Skip to main content

Ablative Preparative Regimens for Hematopoietic Stem Cell Transplantation

  • Chapter
Hematopoietic Stem Cell Transplantation

Part of the book series: Contemporary Hematology ((CH))

  • 1347 Accesses

The combination of chemo-, radio- and biologic therapies in preparation for hematopoietic stem cell transplantation (HSCT) is referred to as conditioning (or preparative) regimen. As there is no one “standard” regimen, choosing the ideal regimen should take into account numerous factors including: stem cell source (autologous versus allogeneic), diagnosis, disease stage at the time of transplant, prior therapies, and comorbidities. There are few randomized studies comparing regimens and the majority of the data comes from phase 2 or retrospective analysis. Lacking clear-cut evidence supporting the superiority of one conditioning regimen over another, the choice is often based on institutional preference and experience. This chapter will review our current knowledge regarding ablative preparative regimens and some of the controversies that surround the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vriesendorp HM. Aims of conditioning. Exp Hematol 2003; 31(10):844–854.

    PubMed  Google Scholar 

  2. Jacobson L.O., Simmons EL, Marks EK, Robson MJ, Bethard WF, Gaston EO. The role of the spleen in radiation injury and recovery. J Lab Clin Med 1950; 35(5):746–770.

    PubMed  CAS  Google Scholar 

  3. Lorenz E, Uphoff D, REID TR, Shelton E. Modification of irradiation injury in mice and guinea pigs by bone marrow injections. J Natl Cancer Inst 1951; 12(1):197–201.

    PubMed  CAS  Google Scholar 

  4. Thomas E.D., Lochte HL Jr, Lu W.C., Ferrebee JW. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med 1957; 257(11):491–496.

    PubMed  CAS  Google Scholar 

  5. Mathe G, Jammet H, Pendic B, Schwarzenberg L, Duplan JF, Maupin B et al. Transfusions and grafts of homologous bone marrow in humans after accidental high dosage irradiation. Rev Fr Etud Clin Biol 1959; 4(3):226–238.

    PubMed  CAS  Google Scholar 

  6. Mathe G, Schwarzenberg L. Bone-marrow transplantation in France, 1958–1973. Transplant Proc 1974; 6(4):335–343.

    PubMed  CAS  Google Scholar 

  7. Thomas E, Storb R, Clift RA, Fefer A, Johnson FL, Neiman PE et al. Bone-marrow transplantation (first of two parts). N Engl J Med 1975; 292(16):832–843.

    PubMed  CAS  Google Scholar 

  8. Thomas ED, Storb R, Clift RA, Fefer A, Johnson L, Neiman PE et al. Bone-marrow transplantation (second of two parts). N Engl J Med 1975; 292(17):895–902.

    PubMed  CAS  Google Scholar 

  9. Santos GW. Immunosuppression for clinical marrow transplantation. Semin Hematol 1974; 11(3):341–351.

    PubMed  CAS  Google Scholar 

  10. Thomas ED, Sr. Stem cell transplantation: past, present and future. Stem Cells 1994; 12(6):539–544.

    PubMed  Google Scholar 

  11. Thomas ED, Clift RA, Hersman J, Sanders JE, Stewart P, Buckner CD et al. Marrow transplantation for acute nonlymphoblastic leukemic in first remission using fractionated or single-dose irradiation. Int J Radiat Oncol Biol Phys 1982; 8(5):817–821.

    PubMed  CAS  Google Scholar 

  12. Deeg HJ, Sullivan KM, Buckner CD, Storb R, Appelbaum FR, Clift RA et al. Marrow transplantation for acute nonlymphoblastic leukemia in first remission: toxicity and long-term follow-up of patients conditioned with single dose or fractionated total body irradiation. Bone Marrow Transplant 1986; 1(2):151–157.

    PubMed  CAS  Google Scholar 

  13. Girinsky T, Benhamou E, Bourhis JH, Dhermain F, Guillot-Valls D, Ganansia V et al. Prospective randomized comparison of single-dose versus hyperfractionated total-body irradiation in patients with hematologic malignancies. J Clin Oncol 2000; 18(5):981–986.

    PubMed  CAS  Google Scholar 

  14. Sobecks RM, Daugherty CK, Hallahan DE, Laport GF, Wagner ND, Larson RA. A dose escalation study of total body irradiation followed by high-dose etoposide and allogeneic blood stem cell transplantation for the treatment of advanced hematologic malignancies. Bone Marrow Transplant 2000; 25(8):807–813.

    PubMed  CAS  Google Scholar 

  15. Demirer T, Petersen FB, Appelbaum FR, Barnett TA, Sanders J, Deeg HJ et al. Allogeneic marrow transplantation following cyclophosphamide and escalating doses of hyperfractionated total body irradiation in patients with advanced lymphoid malignancies: a Phase I/II trial. Int J Radiat Oncol Biol Phys 1995; 32(4):1103–1109.

    PubMed  CAS  Google Scholar 

  16. Clift RA, Buckner CD, Appelbaum FR, Bearman SI, Petersen FB, Fisher LD et al. Allogeneic marrow transplantation in patients with acute myeloid leukemia in first remission: a randomized trial of two irradiation regimens. Blood 1990; 76(9):1867–1871.

    PubMed  CAS  Google Scholar 

  17. Clift RA, Buckner CD, Appelbaum FR, Bryant E, Bearman SI, Petersen FB et al. Allogeneic marrow transplantation in patients with chronic myeloid leukemia in the chronic phase: a randomized trial of two irradiation regimens. Blood 1991; 77(8):1660–1665.

    PubMed  CAS  Google Scholar 

  18. Alyea E, Neuberg D, Mauch P, Marcus K, Freedman A, Webb I et al. Effect of total body irradiation dose escalation on outcome following T-cell-depleted allogeneic bone marrow transplantation. Biol Blood Marrow Transplant 2002; 8(3):139–144.

    PubMed  CAS  Google Scholar 

  19. McAfee SL, Powell SN, Colby C, Spitzer TR. Dose-escalated total body irradiation and autologous stem cell transplantation for refractory hematologic malignancy. Int J Radiat Oncol Biol Phys 2002; 53(1):151–156.

    PubMed  Google Scholar 

  20. Petersen FB, Deeg HJ, Buckner CD, Appelbaum FR, Storb R, Clift RA et al. Marrow transplantation following escalating doses of fractionated total body irradiation and cyclophosphamide—a phase I trial. Int J Radiat Oncol Biol Phys 1992; 23(5):1027–1032.

    PubMed  CAS  Google Scholar 

  21. Savani BN, Montero A, Wu C, Nlonda N, Read E, Dunbar C et al. Prediction and prevention of transplant-related mortality from pulmonary causes after total body irradiation and allogeneic stem cell transplantation. Biol Blood Marrow Transplant 2005; 11(3):223–230.

    PubMed  Google Scholar 

  22. Igaki H, Karasawa K, Sakamaki H, Saito H, Nakagawa K, Ohtomo K et al. Renal dysfunction after total-body irradiation. Significance of selective renal shielding blocks. Strahlenther Onkol 2005; 181(11):704–708.

    PubMed  Google Scholar 

  23. Benyunes MC, Sullivan KM, Deeg HJ, Mori M, Meyer W, Fisher L et al. Cataracts after bone marrow transplantation: long-term follow-up of adults treated with fractionated total body irradiation. Int J Radiat Oncol Biol Phys 1995; 32(3):661–670.

    PubMed  CAS  Google Scholar 

  24. Bunin N, Aplenc R, Kamani N, Shaw K, Cnaan A, Simms S. Randomized trial of busulfan vs total body irradiation containing conditioning regimens for children with acute lymphoblastic leukemia: a Pediatric Blood and Marrow Transplant Consortium study. Bone Marrow Transplant 2003; 32(6):543&2013;548.

    PubMed  CAS  Google Scholar 

  25. Santos GW, Tutschka PJ, Brookmeyer R, Saral R, Beschorner WE, Bias WB et al. Marrow transplantation for acute nonlymphocytic leukemia after treatment with busulfan and cyclophosphamide. N Engl J Med 1983; 309(22):1347–1353.

    PubMed  CAS  Google Scholar 

  26. Tutschka P, Santos G. Ag-B incompatible bone marrow transplantation in the rat after treatment with cyclophosphamide and busulfan. Fed Proc 1973; 32:226–227.

    Google Scholar 

  27. Tutschka P, Santos G. Bone marrow transplantation in the busulfan-treated rat. III. Relationship between myelosuppression and immunosuppression for conditioning bone marrow recipients. Transplantation 1977; 24:52–56.

    PubMed  CAS  Google Scholar 

  28. Tutschka PJ, Copelan EA, Klein JP. Bone marrow transplantation for leukemia following a new busulfan and cyclophosphamide regimen. Blood 1987; 70(5):1382–1388.

    PubMed  CAS  Google Scholar 

  29. Devergie A, Blaise D, Attal M, Tigaud JD, Jouet JP, Vernant JP et al. Allogeneic bone marrow transplantation for chronic myeloid leukemia in first chronic phase: a randomized trial of busulfan-cytoxan versus cytoxan-total body irradiation as preparative regimen: a report from the French Society of Bone Marrow Graft (SFGM). Blood 1995; 85(8):2263–2268.

    PubMed  CAS  Google Scholar 

  30. Clift RA, Buckner CD, Thomas ED, Bensinger WI, Bowden R, Bryant E et al. Marrow transplantation for chronic myeloid leukemia: a randomized study comparing cyclophosphamide and total body irradiation with busulfan and cyclophosphamide. Blood 1994; 84(6):2036–2043.

    PubMed  CAS  Google Scholar 

  31. Ringden O, Ruutu T, Remberger M, Nikoskelainen J, Volin L, Vindelov L et al. A randomized trial comparing busulfan with total body irradiation as conditioning in allogeneic marrow transplant recipients with leukemia: a report from the Nordic Bone Marrow Transplantation Group. Blood 1994; 83(9):2723–2730.

    PubMed  CAS  Google Scholar 

  32. Ringden O, Remberger M, Ruutu T, Nikoskelainen J, Volin L, Vindelov L et al. Increased risk of chronic graft-versus-host disease, obstructive bronchiolitis, and alopecia with busulfan versus total body irradiation: long-term results of a randomized trial in allogeneic marrow recipients with leukemia. Nordic Bone Marrow Transplantation Group. Blood 1999; 93(7):2196–2201.

    PubMed  CAS  Google Scholar 

  33. Blaise D, Maraninchi D, Archimbaud E, Reiffers J, Devergie A, Jouet JP et al. Allogeneic bone marrow transplantation for acute myeloid leukemia in first remission: a randomized trial of a busulfan-cytoxan versus cytoxan-total body irradiation as preparative regimen: a report from the Group d'Etudes de la Greffe de Moelle Osseuse. Blood 1992; 79(10):2578–2582.

    PubMed  CAS  Google Scholar 

  34. Blaise D, Maraninchi D, Michallet M, Reiffers J, Jouet J P, Milpied N et al. Long-term follow-up of a randomized trial comparing the combination of cyclophosphamide with total body irradiation or busulfan as conditioning regimen for patients receiving HLA-identical marrow grafts for acute myeloblastic leukemia in first complete remission. Blood 2001; 97(11):3669–3671.

    PubMed  CAS  Google Scholar 

  35. Blume KG, Kopecky KJ, Henslee-Downey JP, Forman SJ, Stiff PJ, LeMaistre CF et al. A prospective randomized comparison of total body irradiation-etoposide versus busulfan-cyclophosphamide as preparatory regimens for bone marrow transplantation in patients with leukemia who were not in first remission: a Southwest Oncology Group study. Blood 1993; 81(8):2187–2193.

    PubMed  CAS  Google Scholar 

  36. Hartman AR, Williams SF, Dillon JJ. Survival, disease-free survival and adverse effects of conditioning for allogeneic bone marrow transplantation with busulfan/cyclophosphamide vs total body irradiation: a meta-analysis. Bone Marrow Transplant 1998; 22(5):439–443.

    PubMed  CAS  Google Scholar 

  37. Socie G, Clift RA, Blaise D, Devergie A, Ringden O, Martin PJ et al. Busulfan plus cyclophosphamide compared with total-body irradiation plus cyclophospha-mide before marrow transplantation for myeloid leukemia: long-term follow-up of 4 randomized studies. Blood 2001; 98(13):3569–3574.

    PubMed  CAS  Google Scholar 

  38. Lindley C, Shea T, McCune J, Shord S, Decker J, Harvey D et al. Intraindividual variability in busulfan pharmacokinetics in patients undergoing a bone marrow transplant: assessment of a test dose and first dose strategy. Anticancer Drugs 2004; 15(5):453–459.

    PubMed  CAS  Google Scholar 

  39. Vassal G, Deroussent A, Challine D, Hartmann O, Koscielny S, Valteau-Couanet D et al. Is 600 mg/m2 the appropriate dosage of busulfan in children undergoing bone marrow transplantation? Blood 1992; 79(9):2475–2479.

    PubMed  CAS  Google Scholar 

  40. Gibbs JP, Gooley T, Corneau B, Murray G, Stewart P, Appelbaum FR et al. The impact of obesity and disease on busulfan oral clearance in adults. Blood 1999; 93(12):4436–4440.

    PubMed  CAS  Google Scholar 

  41. Grochow LB, Jones RJ, Brundrett RB, Braine HG, Chen TL, Saral R et al. Pharmacokinetics of busulfan: correlation with veno-occlusive disease in patients undergoing bone marrow transplantation. Cancer Chemother Pharmacol 1989; 25(1):55–61.

    PubMed  CAS  Google Scholar 

  42. Hassan M, Oberg G, Bekassy AN, Aschan J, Ehrsson H, Ljungman P et al. Pharmacokinetics of high-dose busulphan in relation to age and chronopharma-cology. Cancer Chemother Pharmacol 1991; 28(2):130–134.

    PubMed  CAS  Google Scholar 

  43. Baker KS, Bostrom B, DeFor T, Ramsay NK, Woods WG, Blazar BR. Busulfan pharmacokinetics do not predict relapse in acute myeloid leukemia. Bone Marrow Transplant 2000; 26(6):607–614.

    PubMed  CAS  Google Scholar 

  44. Slattery JT, Clift RA, Buckner CD, Radich J, Storer B, Bensinger WI et al. Marrow transplantation for chronic myeloid leukemia: the influence of plasma busulfan levels on the outcome of transplantation. Blood 1997; 89(8):3055–3060.

    PubMed  CAS  Google Scholar 

  45. McCune JS, Gooley T, Gibbs JP, Sanders JE, Petersdorf EW, Appelbaum FR et al. Busulfan concentration and graft rejection in pediatric patients undergoing hematopoietic stem cell transplantation. Bone Marrow Transplant 2002; 30(3):167–173.

    PubMed  CAS  Google Scholar 

  46. Slattery JT, Sanders JE, Buckner CD, Schaffer RL, Lambert KW, Langer FP et al. Graft-rejection and toxicity following bone marrow transplantation in relation to busulfan pharmacokinetics. Bone Marrow Transplant 1995; 16(1):31–42.

    PubMed  CAS  Google Scholar 

  47. Bolinger AM, Zangwill AB, Slattery JT, Glidden D, DeSantes K, Heyn L et al. An evaluation of engraftment, toxicity and busulfan concentration in children receiving bone marrow transplantation for leukemia or genetic disease. Bone Marrow Transplant 2000; 25(9):925–930.

    PubMed  CAS  Google Scholar 

  48. Gibbs JP, Liacouras CA, Baldassano RN, Slattery JT. Up-regulation of glutathione S-transferase activity in enterocytes of young children. Drug Metab Dispos 1999; 27(12):1466–1469.

    PubMed  CAS  Google Scholar 

  49. Bolinger AM, Zangwill AB, Slattery JT, Risler LJ, Sultan DH, Glidden DV et al. Target dose adjustment of busulfan in pediatric patients undergoing bone marrow transplantation. Bone Marrow Transplant 2001; 28(11):1013–1018.

    PubMed  CAS  Google Scholar 

  50. Bleyzac N, Souillet G, Magron P, Janoly A, Martin P, Bertrand Y et al. Improved clinical outcome of paediatric bone marrow recipients using a test dose and Bayesian pharmacokinetic individualization of busulfan dosage regimens. Bone Marrow Transplant 2001; 28(8):743–751.

    PubMed  CAS  Google Scholar 

  51. Deeg HJ, Storer B, Slattery JT, Anasetti C, Doney KC, Hansen JA et al. Conditioning with targeted busulfan and cyclophosphamide for hemopoietic stem cell transplantation from related and unrelated donors in patients with myelodys-plastic syndrome. Blood 2002; 100(4):1201–1207.

    PubMed  CAS  Google Scholar 

  52. Radich JP, Gooley T, Bensinger W, Chauncey T, Clift R, Flowers M et al. HLA-matched related hematopoietic cell transplantation for chronic-phase CML using a targeted busulfan and cyclophosphamide preparative regimen. Blood 2003; 102(1):31–35.

    PubMed  CAS  Google Scholar 

  53. Bhagwatwar HP, Phadungpojna S, Chow DS, Andersson BS. Formulation and stability of busulfan for intravenous administration in high-dose chemotherapy. Cancer Chemother Pharmacol 1996; 37(5):401–408.

    PubMed  CAS  Google Scholar 

  54. Andersson BS, Madden T, Tran HT, Hu WW, Blume KG, Chow DS et al. Acute safety and pharmacokinetics of intravenous busulfan when used with oral busulfan and cyclophosphamide as pretransplantation conditioning therapy: a phase I study. Biol Blood Marrow Transplant 2000; 6(5A):548–554.

    PubMed  CAS  Google Scholar 

  55. Kashyap A, Wingard J, Cagnoni P, Roy J, Tarantolo S, Hu W et al. Intravenous versus oral busulfan as part of a busulfan/cyclophosphamide preparative regimen for allogeneic hematopoietic stem cell transplantation: decreased incidence of hepatic venoocclusive disease (HVOD), HVOD-related mortality, and overall 100-day mortality. Biol Blood Marrow Transplant 2002; 8(9):493–500.

    PubMed  CAS  Google Scholar 

  56. Andersson BS, Kashyap A, Gian V, Wingard JR, Fernandez H, Cagnoni PJ et al. Conditioning therapy with intravenous busulfan and cyclophosphamide (IV BuCy2. for hematologic malignancies prior to allogeneic stem cell transplantation: a phase II study. Biol Blood Marrow Transplant 2002; 8(3):145–154.

    PubMed  CAS  Google Scholar 

  57. Slattery JT. Re: intravenous versus oral busulfan—perhaps not as different as suggested. Biol Blood Marrow Transplant 2003; 9(4):282–284.

    PubMed  Google Scholar 

  58. Kim SE, Lee JH, Choi SJ, Lee JH, Ryu SG, Lee KH. Morbidity and non-relapse mortality after allogeneic bone marrow transplantation in adult leukemia patients conditioned with busulfan plus cyclophosphamide: a retrospective comparison of oral versus intravenous busulfan. Haematologica 2005; 90(2):285–286.

    PubMed  CAS  Google Scholar 

  59. Andersson BS, Thall PF, Madden T, Couriel D, Wang X, Tran HT et al. Busulfan systemic exposure relative to regimen-related toxicity and acute graft-versus-host disease: defining a therapeutic window for i.v. BuCy2 in chronic myelogenous leukemia. Biol Blood Marrow Transplant 2002; 8(9):477–485.

    PubMed  CAS  Google Scholar 

  60. Inamoto Y, Nishida T, Suzuki R, Miyamura K, Sao H, Iida H et al. Significance of additional high-dose cytarabine in combination with cyclophosphamide plus total body irradiation regimen for allogeneic stem cell transplantation. Bone Marrow Transplant 2007; 39(1):25–30.

    PubMed  CAS  Google Scholar 

  61. Long GD, Amylon MD, Stockerl-Goldstein KE, Negrin RS, Chao NJ, Hu WW et al. Fractionated total-body irradiation, etoposide, and cyclophosphamide followed by allogeneic bone marrow transplantation for patients with high-risk or advanced-stage hematological malignancies. Biol Blood Marrow Transplant 1997; 3(6):324–330.

    PubMed  CAS  Google Scholar 

  62. Horstmann M, Kroschke G, Stockschlader M, Betker R, Kruger W, Erttmann R et al. Early toxicity of intensified conditioning with etoposide combined with total body irradiation/cyclophosphamide or busulfan/cyclophosphamide in children undergoing autologous or allogeneic bone marrow transplantation. Pediatr Hematol Oncol 1996; 13(1):45–53.

    PubMed  CAS  Google Scholar 

  63. Wadehra N, Farag S, Bolwell B, Elder P, Penza S, Kalaycio M et al. Long-term outcome of Hodgkin disease patients following high-dose busulfan, etoposide, cyclophosphamide, and autologous stem cell transplantation. Biol Blood Marrow Transplant 2006; 12(12):1343–1349.

    PubMed  CAS  Google Scholar 

  64. Tran H, Petropoulos D, Worth L, Mullen CA, Madden T, Andersson B et al. Pharmacokinetics and individualized dose adjustment of intravenous busulfan in children with advanced hematologic malignancies undergoing allogeneic stem cell transplantation. Biol Blood Marrow Transplant 2004; 10(11):805–812.

    PubMed  CAS  Google Scholar 

  65. Carpenter PA, Marshall GM, Giri N, Vowels MR, Russell SJ. Allogeneic bone marrow transplantation for children with acute lymphoblastic leukemia conditioned with busulfan, cyclophosphamide and melphalan. Bone Marrow Transplant 1996; 18(3):489–494.

    PubMed  CAS  Google Scholar 

  66. Jurado M, Deeg HJ, Storer B, Anasetti C, Anderson JE, Bryant E et al. Hematopoietic stem cell transplantation for advanced myelodysplastic syndrome after conditioning with busulfan and fractionated total body irradiation is associated with low relapse rate but considerable nonrelapse mortality. Biol Blood Marrow Transplant 2002; 8(3):161–169.

    PubMed  Google Scholar 

  67. Anderson JE, Appelbaum FR, Schoch G, Gooley T, Anasetti C, Bensinger WI et al. Allogeneic marrow transplantation for myelodysplastic syndrome with advanced disease morphology: a phase II study of busulfan, cyclophosphamide, and total-body irradiation and analysis of prognostic factors. J Clin Oncol 1996; 14(1):220–226.

    PubMed  CAS  Google Scholar 

  68. Mengarelli A, Iori A, Guglielmi C, Romano A, Cerretti R, Torromeo C et al. Standard versus alternative myeloablative conditioning regimens in allogeneic hematopoietic stem cell transplantation for high-risk acute leukemia. Haematologica 2002; 87(1):52–58.

    PubMed  CAS  Google Scholar 

  69. Kanda Y, Sakamaki H, Sao H, Okamoto S, Kodera Y, Tanosaki R et al. Effect of conditioning regimen on the outcome of bone marrow transplantation from an unrelated donor. Biol Blood Marrow Transplant 2005; 11(11):881–889.

    PubMed  CAS  Google Scholar 

  70. Gandhi V, Plunkett W. Cellular and clinical pharmacology of fludarabine. Clin Pharmacokinet 2002; 41(2):93–103.

    PubMed  CAS  Google Scholar 

  71. de Lima M, Couriel D, Thall PF, Wang X, Madden T, Jones R et al. Once-daily intravenous busulfan and fludarabine: clinical and pharmacokinetic results of a myeloablative, reduced-toxicity conditioning regimen for allogeneic stem cell transplantation in AML and MDS. Blood 2004; 104(3):857–864.

    PubMed  Google Scholar 

  72. Bornhauser M, Storer B, Slattery JT, Appelbaum FR, Deeg HJ, Hansen J et al. Conditioning with fludarabine and targeted busulfan for transplantation of allogeneic hematopoietic stem cells. Blood 2003; 102(3):820–826.

    PubMed  Google Scholar 

  73. Martino R, Perez-Simon JA, Moreno E, Queralto JM, Caballero D, Mateos M et al. Reduced-intensity conditioning allogeneic blood stem cell transplantation with fludarabine and oral busulfan with or without pharmacokinetically targeted busulfan dosing in patients with myeloid leukemia ineligible for conventional conditioning. Biol Blood Marrow Transplant 2005; 11(6):437–447.

    PubMed  CAS  Google Scholar 

  74. Russell JA, Tran HT, Quinlan D, Chaudhry A, Duggan P, Brown C et al. Once-daily intravenous busulfan given with fludarabine as conditioning for allogeneic stem cell transplantation: study of pharmacokinetics and early clinical outcomes. Biol Blood Marrow Transplant 2002; 8(9):468–476.

    PubMed  CAS  Google Scholar 

  75. Frei E I. Pharmacologic strategies for high-dose chemotherapy. In: Armitage JO, Antman KH, editors. High-dose cancer therapy. Williams and Wilkins, Baltimore: 1995: 3–16.

    Google Scholar 

  76. Attal M, Harousseau J, Stoppa AM, et al. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. N Engl J M 1996; 335:91–98.

    CAS  Google Scholar 

  77. Moreau P, Facon T, Attal M, Hulin C, Michallet M, Maloisel F et al. Comparison of 200 mg/m(2). melphalan and 8 Gy total body irradiation plus 140 mg/m(2). melphalan as conditioning regimens for peripheral blood stem cell transplantation in patients with newly diagnosed multiple myeloma: final analysis of the Intergroupe Francophone du Myelome 9502 randomized trial. Blood 2002; 99(3): 731–735.

    PubMed  CAS  Google Scholar 

  78. Anagnostopoulos A, Aleman A, Ayers G, Donato M, Champlin R, Weber D et al. Comparison of high-dose melphalan with a more intensive regimen of thiotepa, busulfan, and cyclophosphamide for patients with multiple myeloma. Cancer 2004; 100(12):2607–2612.

    PubMed  CAS  Google Scholar 

  79. Fenk R, Schneider P, Kropff M, Huenerlituerkoglu AN, Steidl U, Aul C et al. High-dose idarubicin, cyclophosphamide and melphalan as conditioning for autologous stem cell transplantation increases treatment-related mortality in patients with multiple myeloma: results of a randomised study. Br J Haematol 2005; 130(4):588–594.

    PubMed  CAS  Google Scholar 

  80. Badros A, Barlogie B, Siegel E, Morris C, Desikan R, Zangari M et al. Autologous stem cell transplantation in elderly multiple myeloma patients over the age of 70 years. Br J Haematol 2001; 114(3):600–607.

    PubMed  CAS  Google Scholar 

  81. Attal M, Harousseau J, Facon T, et al. Double autologous transplantation improves survival of multiple myeloma patients: final analysis of a prospective randomized study of the “Intergroupe Francophone du Myelome” (IFM 94). Blood 2002; 100:5a.

    Google Scholar 

  82. Kwak LW, Halpern J, Olshen RA, Horning SJ. Prognostic significance of actual dose intensity in diffuse large-cell lymphoma: results of a tree-structured survival analysis. J Clin Oncol 1990; 8(6):963–977.

    PubMed  CAS  Google Scholar 

  83. Bruce WR, Meeker BE, Valeriote FA. Comparison of the sensitivity of normal hematopoietic and transplanted lymphoma colony-forming cells to chemothera-peutic agents administered in vivo. J Natl Cancer Inst 1966; 37(2):233–245.

    PubMed  CAS  Google Scholar 

  84. Appelbaum FR, Herzig GP, Ziegler JL, Graw RG, Levine AS, Deisseroth AB. Successful engraftment of cryopreserved autologous bone marrow in patients with malignant lymphoma. Blood 1978; 52(1):85–95.

    PubMed  CAS  Google Scholar 

  85. Philip T, Guglielmi C, Hagenbeek A, Somers R, Van der LH, Bron D et al. Autologous bone marrow transplantation as compared with salvage chemotherapy in relapses of chemotherapy-sensitive non-Hodgkin's lymphoma. N Engl J Med 1995; 333(23):1540–1545.

    PubMed  CAS  Google Scholar 

  86. Salar A, Sierra J, Gandarillas M, Caballero MD, Marin J, Lahuerta JJ et al. Autologous stem cell transplantation for clinically aggressive non-Hodgkin's lymphoma: the role of preparative regimens. Bone Marrow Transplant 2001; 27(4):405–412.

    PubMed  CAS  Google Scholar 

  87. Brice P, Bouabdallah R, Moreau P, Divine M, Andre M, Aoudjane M et al. Prognostic factors for survival after high-dose therapy and autologous stem cell transplantation for patients with relapsing Hodgkin's disease: analysis of 280 patients from the French registry. Societe Francaise de Greffe de Moelle. Bone Marrow Transplant 1997; 20(1):21–26.

    PubMed  CAS  Google Scholar 

  88. Nademanee A, O'Donnell MR, Snyder DS, Schmidt GM, Parker PM, Stein AS et al. High-dose chemotherapy with or without total body irradiation followed by autologous bone marrow and/or peripheral blood stem cell transplantation for patients with relapsed and refractory Hodgkin's disease: results in 85 patients with analysis of prognostic factors. Blood 1995; 85(5):1381–1390.

    PubMed  CAS  Google Scholar 

  89. Galimberti S, Guerrini F, Morabito F, Palumbo GA, Di Raimondo F, Papineschi F et al. Quantitative molecular evaluation in autotransplant programs for follicular lymphoma: efficacy of in vivo purging by Rituximab. Bone Marrow Transplant 2003; 32(1):57–63.

    PubMed  CAS  Google Scholar 

  90. Belhadj K, Delfau-Larue MH, Elgnaoui T, Beaujean F, Beaumont JL, Pautas C et al. Efficiency of in vivo purging with rituximab prior to autologous peripheral blood progenitor cell transplantation in B-cell non-Hodgkin's lymphoma: a single institution study. Ann Oncol 2004; 15(3):504–510.

    PubMed  CAS  Google Scholar 

  91. Magni M, Di Nicola M, Devizzi L, Matteucci P, Lombardi F, Gandola L et al. Successful in vivo purging of CD34-containing peripheral blood harvests in mantle cell and indolent lymphoma: evidence for a role of both chemotherapy and rituximab infusion. Blood 2000; 96(3):864–869.

    PubMed  CAS  Google Scholar 

  92. Brugger W, Hirsch J, Grunebach F, Repp R, Brossart P, Vogel W et al. Rituximab consolidation after high-dose chemotherapy and autologous blood stem cell transplantation in follicular and mantle cell lymphoma: a prospective, multicenter phase II study. Ann Oncol 2004; 15(11):1691–1698.

    PubMed  CAS  Google Scholar 

  93. Shimoni A, Hardan I, Avigdor A, Yeshurun M, Raanani P, Ben Bassat I et al. Rituximab reduces relapse risk after allogeneic and autologous stem cell transplantation in patients with high-risk aggressive non-Hodgkin's lymphoma. Br J Haematol 2003; 122(3):457–464.

    PubMed  CAS  Google Scholar 

  94. Khouri IF, Saliba RM, Hosing C, Okoroji GJ, Acholonu S, Anderlini P et al. Concurrent administration of high-dose rituximab before and after autologous stem-cell transplantation for relapsed aggressive B-cell non-Hodgkin's lymphomas. J Clin Oncol 2005; 23(10):2240–2247.

    PubMed  CAS  Google Scholar 

  95. Alousi AM, Saliba RM, Okoroji GJ, Hosing C, Samuels BI, Champlin RE et al. The influence of PET/Gallium (PET/Gal.status and high-dose rituximab (HDR. in patients with aggressive, large, B-cell lymphoma (LBCL) receiving autologous stem cell transplants (ASCT). ASH Annual Meeting Abstracts 2006; 108(11):3058.

    Google Scholar 

  96. Hernandez MC, Knox SJ. Radiobiology of radioimmunotherapy: targeting CD20 B-cell antigen in non-Hodgkin's lymphoma. Int J Radiat Oncol Biol Phys 2004; 59(5):1274–1287.

    PubMed  CAS  Google Scholar 

  97. Press OW, Eary JF, Appelbaum FR, Martin PJ, Nelp WB, Glenn S et al. Phase II trial of 131I-B1 (anti-CD20) antibody therapy with autologous stem cell transplantation for relapsed B cell lymphomas. Lancet 1995; 346(8971):336–340.

    PubMed  CAS  Google Scholar 

  98. Liu S Y, Eary JF, Petersdorf SH, Martin PJ, Maloney DG, Appelbaum FR et al. Follow-up of relapsed B-cell lymphoma patients treated with iodine-131-labeled anti-CD20 antibody and autologous stem-cell rescue. J Clin Oncol 1998; 16(10):3270–3278. 99. Gopal AK, Gooley TA, Maloney DG, Petersdorf SH, Eary JF, Rajendran JG et al. High-dose radioimmunotherapy versus conventional high-dose therapy and autologous hematopoietic stem cell transplantation for relapsed follicular non-Hodgkin's lymphoma: a multivariable cohort analysis. Blood 2003; 102(7):2351–2357.

    PubMed  CAS  Google Scholar 

  99. Gopal AK, Gooley TA, Maloney DG, Petersdorf SH, Eary JF, Rajendran JG et al. High-dose radioimmunotherapy versus conventional high-dose therapy and autologous hematopoietic stem cell transplantation for relapsed follicular non-Hodgkin's lymphoma: a multivariable cohort analysis. Blood 2003; 102(7):2351–2357.

    PubMed  CAS  Google Scholar 

  100. Press OW, Eary JF, Gooley T, Gopal AK, Liu S, Rajendran JG et al. A phase I/II trial of iodine-131-tositumomab (anti-CD20), etoposide, cyclophosphamide, and autologous stem cell transplantation for relapsed B-cell lymphomas. Blood 2000; 96(9):2934–2942.

    PubMed  CAS  Google Scholar 

  101. Gopal AK, Rajendran JG, Petersdorf SH, Maloney DG, Eary JF, Wood BL et al. High-dose chemo-radioimmunotherapy with autologous stem cell support for relapsed mantle cell lymphoma. Blood 2002; 99(9):3158–3162.

    PubMed  CAS  Google Scholar 

  102. Vose JM, Bierman PJ, Enke C, Hankins J, Bociek G, Lynch JC et al. Phase I trial of iodine-131 tositumomab with high-dose chemotherapy and autologous stem-cell transplantation for relapsed non-Hodgkin's lymphoma. J Clin Oncol 2005; 23(3):461–467.

    PubMed  CAS  Google Scholar 

  103. Krishnan AY, Nademanee A, Raubitschek A, Fung HC, Molina A, Yamauchi D et al. A comparison of BEAM and yttrium 90 ibritumomab tiuxetan (zevalin(R) ) in addition to BEAM (Z-BEAM) in older patients undergoing autologous stem cell transplant (ASCT) for B-cell lymphomas:impact of radioimmunotherapy on transplant outcomes. ASH Annual Meeting Abstracts 2006; 108(11):3043.

    Google Scholar 

  104. Flinn IW, Kahl BS, Frey E, Bianco JA, Hammes RJ, Billing LS et al. Dose finding trial of yttrium 90 (90Y.ibritumomab tiuxetan with autologous stem cell transplantation (ASCT) in patients with relapsed or refractory B-cell Non-Hodgkin's Lymphoma (NHL). ASH Annual Meeting Abstracts 2004; 104(11):897.

    Google Scholar 

  105. Kotzerke J, Bunjes D, Scheinberg DA. Radioimmunoconjugates in acute leukemia treatment: the future is radiant. Bone Marrow Transplant 2005; 36(12):1021–1026.

    PubMed  CAS  Google Scholar 

  106. Bordessoule D, Jones M, Gatter KC, Mason DY. Immunohistological patterns of myeloid antigens: tissue distribution of CD13, CD14, CD16, CD31, CD36, CD65, CD66 and CD67. Br J Haematol 1993; 83(3):370–383.

    PubMed  CAS  Google Scholar 

  107. Matthews DC, Appelbaum FR, Eary JF, Hui TE, Fisher DR, Martin PJ et al. Radiolabeled anti-CD45 monoclonal antibodies target lymphohematopoietic tissue in the macaque. Blood 1991; 78(7):1864–1874.

    PubMed  CAS  Google Scholar 

  108. Matthews DC, Badger CC, Fisher DR, Hui TE, Nourigat C, Appelbaum FR et al. Selective radiation of hematolymphoid tissue delivered by anti-CD45 antibody. Cancer Res 1992; 52(5):1228–1234.

    PubMed  CAS  Google Scholar 

  109. Matthews DC, Appelbaum FR, Eary JF, Fisher DR, Durack LD, Bush SA et al. Development of a marrow transplant regimen for acute leukemia using targeted hematopoietic irradiation delivered by 131I-labeled anti-CD45 antibody, combined with cyclophosphamide and total body irradiation. Blood 1995; 85(4):1122–1131.

    PubMed  CAS  Google Scholar 

  110. Matthews DC, Appelbaum FR, Eary JF, Fisher DR, Durack LD, Hui TE et al. Phase I study of (131)I-anti-CD45 antibody plus cyclophosphamide and total body irradiation for advanced acute leukemia and myelodysplastic syndrome. Blood 1999; 94(4):1237–1247.

    PubMed  CAS  Google Scholar 

  111. Pagel JM, Appelbaum FR, Eary JF, Rajendran J, Fisher DR, Gooley T et al. 131I-anti-CD45 antibody plus busulfan and cyclophosphamide before allogeneic hematopoietic cell transplantation for treatment of acute myeloid leukemia in first remission. Blood 2006; 107(5):2184–2191.

    PubMed  CAS  Google Scholar 

  112. Bearman SI, Appelbaum FR, Back A, Petersen FB, Buckner CD, Sullivan KM et al. Regimen-related toxicity and early posttransplant survival in patients undergoing marrow transplantation for lymphoma. J Clin Oncol 1989; 7(9):1288–1294.

    PubMed  CAS  Google Scholar 

  113. Przepiorka D, Devine S, Fay J, Uberti J, Wingard J. Practical considerations in the use of tacrolimus for allogeneic marrow transplantation. Bone Marrow Transplant 1999; 24(10):1053–1056.

    PubMed  CAS  Google Scholar 

  114. Darrington DL, Vose JM, Anderson JR, Bierman PJ, Bishop MR, Chan WC et al. Incidence and characterization of secondary myelodysplastic syndrome and acute myelogenous leukemia following high-dose chemoradiotherapy and autologous stem-cell transplantation for lymphoid malignancies. J Clin Oncol 1994; 12(12):2527–2534.

    PubMed  CAS  Google Scholar 

  115. Brown JR, Yeckes H, Friedberg JW, Neuberg D, Kim H, Nadler LM et al. Increasing incidence of late second malignancies after conditioning with cyclo-phosphamide and total-body irradiation and autologous bone marrow transplantation for non-Hodgkin's lymphoma. J Clin Oncol 2005; 23(10):2208–2214.

    PubMed  CAS  Google Scholar 

  116. Lillington DM, Micallef IN, Carpenter E, Neat MJ, Amess JA, Matthews J et al. Detection of chromosome abnormalities pre-high-dose treatment in patients developing therapy-related myelodysplasia and secondary acute myelogenous leukemia after treatment for non-Hodgkin's lymphoma. J Clin Oncol 2001; 19(9):2472–2481.

    PubMed  CAS  Google Scholar 

  117. Okamoto S, Takahashi S, Tanosaki R, Sakamaki H, Onozawa Y, Oh H et al. Granisetron in the prevention of vomiting induced by conditioning for stem cell transplantation: a prospective randomized study. Bone Marrow Transplant 1996; 17(5):679–683.

    PubMed  CAS  Google Scholar 

  118. Spielberger R, Stiff P, Bensinger W, Gentile T, Weisdorf D, Kewalramani T et al. Palifermin for oral mucositis after intensive therapy for hematologic cancers. N Engl J Med 2004; 351(25):2590–2598.

    PubMed  CAS  Google Scholar 

  119. Andriole GL, Sandlund JT, Miser JS, Arasi V, Linehan M, Magrath IT. The efficacy of mesna (2-mercaptoethane sodium sulfonate. as a uroprotectant in patients with hemorrhagic cystitis receiving further oxazaphosphorine chemotherapy. J Clin Oncol 1987; 5(5):799–803.

    PubMed  CAS  Google Scholar 

  120. de Lima M, Couriel D, Thall PF, Wang X, Madden T, Jones R et al. Once-daily intravenous busulfan and fludarabine: clinical and pharmacokinetic results of a myeloablative, reduced-toxicity conditioning regimen for allogeneic stem cell transplantation in AML and MDS. Blood 2004; 104(3):857–864.

    PubMed  CAS  Google Scholar 

  121. Bornhauser M, Storer B, Slattery JT, Appelbaum FR, Deeg HJ, Hansen J et al. Conditioning with fludarabine and targeted busulfan for transplantation of allogeneic hematopoietic stem cells. Blood 2003; 102(3):820–826.

    PubMed  Google Scholar 

  122. Martino R, Perez-Simon JA, Moreno E, Queralto JM, Caballero D, Mateos M et al. Reduced-intensity conditioning allogeneic blood stem cell transplantation with fludarabine and oral busulfan with or without pharmacokinetically targeted busulfan dosing in patients with myeloid leukemia ineligible for conventional conditioning. Biol Blood Marrow Transplant 2005; 11(6):437–447.

    PubMed  CAS  Google Scholar 

  123. Martino R, Badell I, Brunet S, Sureda A, Torras A, Cubells J et al. High-dose busulfan and melphalan before bone marrow transplantation for acute nonlym-phoblastic leukemia. Bone Marrow Transplant 1995; 16(2):209–212.

    PubMed  CAS  Google Scholar 

  124. Weaver CH, Bensinger WI, Appelbaum FR, Lilleby K, Sandmaier B, Brunvand M et al. Phase I study of high-dose busulfan, melphalan and thiotepa with autolo-gous stem cell support in patients with refractory malignancies. Bone Marrow Transplant 1994; 14(5):813–819.

    PubMed  CAS  Google Scholar 

  125. Petersen FB, Buckner CD, Appelbaum FR, Sanders JE, Bensinger WI, Storb R et al. Etoposide, cyclophosphamide and fractionated total body irradiation as a preparative regimen for marrow transplantation in patients with advanced hematological malignancies: a phase I study. Bone Marrow Transplant 1992; 10(1):83–88.

    PubMed  CAS  Google Scholar 

  126. Weaver CH, Petersen FB, Appelbaum FR, Bensinger WI, Press O, Martin P et al. High-dose fractionated total-body irradiation, etoposide, and cyclophosphamide followed by autologous stem-cell support in patients with malignant lymphoma. J Clin Oncol 1994; 12(12):2559–2566.

    PubMed  CAS  Google Scholar 

  127. Blume KG, Forman SJ, O'Donnell MR, Doroshow JH, Krance RA, Nademanee AP et al. Total body irradiation and high-dose etoposide: a new preparatory regimen for bone marrow transplantation in patients with advanced hematologic malignancies. Blood 1987; 69(4):1015–1020.

    PubMed  CAS  Google Scholar 

  128. Blume KG, Kopecky KJ, Henslee-Downey JP, Forman SJ, Stiff PJ, LeMaistre CF et al. A prospective randomized comparison of total body irradiation-etoposide versus busulfan-cyclophosphamide as preparatory regimens for bone marrow transplantation in patients with leukemia who were not in first remission: a Southwest Oncology Group study. Blood 1993; 81(8):2187–2193.

    PubMed  CAS  Google Scholar 

  129. Giralt S, Thall PF, Khouri I, Wang X, Braunschweig I, Ippolitti C et al. Melphalan and purine analog-containing preparative regimens: reduced-intensity conditioning for patients with hematologic malignancies undergoing allogeneic progenitor cell transplantation. Blood 2001; 97(3):631–637.

    PubMed  CAS  Google Scholar 

  130. Ueno NT, Cheng YC, Rondon G, Tannir NM, Gajewski JL, Couriel DR et al. Rapid induction of complete donor chimerism by the use of a reduced-intensity conditioning regimen composed of fludarabine and melphalan in allogeneic stem cell transplantation for metastatic solid tumors. Blood 2003; 102(10): 3829–3836.

    PubMed  CAS  Google Scholar 

  131. Jantunen E, Kuittinen T, Nousiainen T. BEAC or BEAM for high-dose therapy in patients with non-Hodgkin's lymphoma? A single centre analysis on toxicity and efficacy. Leuk Lymphoma 2003; 44(7):1151–1158.

    PubMed  CAS  Google Scholar 

  132. Przepiorka D, van Besien K, Khouri I, Hagemeister F, Samuels B, Folloder J et al. Carmustine, etoposide, cytarabine and melphalan as a preparative regimen for allogeneic transplantation for high-risk malignant lymphoma. Ann Oncol 1999; 10(5):527–532.

    PubMed  CAS  Google Scholar 

  133. Reece DE, Nevill TJ, Sayegh A, Spinelli JJ, Brockington DA, Barnett MJ et al. Regimen-related toxicity and non-relapse mortality with high-dose cyclophos-phamide, carmustine (BCNU) and etoposide (VP16-213) (CBV) and CBV plus cisplatin (CBVP) followed by autologous stem cell transplantation in patients with Hodgkin's disease. Bone Marrow Transplant 1999; 23(11):1131–1138.

    PubMed  CAS  Google Scholar 

  134. Peters WP, Shpall EJ, Jones RB, Olsen GA, Bast RC, Gockerman JP et al. High-dose combination alkylating agents with bone marrow support as initial treatment for metastatic breast cancer. J Clin Oncol 1988; 6(9):1368–1376.

    PubMed  CAS  Google Scholar 

  135. Antman K, Ayash L, Elias A, Wheeler C, Schwartz G, Mazanet R et al. High-dose cyclophosphamide, thiotepa, and carboplatin with autologous marrow support in women with measurable advanced breast cancer responding to standard-dose therapy: analysis by age. J Natl Cancer Inst Monogr 1994;(16):91–94.

    Google Scholar 

  136. Hussein AM, Petros WP, Ross M, Vredenburgh JJ, Affrontil ML, Jones RB et al. A phase I/II study of high-dose cyclophosphamide, cisplatin, and thioTEPA followed by autologous bone marrow and granulocyte colony-stimulating factor-primed peripheral-blood progenitor cells in patients with advanced malignancies. Cancer Chemother Pharmacol 1996; 37(6):561–568.

    PubMed  CAS  Google Scholar 

  137. Wardley AM, Jayson GC, Swindell R, Morgenstern GR, Chang J, Bloor R et al. Prospective evaluation of oral mucositis in patients receiving myeloablative conditioning regimens and haemopoietic progenitor rescue. Br J Haematol 2000; 110(2):292–299.

    PubMed  CAS  Google Scholar 

  138. Denier C, Bourhis JH, Lacroix C, Koscielny S, Bosq J, Sigal R et al. Spectrum and prognosis of neurologic complications after hematopoietic transplantation. Neurology 2006; 67(11):1990–1997.

    PubMed  CAS  Google Scholar 

  139. Gottdiener JS, Appelbaum FR, Ferrans VJ, Deisseroth A, Ziegler J. Cardiotoxicity associated with high-dose cyclophosphamide therapy. Arch Intern Med 1981; 141(6):758–763.

    PubMed  CAS  Google Scholar 

  140. Lund MB, Brinch L, Kongerud J, Boe J. Lung function 5 yrs after allogeneic bone marrow transplantation conditioned with busulphan and cyclophosphamide. Eur Respir J 2004; 23(6):901–905.

    PubMed  CAS  Google Scholar 

  141. Jules-Elysee K, Stover DE, Yahalom J, White DA, Gulati SC. Pulmonary complications in lymphoma patients treated with high-dose therapy autologous bone marrow transplantation. Am Rev Respir Dis 1992; 146(2):485–491.

    PubMed  CAS  Google Scholar 

  142. Giraud G, Bogdanovic G, Priftakis P, Remberger M, Svahn BM, Barkholt L et al. The incidence of hemorrhagic cystitis and BK-viruria in allogeneic hematopoietic stem cell recipients according to intensity of the conditioning regimen. Haematologica 2006; 91(3):401–404.

    PubMed  Google Scholar 

  143. Zager RA, O'Quigley J, Zager BK, Alpers CE, Shulman HM, Gamelin LM et al. Acute renal failure following bone marrow transplantation: a retrospective study of 272 patients. Am J Kidney Dis 1989; 13(3):210–216.

    PubMed  CAS  Google Scholar 

  144. Boulad F, Bromley M, Black P, Heller G, Sarafoglou K, Gillio A et al. Thyroid dysfunction following bone marrow transplantation using hyperfractionated radiation. Bone Marrow Transplant 1995; 15(1):71–76.

    PubMed  CAS  Google Scholar 

  145. Lio S, Arcese W, Papa G, D'Armiento M. Thyroid and pituitary function following allogeneic bone marrow transplantation. Arch Intern Med 1988; 148(5):1066–1071.

    PubMed  CAS  Google Scholar 

  146. Wingard JR, Plotnick LP, Freemer CS, Zahurak M, Piantadosi S, Miller DF et al. Growth in children after bone marrow transplantation: busulfan plus cyclo-phosphamide versus cyclophosphamide plus total body irradiation. Blood 1992; 79(4):1068–1073.

    PubMed  CAS  Google Scholar 

  147. Winters S SM. Endocrine and Metabolic Complications. In: Ball E, Lister J, Law P, editors. Hematopoietic Stem Cell Therapy. 2000: 625–636.

    Google Scholar 

  148. Stone RM, Neuberg D, Soiffer R, Takvorian T, Whelan M, Rabinowe SN et al. Myelodysplastic syndrome as a late complication following autologous bone marrow transplantation for non-Hodgkin's lymphoma. J Clin Oncol 1994; 12(12):2535–2542.

    PubMed  CAS  Google Scholar 

  149. Curtis RE, Rowlings PA, Deeg HJ, Shriner DA, Socie G, Travis LB et al. Solid cancers after bone marrow transplantation. N Engl J Med 1997; 336(13):897–904.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Alousi, A., Lima, M.d. (2008). Ablative Preparative Regimens for Hematopoietic Stem Cell Transplantation. In: Soiffer, R.J. (eds) Hematopoietic Stem Cell Transplantation. Contemporary Hematology. Humana Press. https://doi.org/10.1007/978-1-59745-438-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-438-4_16

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-05-3

  • Online ISBN: 978-1-59745-438-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics