype‐pulsed allogeneic dendritic cells and soluble protein idiotype for multiple myeloma patients relapsing after reduced‐intensity conditioning allogeneic stem cell transplantation. Leuk Lymphoma. 2006;47:29–37.

    Article  PubMed  CAS  Google Scholar 

  75. Falkenburg JH, Wafelman AR, Joosten P et al. Complete remission of accelerated phase chronic myeloid leukemia by treatment with leukemia‐reactive cytotoxic T lymphocytes. Blood. 1999;94:1201–1208.

    PubMed  CAS  Google Scholar 

  76. Marijt E, Wafelman A, van der Hoorn M et al. Phase I/II feasibility study evaluating the generation of leukemia-reactive cytotoxic T lymphocyte lines for treatment of patients with relapsed leukemia after allogeneic stem cell transplantation. Haematologica. 2007;92:72–80.

    Article  PubMed  Google Scholar 

  77. Slavin S. Immunotherapy of cancer with alloreactive lymphocytes. Lancet Oncol. 2001;2:491–498.

    Article  PubMed  CAS  Google Scholar 

  78. Truitt RL, Atasoylu AA. Contribution of CD4+ and CD8+ T cells to graft-versus-host disease and graf-versus-leukemia reactivity after transplantation of MHC-compatible bone marrow. Bone Marrow Transplant. 1991;8:51–58.

    PubMed  CAS  Google Scholar 

  79. Korngold R, Sprent J. T cell subsets and graft versus host disease. Transplantation. 1987;44:335.

    Article  PubMed  CAS  Google Scholar 

  80. Xia G, Truitt RL, Johnson BD. Graft-versus-leukemia and graft-versus-host reactions after donor lymphocyte infusion are initiated by host-type antigen-presenting cells and regulated by regulatory T cells in early and long-term chimeras. Biol Blood Marrow Transplant. 2006;12:397–407.

    Article  PubMed  CAS  Google Scholar 

  81. Jiang Y, Mavroudis D, Dermime S et al. Alloreactive CD4+ T lymphocytes can exert cytotoxicity to chronic myeloid leukaemia cells processing and presenting exogenous antigen. British Journal of Haematology. 1996;93:606–612.

    Article  PubMed  CAS  Google Scholar 

  82. Oettel KR, Wesly OH, Albertini MR et al. Allogeneic T-cell clones able to selectively destroy Philadelphia chromosome-bearing (Ph1+) leukemia leines can also recognize Ph1- cells from the same patient. Blood. 1994;83:3390–3402.

    PubMed  CAS  Google Scholar 

  83. Faber LM, van Luxemburg-Heijs SAP, Veenhof WFJ, Willemze R, Falkenburg JHF. Generation of CD4+ cytotoxic T-lymphocyte clones from a patient with severe graft-versus-host disease after allogeneic bone marrow transplantation: implications for graft-versusleukemia reactivity. Blood. 1995;86:2821–2828.

    PubMed  CAS  Google Scholar 

  84. van Lochem E, de Gast B, Goulmy E. In vitro separation of host specific graft-versus-host and graft-versus-leukemia cytotoxic T cell activities. Bone Marrow Transplant. 1992;10:181–183.

    PubMed  Google Scholar 

  85. Claret EJ, Alyea EP, Orsini E et al. Characterization of T cell repertoire in patients with graft-versus-leukemia after donor lymphocyte infusion. J Clin Invest. 1997;100:855–866.

    Article  PubMed  CAS  Google Scholar 

  86. Orsini E, Alyea EP, Schlossman R et al. Changes in T cell receptor repertoire associated with graft-versus-tumor effect and graft-versus-host disease in patients with relapsed multiple myeloma after donor lymphocyte infusion. Bone Marrow Transplant. 2000;25:623–632.

    Article  PubMed  CAS  Google Scholar 

  87. Zorn E, Wang KS, Hochberg EP et al. Infusion of CD4+ donor lymphocytes induces the expansion of CD8+ donor T cells with cytolytic activity directed against recipient hematopoietic cells. Clin Cancer Res. 2002;8:2052–2060.

    PubMed  CAS  Google Scholar 

  88. Orsini E, Bellucci R, Alyea EP et al. Expansion of tumor-specific CD8+ T cell clones in patients with relapsed myeloma after donor lymphocyte infusion. Cancer Res. 2003;63:2561–2568.

    PubMed  CAS  Google Scholar 

  89. van Bergen C, Kester M, Jedema I et al. Multiple myeloma reactive T cells recognize an activation induced minor histocompatibility antigen encoded by the ATP dependent interferon responsive (ADIR) gene. Blood. 2007.

    Google Scholar 

  90. Kurago ZB, Smith KD, Lutz CT. NK cell recognition of MHC class I. NK cells are sensitive to peptide-binding groove and surface alpha-helical mutations that affect T cells. J Immunol. 1995;154:2631–2641.

    PubMed  CAS  Google Scholar 

  91. Malnati MS, Peruzzi M, Parker KC et al. Peptide specificity in the recognition of MHC class I by natural killer cell clones. Science. 1995;267:1016–1018.

    Article  PubMed  CAS  Google Scholar 

  92. Jiang YZ, Couriel D, Mavroudis DA et al. Interaction of natural killer cells with MHC class II: reversal of HLA-DR1-mediated protection of K562 transfect- ant from natural killer cell-mediated cytolysis by brefeldin-A. Immunology. 1996;87:481–486.

    Article  PubMed  CAS  Google Scholar 

  93. Jiang YZ, Barrett AJ, Goldman JM, Mavroudis DA. Association of natural killer cell immune recovery with a graft-versus-leukemia effect independent of graft-versus -host disease following allogeneic bone marrow transplantation. Ann Hematol. 1997;74:1–6.

    Article  PubMed  CAS  Google Scholar 

  94. Johnson BD, Dagher N, Stankowski WC, Hanke CA, Truitt RL. Donor natural killer (NK1.1+) cells do not play a role in the suppression of GVHD or in the mediation of GVL reactions after DLI. Biol Blood Marrow Transplant. 2001;7:589–595.

    Article  PubMed  CAS  Google Scholar 

  95. Grogg D, Hahn S, Erb P. CD4+ T cell-mediated killing of major histocompatibility complex class II-positive antigen-presenting cells (APC). III. CD4+ cytotoxic T cells induce apoptosis of APC. Eur J Immunol. 1992;22:267–272.

    Article  PubMed  CAS  Google Scholar 

  96. Ziegler TR, Young LS, Benfell K et al. Clinical and metabolic efficacy of glutamine-supplemented parenteral nutrition after bone marrow transplantation. A randomized, double- blind, controlled study. Ann Intern Med. 1992;116: 821–828.

    PubMed  CAS  Google Scholar 

  97. Susskind B, Iannotti MR, Shornick MD, Steward NS, Gorka J, Mohanakumar T. Indirect allorecognition of HLA class I peptides by CD4+ cytolytic T lymphocytes. Hum Immunol. 1996;46:1–9.

    Article  PubMed  CAS  Google Scholar 

  98. Zoumbos NC, Djeu J Y, Young NS. Interferon is the suppressor of hematopoiesis generated by stimulated lymphocytes in vitro. J Immunol. 1984;133: 769–774.

    PubMed  CAS  Google Scholar 

  99. Munker R, Lubbert M, Yonehara S, Tuchnitz A, Mertelsmann R, Wilmanns W. Expression of the Fas antigen on primary human leukemia cells. Ann Hematol. 1995;70:15–17.

    Article  PubMed  CAS  Google Scholar 

  100. Dolstra H, Fredrix H, Preijers F et al. Recognition of a B cell leukemia-associated minor histocompatibility antigen by CTL. J Immunol. 1997;158:560–565.

    PubMed  CAS  Google Scholar 

  101. Vogt MH, van den Muijsenberg JW, Goulmy E et al. The DBY gene codes for an HLA-DQ5-restricted human male-specific minor histocompatibility antigen involved in graft-versus-host disease. Blood. 2002;99:3027–3032.

    Article  PubMed  CAS  Google Scholar 

  102. James E, Chai JG, Dewchand H, Macchiarulo E, Dazzi F, Simpson E. Multiparity induces priming to male-specific minor histocompatibility antigen, H Y, in mice and humans. Blood. 2003;102:388–393.

    Article  PubMed  CAS  Google Scholar 

  103. Miklos D, Kim H, Zorn E et al. Antibody response to H-Y minor histocompatibility antigen DBY is detected in male patients after allogeneic stem cell transplantation and in normal female donors. Blood. 2002;100:213a (abstr 802).

    Google Scholar 

  104. Miklos DB, Kim HT, Miller KH et al. Antibody responses to H-Y minor histocompatibility antigens correlate with chronic graft-versus-host disease and disease remission. Blood. 2005;105:2973–2978.

    Article  PubMed  CAS  Google Scholar 

  105. Miklos DB, Kim HT, Zorn E et al. Antibody response to DBY minor histocompatibility antigen is induced after allogeneic stem cell transplantation and in healthy female donors. Blood. 2004;103:353–359.

    Article  PubMed  CAS  Google Scholar 

  106. Bocchia M, Korontsvit T, Xu Q et al. Specific human cellular immunity to bcr-abl oncogene derived peptides. Blood. 1996;87:3587–3592.

    PubMed  CAS  Google Scholar 

  107. Molldrem J, Dermime S, Parker K et al. Targeted T-cell therapy for human leukemia: cytotoxic T lymphocytes specific for a peptide derived from proteinase 3 preferentially lyse human myeloid leukemia cells. Blood. 1996;88:2450–2457.

    PubMed  CAS  Google Scholar 

  108. Molldrem JJ, Clave E, Jiang YZ et al. Cytotoxic T lymphocytes specific for a nonpolymorphic proteinase 3 peptide preferentially inhibit chronic myeloid leukemia colony-forming units. Blood. 1997;90:2529–2534.

    PubMed  CAS  Google Scholar 

  109. Yang XF, Wu CJ, Chen L et al. CML28 Is a Broadly Immunogenic Antigen, Which Is Overexpressed in Tumor Cells. Cancer Res. 2002;62:5517–5522.

    PubMed  CAS  Google Scholar 

  110. Wu CJ, Biernacki M, Kutok JL et al. Graft-versus-leukemia target antigens in chronic myelogenous leukemia are expressed on myeloid progenitor cells. Clin Cancer Res. 2005;11:4504–4511.

    Article  PubMed  CAS  Google Scholar 

  111. Yang XF, Wu CJ, McLaughlin S et al. CML66, a broadly immunogenic tumor antigen, elicits a humoral immune response associated with remission of chronic myelogenous leukemia. Proc Natl Acad Sci U S A. 2001;98:7492–7497.

    Article  PubMed  CAS  Google Scholar 

  112. Andersen MH, Pedersen LO, Becker JC, Straten PT. Identification of a cytotoxic T lymphocyte response to the apoptosis inhibitor protein survivin in cancer patients. Cancer Res. 2001;61:869–872.

    PubMed  CAS  Google Scholar 

  113. Schmidt SM, Schag K, Muller MR et al. Survivin is a shared tumor-associated antigen expressed in a broad variety of malignancies and recognized by specific cytotoxic T cells. Blood. 2003;102:571–576.

    Article  PubMed  CAS  Google Scholar 

  114. Goulmy E. Human minor histocompatibility antigens: new concepts for marrow transplantation and adoptive immunotherapy. Immunological Rev. 1997;157:125–140.

    Article  CAS  Google Scholar 

  115. Goulmy E, Schipper R, Pool J et al. Mismatches of minor histocompatibility antigens between HLA-identical donors and recipients and the development of graft-versus-host disease after bone marrow transplantation. N Engl J Med. 1996;334:281–285.

    Article  PubMed  CAS  Google Scholar 

  116. van der Harst D, Goulmy E, Falkenburg JH et al. Recognition of minor histocompatibility antigens on lymphocytic and myeloid leukemic cells by cytotoxic T-cell clones. Blood. 1994;83:1060–1066.

    Google Scholar 

  117. Faber L, van Luxemburg-Hejis S, Veenhof W, Willemze R, Falkenberg J. Generation of CD4+ cytotoxic T-lymphocyte clones from a patient with severe graft-versus-host disease after allogeneic bone marrow transplantation: implications for graft-versus-leukemia activity. Blood. 1995;86:2821–2828.

    PubMed  CAS  Google Scholar 

  118. Falkenburg JH, Marijt WA, Heemskerk MH, Willemze R. Minor histocompatibility antigens as targets of graft-versus-leukemia reactions. Curr Opin Hematol. 2002;9:497–502.

    Article  PubMed  CAS  Google Scholar 

  119. Porter D, Antin J. Graft-versus-leukemia effect of allogeneic bone marrow transplantation and donor mononuclear cell infusions. In: Winter J, ed. Blood Stem Cell Transplantation. Vol. 77. Boston: Kluwer Academic Publishers; 1997:57–85.

    Google Scholar 

  120. Goulmy E, Schipper R, Pool J et al. Mismatches of minor histocompatibility antigens between HLA‐identical donors and recipients and the development of graft‐versus‐host disease after bone marrow transplantation. N Engl J Med. 1996;334:281–285.

    Article  PubMed  CAS  Google Scholar 

  121. Tseng LH, Lin MT, Hansen JA et al. Correlation between disparity for the minor histocompatibility antigen HA‐1 and the development of acute graft‐versus‐host disease after allogeneic marrow transplantation. Blood. 1999;94:2911–2914.

    PubMed  CAS  Google Scholar 

  122. Kircher B, Stevanovic S, Urbanek M et al. Induction of HA‐1‐specific cytotoxic T‐cell clones parallels the therapeutic effect of donor lymphocyte infusion. Br J Haematol. 2002;117:935–939.

    Article  PubMed  Google Scholar 

  123. Marijt WA, Heemskerk MH, Kloosterboer FM et al. Hematopoiesis‐restricted minor histocompatibility antigens HA‐1‐ or HA‐2‐specific T cells can induce complete remissions of relapsed leukemia. Proc Natl Acad Sci U S A. 2003;100:2742–2747.

    Article  PubMed  CAS  Google Scholar 

  124. Rufer N, Wolpert E, Helg C et al. HA‐1 and the SMCY‐derived peptide FIDSYICQV (H‐Y) are immunodominant minor histocompatibility antigens after bone marrow transplantation. Transplantation. 1998;66:910–916.

    Article  PubMed  CAS  Google Scholar 

  125. Mutis T, Gillespie G, Schrama E, Falkenburg JH, Moss P, Goulmy E. Tetrameric HLA class I‐minor histocompatibility antigen peptide complexes demonstrate minor histocompatibility antigen‐specific cytotoxic T lymphocytes in patients with graft‐versus‐host disease. Nat Med. 1999;5:839–842.

    Article  PubMed  CAS  Google Scholar 

  126. Randolph SS, Gooley TA, Warren EH, Appelbaum FR, Riddell SR. Female donors contribute to a selective graft versus leukemia effect in male recipients of HLA matched related hematopoietic cell transplants. Blood. 2003.

    Google Scholar 

  127. Cullis J, Barrett A, Goldman J, Lechter R. Binding of BCR/ABL junctional peptides to major histocompatibility complex (MHC) class I molecules: studies in antigen‐processing defective cell lines. Leukemia. 1994;8:165–170.

    PubMed  CAS  Google Scholar 

  128. Bocchia M, Korontsvit T, Xu Q et al. Specific human cellular immunity to bcr‐abl oncogene‐derived peptides. Blood. 1996;87:3587–3592.

    PubMed  CAS  Google Scholar 

  129. Bocchia M, Wentworth P, Southwood S et al. Specific binding of leukemia oncogene fusion protein peptides to HLA class I molecules. Blood. 1995;85:2680–2684.

    PubMed  CAS  Google Scholar 

  130. Greco G, Fruci D, Accapezzato D et al. Two brc‐abl junction peptides bind HLA-A3 molecules and allow specific induction of human cytotoxic T lymphocytes. Leukemia. 1996;10:693–699.

    PubMed  CAS  Google Scholar 

  131. Zorn E, Orsini E, Wu CJ et al. A CD4+ T cell clone selected from a CML patient after donor lymphocyte infusion recognizes BCR‐ABL breakpoint peptides but not tumor cells. Transplantation. 2001;71:1131–1137.

    Article  PubMed  CAS  Google Scholar 

  132. Pinilla‐Ibarz J, Cathcart K, Korontsvit T et al. Vaccination of patients with chronic myelogenous leukemia with bcr‐abl oncogene breakpoint fusion peptides generates specific immune responses. Blood. 2000;95:1781–1787.

    Google Scholar 

  133. Wu CJ, Yang XF, McLaughlin S et al. Detection of a potent humoral response associated with immune‐induced remission of chronic myelogenous leukemia. J Clin Invest. 2000;106:705–714.

    Article  PubMed  CAS  Google Scholar 

  134. Molldrem JJ, Lee PP, Wang C, Champlin RE, Davis MM. A PR1‐human leukocyte antigen‐A2 tetramer can be used to isolate low‐frequency cytotoxic T lymphocytes from healthy donors that selectively lyse chronic myelogenous leukemia. Cancer Res. 1999;59:2675–2681.

    PubMed  CAS  Google Scholar 

  135. Molldrem JJ, Lee PP, Wang C et al. Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat Med. 2000;6:1018–1023.

    Article  PubMed  CAS  Google Scholar 

  136. Molldrem JJ, Lee PP, Kant S et al. Chronic myelogenous leukemia shapes host immunity by selective deletion of high‐avidity leukemia‐specific T cells. J Clin Invest. 2003;111:639–647.

    PubMed  CAS  Google Scholar 

  137. Bellucci R, Alyea E P, Weller E et al. Immunologic effects of prophylactic donor lymphocyte infusion after allogeneic marrow transplantation for multiple myeloma. Blood. 2002;99:4610–4617.

    Article  PubMed  CAS  Google Scholar 

  138. Bellucci R, Wu CJ, Chiaretti S et al. Complete response to donor lymphocyte infusion in multiple myeloma is associated with antibody responses to highly expressed antigens. Blood. 2004;103:656–663.

    Article  PubMed  CAS  Google Scholar 

  139. Bellucci R, Alyea EP, Chiaretti S et al. Graft‐versus‐tumor response in patients with multiple myeloma is associated with antibody response to BCMA, a plasma-cell membrane receptor. Blood. 2005;105:3945–3950.

    Article  PubMed  CAS  Google Scholar 

  140. Kolb H. Donor Lleukocyte transfusions for treatment of leukemic relapse after bone marrow transplantation. Vox Sang. 1998;74:321–329.

    PubMed  CAS  Google Scholar 

  141. Salama M, Nevill T, Marcellus D et al. Donor leukocyte infusions for multiple myeloma. Bone Marrow Transplant. 2000;26:1179–1184.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Alyea, E.P. (2008). Donor Lymphocyte Infusions Clinical Applications and the Graft‐versus‐Leukemia Effect. In: Soiffer, R.J. (eds) Hematopoietic Stem Cell Transplantation. Contemporary Hematology. Humana Press. https://doi.org/10.1007/978-1-59745-438-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-438-4_28

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-05-3

  • Online ISBN: 978-1-59745-438-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics