Skip to main content

Neuroimaging Among HIV-Infected Patients: Current Knowledge and Future Directions

  • Chapter
  • First Online:
HIV and the Brain

Abstract

Another general reason for examining HIV-associated CNS injury is that despite the improvements in HIV medication regimens, there continues to be pathological evidence of CNS involvement. In fact, when examining the postmortem samples (7, 8) , the incidence of HIV encephalitis continues to grow regardless of treatment improvements. This finding is perhaps the most important reason for conducting imaging studies, as it will be imperative to understand why these symptoms persist and what effects treatment does or does not have on CNS preservation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bell J. The neuropathology of adult HIV infection. Rev Neurol 154(12): 816–829, 1998.

    CAS  Google Scholar 

  2. Budka H. Multinucleated giant cells in brain: a hallmark of the acquired immune deficiency syndrome (AIDS). Acta Neuropathol 69(3–4): 253–258, 1986.

    CAS  Google Scholar 

  3. Gonzales M, Davis R. Neuropathology of acquired immunodeficiency syndrome. Neurpathol Appl Neurobiol 14(5): 345–363, 1988.

    CAS  Google Scholar 

  4. Navia B, Jordan B, Price R. The AIDS dementia complex: I. Clinical features. Ann Neurol 19(6): 517–524, 1986.

    CAS  Google Scholar 

  5. Cysique L, Maruff P, Brew B. Prevalence and pattern of neuropsychological impairment in human immunodeficiency virus-infected/acquired immunodeficiency syndrome (HIV/AIDS) patients across pre- and post-highly active antiretroviral therapy eras: a combined study of two cohorts. J Neurovirol 10(6): 350–357, 2004.

    Google Scholar 

  6. Tozzi V, Balestra P, Lorenzini P, Bellagamba R, Galgani S, Corpolongo A, Vlassi C, Larussa D, Zaccarelli M, Noto P, Visco-Comandini U, Giulianelli M, Ippolito G, Antinori A, Narciso P. Prevalence and risk factors for human immunodeficiency virus-associated neurocognitive impairment, 1996 to 2002: results from an urban observational cohort. J Neurovirol 11(3): 265–273, 2005.

    Google Scholar 

  7. Langford T, Letendre S, Larrea G, Maliah E. Changing patterns in the neuropathogenesis of HIV during the HAART era. Brain Pathol 13(2): 195–210, 2003.

    CAS  Google Scholar 

  8. Masliah E, DeTeresa R, Mallory M, Hansen L. Changes in pathological findings at autopsy in AIDS cases for the last 15 years. AIDS 14(1): 69–74, 2000.

    CAS  Google Scholar 

  9. Post MD, Berger J, Duncan R, Quencer R, Pall L, Winfield D. Asymptomatic and neurologically symptomatic HIV-seropositive subjects: results of a long-term MR imaging and clinical follow-up. Radiology 188: 727–733, 1993.

    CAS  Google Scholar 

  10. Post MJ, Yiannoutsos C, Simpson D, Booss J, Clifford DB, Cohen B, McArthur JC, Hall CD. Progressive multifocal leukoencephalopathy in AIDS: are there any MR findings useful to patient management and predictive of patient survival? AIDS Clinical Trials Group, 243 Team. AJNR Am J Neuroradiol 20(10): 1896–906, 1999.

    CAS  Google Scholar 

  11. Ruiz A, Post MJ, Bundschu CC. Dentate nuclei involvement in AIDS patients with CNS cryptococcosis: imaging findings with pathologic correlation. J Comput Assist Tomogr 21(2): 175–182, 1997.

    CAS  Google Scholar 

  12. Hawkins CP, McLaughlin JE, Kendall BE, McDonald WI. Pathological findings correlated with MRI in HIV infection. Neuroradiology 35(4): 264–268, 1993.

    CAS  Google Scholar 

  13. Brew BJ, Rosenblum M, Cronin K, Price RW. AIDS dementia complex and HIV-1 brain infection: clinical-virological correlations. Ann Neurol 38(4): 563–570, 1995.

    CAS  Google Scholar 

  14. Aylward EH, Henderer JD, McArthur JC, Brettschneider PD, Harris GJ, Barta PE, Pearlson GD. Reduced basal ganglia volume in HIV-1-associated dementia: results from quantitative neuroimaging. Neurology 43(10): 2099–2104, 1993.

    CAS  Google Scholar 

  15. Jernigan TL, Archibald S, Hesselink JR, Atkinson JH, Velin RA, McCutchan JA, Chandler J, Grant I. Magnetic resonance imaging morphometric analysis of cerebral volume loss in human immunodeficiency virus infection. The HNRC Group. Arch Neurol 50(3): 250–255, 1993.

    CAS  Google Scholar 

  16. Hall M, Whaley R, Robertson K, Hamby S, Wilkins J, Hall C. The correlation between neuropsychological and neuroanatomic changes over time in asymptomatic and symptomatic HIV-1-infected individuals. Neurology 46(6): 1697–1702, 1996.

    CAS  Google Scholar 

  17. Raininko R, Elovaara I, Virta A, Valanne L, Haltia M, Valle SL. Radiological study of the brain at various stages of human immunodeficiency virus infection: early development of brain atrophy. Neuroradiology 34(3): 190–196, 1992.

    CAS  Google Scholar 

  18. Paul R, Cohen R, Navia B, Tashima K. Relationships between cognition and structural neuroimaging findings in adults with human immunodeficiency virus type-1. Neurosci Biobehav Rev 26(3): 353–359, 2002.

    Google Scholar 

  19. Pedersen C, Thomsen C, Arlien-Soborg P, Praestholm J, Kjaer L, Boesen F, Hansen HS, Nielsen JO. Central nervous system involvement in human immunodeficiency virus disease. A prospective study including neurological examination, computerized tomography, and magnetic resonance imaging. Dan Med Bull 38(4): 374–379, 1991.

    CAS  Google Scholar 

  20. Pfefferbaum A, Rosenbloom MJ, Rohlfing T, Adalsteinsson E, Kemper CA, Deresinski S, Sullivan EV. Contribution of alcoholism to brain dysmorphology in HIV infection: effects on the ventricles and corpus callosum. Neuroimage 33(1): 239–251, 2006.

    Google Scholar 

  21. Portegies P, Enting RH, Troost D, Bosch DA. [Indications for brain biopsy in the diagnosis of intracerebral lesions in patients with AIDS]. Ned Tijdschr Geneeskd 137(20): 999–1002, 1993.

    CAS  Google Scholar 

  22. Thompson PM, Dutton RA, Hayashi KM, Lu A, Lee SE, Lee JY, Lopez OL, Aizenstein HJ, Toga AW, Becker JT. 3D mapping of ventricular and corpus callosum abnormalities in HIV/AIDS. Neuroimage 31(1): 12–23, 2006.

    Google Scholar 

  23. Grant I, Atkinson JH, Hesselink JR, Kennedy CJ, Richman DD, Spector SA, McCutchan JA. Evidence for early central nervous system involvement in the acquired immunodeficiency syndrome (AIDS) and other human immunodeficiency virus (HIV) infections. Studies with neuropsychologic testing and magnetic resonance imaging. Ann Intern Med 107(6): 828–836, 1987.

    CAS  Google Scholar 

  24. Poutiainen E, Elovaara I, Raininko R, Vilkki J, Lahdevirta J, Iivanainen M. Cognitive decline in patients with symptomatic HIV-1 infection. No decline in asymptomatic infection. Acta Neurol Scand 93(6): 421–427, 1996.

    CAS  Google Scholar 

  25. Hestad K, McArthur JH, Dal Pan GJ, Selnes OA, Nance-Sproson TE, Aylward E, Mathews VP, McArthur JC. Regional brain atrophy in HIV-1 infection: association with specific neuropsychological test performance. Acta Neurol Scand 88(2): 112–118, 1993.

    CAS  Google Scholar 

  26. Kieburtz K, Ketonen L, Cox C, Grossman H, Holloway R, Booth H, Hickey C, Feigin A, Caine E. Cognitive performance and regional brain volume in human immunodeficiency virus type 1 infection. Arch Neurol 53(2): 155–158, 1996.

    CAS  Google Scholar 

  27. Syndulko K, Singer EJ, Nogales-Gaete J, Conrad A, Schmid P, Tourtellotte WW. Laboratory evaluations in HIV-1-associated cognitive/motor complex. Psychiatr Clin North Am 17(1): 91–123, 1994.

    CAS  Google Scholar 

  28. Kieburtz KD, Ketonen L, Zettelmaier AE, Kido D, Caine ED, Simon JH. Magnetic resonance imaging findings in HIV cognitive impairment. Arch Neurol 47(6): 643–645, 1990.

    CAS  Google Scholar 

  29. Chiang M, Dutton R, Hayashi K, Lopez O, Aizenstein H, Toga A, Becker J, Thompson P. 3D pattern of brain atrophy in HIV/AIDS visualized using tensor based morphometry. Neuroimage 34: 44–60, 2007.

    Google Scholar 

  30. Stout JC, Ellis RJ, Jernigan TL, Archibald SL, Abramson I, Wolfson T, McCutchan JA, Wallace MR, Atkinson JH, Grant I. Progressive cerebral volume loss in human immunodeficiency virus infection: a longitudinal volumetric magnetic resonance imaging study. HIV Neurobehavioral Research Center Group. Arch Neurol 55(2): 161–168, 1998.

    CAS  Google Scholar 

  31. Castelo JM, Courtney MG, Melrose RJ, Stern CE. Putamen hypertrophy in nondemented patients with human immunodeficiency virus infection and cognitive compromise. Arch Neurol 64(9): 1275–1280, 2007.

    Google Scholar 

  32. Patel S, Kolson D, Glosser G, Matozzo I, Ge Y, Babb J, Mannon L, Grossman R. Correlation between percentage of brain parenchymal volume and neurocognitive performance in HIV-infected patients. Am J Neuroradiol 23: 543–549, 2002.

    Google Scholar 

  33. Samuelsson K, Pirskanen-Matell R, Bremmer S, Hindmarsh T, Nilsson BY, Persson HE. The nervous system in early HIV infection: a prospective study through 7 years. Eur J Neurol 13(3): 283–291, 2006.

    CAS  Google Scholar 

  34. Fang C, Chang Y, Hsu H, Twu S, Chen K, Lin C, Huang L, Chen M, Hwang J, Wang J, Chuang C. Life expectancy of patients with newly-diagnosed HIV infection in the era of highly active antiretroviral therapy. QJM 100(2): 97–105, 2007.

    CAS  Google Scholar 

  35. Lima V, Hogg R, Harrigan P, Moore D, Yip B, Wood E, Montaner J. Continued improvement in survival among HIV-infected individuals with newer forms of highly active antiretroviral therapy. AIDS 21(6): 685–692, 2007.

    Google Scholar 

  36. Di Sclafani V, Mackay RD, Meyerhoff DJ, Norman D, Weiner MW, Fein G. Brain atrophy in HIV infection is more strongly associated with CDC clinical stage than with cognitive impairment.
 J Int Neuropsychol Soc 3(3): 276–287, 1997.

    CAS  Google Scholar 

  37. Kinzel N, Strike D, Clark H, Cavert W. Cerebellopontine degeneration as an immune restoration disease in HIV infection. AIDS 18(17): 2348–2350, 2004.

    Google Scholar 

  38. Tagliati M, Simpson D, Morgello S, Clifford D, Schwartz R, Berger J. Cerebellar degeneration associated with human immunodeficiency virus infection. Neurology 50(1): 244–251, 1998.

    CAS  Google Scholar 

  39. Thompson PM, Dutton RA, Hayashi KM, Toga AW, Lopez OL, Aizenstein HJ, Becker JT. Thinning of the cerebral cortex visualized in HIV/AIDS reflects CD4+ T lymphocyte decline. Proc Natl Acad Sci USA 102(43): 15647–15652, 2005.

    CAS  Google Scholar 

  40. Thompson P, Hayashi K, Dutton R, Chiang M, Leow A, Sowell E, Zubicaray GD, Becker J, Lopez O, Aizenstein H, Toga A. Tracking Alzheimer’s disease. Ann NY Acad Sci 1097: 183–214, 2007.

    Google Scholar 

  41. Lepore N, Brun C, Chou YY, Chiang MC, Dutton RA, Hayashi KM, Luders E, Lopez OL, Aizenstein HJ, Toga AW, Becker JT, Thompson PM. Generalized tensor-based morphometry of HIV/AIDS using multivariate statistics on deformation tensors. IEEE Trans Med Imaging 27(1): 129–141, 2008.

    CAS  Google Scholar 

  42. McArthur JC, Kumar AJ, Johnson DW, Selnes OA, Becker JT, Herman C, Cohen BA, Saah A. Incidental white matter hyperintensities on magnetic resonance imaging in HIV-1 infection. Multicenter AIDS Cohort Study. J Acquir Immune Defic Syndr 3(3): 252–259, 1990.

    CAS  Google Scholar 

  43. Pomara N, Crandall DT, Choi SJ, Johnson G, Lim KO. White matter abnormalities in HIV-1 infection: a diffusion tensor imaging study. Psychiatry Res 106(1): 15–24, 2001.

    CAS  Google Scholar 

  44. Bornstein RA, Chakeres D, Brogan M, Nasrallah HA, Fass RJ, Para M, Whitacre C. Magnetic resonance imaging of white matter lesions in HIV infection. J Neuropsychiatry Clin Neurosci 4(2): 174–178, 1992.

    CAS  Google Scholar 

  45. Archibald S, Masliah E, Fennema-Notestine C, Marcotte T, Ellis R, McCutchan J, Heaton R, Grant I, Mallory M, Miller A, Jernigan T. Correlation of in vivo neuroimaing abnormalities with postmortem human immunodeficiency virus encephalitis and dendretic loss. Arch Neurol 61: 369–376, 2004.

    Google Scholar 

  46. Valcour VG, Sithinamsuwan P, Nidhinandana S, Thitivichianlert S, Ratto-Kim S, Apateerapong W, Shiramizu BT, Desouza MS, Chitpatima ST, Watt G, Chuenchitra T, Robertson KR, Paul RH, McArthur JC, Kim JH, Shikuma CM. Neuropsychological abnormalities in patients with dementia in CRF 01_AE HIV-1 infection. Neurology 68(7): 525–527, 2007.

    CAS  Google Scholar 

  47. Martin E, Capone A, Schneider J, Hennig J, Thiel T. Absence of N-acetylaspartate in the human brain: impact on neurospectroscopy? Ann Neurol 49(4): 518–521, 2001.

    CAS  Google Scholar 

  48. McRobbie D, Moore E, Graves M, Prince M. MRI From Picture to Proton. Cambridge, UK: Cambridge University Press, 2003.

    Google Scholar 

  49. Pfefferbaum A, Adalsteinsson E, Sullivan E. Cortical NAA deficits in HIV infection without dementia: Influence of alcoholism comorbidity. Neuropsychopharmacology 30: 1392–1399, 2005.

    CAS  Google Scholar 

  50. Urenjak J, Williams SR, Gadian DG, Noble M. Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci 13(3): 981–989, 1993.

    CAS  Google Scholar 

  51. van Walderveen MA, Barkhof F, Pouwels PJ, van Schijndel RA, Polman CH, Castelijns JA. Neuronal damage in T1-hypointense multiple sclerosis lesions demonstrated in vivo using proton magnetic resonance spectroscopy. Ann Neurol 46(1): 79–87, 1999.

    CAS  Google Scholar 

  52. Leary SM, Brex PA, MacManus DG, Parker GJ, Barker GJ, Miller DH, Thompson AJ. A (1)H magnetic resonance spectroscopy study of aging in parietal white matter: implications for trials in multiple sclerosis. Magn Reson Imaging 18(4): 455–459, 2000.

    CAS  Google Scholar 

  53. Chang L, Ernst T, Leonido-Yee M, Walot I, Singer E. Cerebral metabolite abnormalities correlate with clinical severity of HIV-1 cognitive motor complex. Neurology 52(1): 100–108, 1999.

    CAS  Google Scholar 

  54. Sacktor N, Skolasky R, Ernst T, Mao X, Selnes O, Pomper M, Chang L, Zhong K, Shungu D, Marder K, Shibata D, Schifitto G, Bobo L, Barker P. A multicenter study of two magnetic resonance spectroscopy techniques in individuals with HIV dementia. J of Magn Reson Imag 21: 325–333, 2005.

    Google Scholar 

  55. Suwanwelaa N, Phanuphak P, Phanthumchinda K, Suwanwela N, Tantivatana J, Ruxrungtham K, Suttipan J, Wangsuphachart S, Hanvanich M. Magnetic resonance spectroscopy of the brain in neurologically asymptomatic HIV-infected patients. Magn Reson Imag 18(7): 859–865, 2000.

    CAS  Google Scholar 

  56. Tarasow E, Wiercinska-Drapalo A, Jaroszewicz J, Orzechowska-Bobkiewicz A, Dzienis W, Prokopowicz D, Walecki J. Antiretroviral therapy and its influence on the stage of brain damage in patients with HIV – 1H MRS evaluation. Med Sci Monit 10(Suppl 3): 101–106, 2004.

    Google Scholar 

  57. von Giesen HJ, Antke C, Hefter H, Wenserski F, Seitz RJ, Arendt G. Potential time course of human immunodeficiency virus type 1-associated minor motor deficits: electrophysiologic and positron emission tomography findings. Arch Neurol 57(11): 1601–1607, 2000.

    CAS  Google Scholar 

  58. Taylor M, Schweinsburg B, Alhassoon O, Gongvatana A, Brown G, Young-Casey C, Letendre S, Grant I, Group. H. Effects of human immunodeficiency virus and methamphetamine on cerebral metabolites measured with magnetic resonance spectroscopy. J Neurovirol 13(2): 150–159, 2007.

    CAS  Google Scholar 

  59. Chang L, Ernst T, Leonido-Yee M, Witt M, Speck O, Walot I, Miller EN. Highly active antiretroviral therapy reverses brain metabolite abnormalities in mild HIV dementia. Neurology 53(4): 782–789, 1999.

    CAS  Google Scholar 

  60. Stankoff B, Tourbah A, Suarez S, Turell E, Stievenart JL, Payan C, Coutellier A, Herson S, Baril L, Bricaire F, Calvez V, Cabanis EA, Lacomblez L, Lubetzki C. Clinical and spectroscopic improvement in HIV-associated cognitive impairment. Neurology 56(1): 112–115, 2001.

    CAS  Google Scholar 

  61. Chang L, Ernst T, Witt MD, Ames N, Walot I, Jovicich J, DeSilva M, Trivedi N, Speck O, Miller EN. Persistent brain abnormalities in antiretroviral-naive HIV patients 3 months after HAART. Antivir Ther 8(1): 17–26, 2003.

    CAS  Google Scholar 

  62. Meyerhoff D, Bloomer C, Cardenas V, Norman D, Weiner M, Fein G. Elevated subcortical choline metabolites in cognitively and clinically asymptomatic HIV+ patients. Neurology 52(5): 995–1003, 1999.

    CAS  Google Scholar 

  63. Nelson J, Dou H, Ellison B, Uberti M, Xiong H, Anderson E, Mellon M, Gelbard H, Boska M, Gendelman H. Coregistration of quantitative proton magnetic resonance spectroscopic imaging with neuropathological and neurophysiological analyses defines the extent of neuronal impairments in murine human immunodeficiency virus type-1 encephalitis. J Neurosci Res 80 (4): 562–575, 2005.

    CAS  Google Scholar 

  64. Paul RH, Laidlaw DH, Tate DF, Lee S, Hoth KF, Gunstad J, Zhang S, Lawrence J, Flanigan T. Neuropsychological and neuroimaging outcome of HIV-associated progressive multifocal leukoencephalopathy in the era of antiretroviral therapy. J Integr Neurosci 6(1): 191–203, 2007.

    Google Scholar 

  65. Chang L, Ernst T, Speck O, Grob C. Additive effects of HIV and chronic methamphetamine use on brain metabolite abnormalities. Am J Psychiatr 162: 361–369, 2005.

    Google Scholar 

  66. Chang L, Ernst T, Poland RE, Jenden DJ. In vivo proton magnetic resonance spectroscopy of the normal aging human brain. Life Sci 58(22): 2049–2056, 1996.

    CAS  Google Scholar 

  67. Pfefferbaum A, Adalsteinsson E, Spielman D, Sullivan EV, Lim KO. In vivo spectroscopic quantification of the N-acetyl moiety, creatine, and choline from large volumes of brain gray and white matter: effects of normal aging. Magn Reson Med 41(2): 276–284, 1999.

    CAS  Google Scholar 

  68. Soher BJ, van Zijl PC, Duyn JH, Barker PB. Quantitative proton MR spectroscopic imaging of the human brain. Magn Reson Med 354 (3): 356–363, 1996.

    Google Scholar 

  69. Brooks JC, Roberts N, Kemp GJ, Gosney MA, Lye M, Whitehouse GH. A proton magnetic resonance spectroscopy study of age-related changes in frontal lobe metabolite concentrations. Cereb Cortex 11(7): 598–605, 2001.

    CAS  Google Scholar 

  70. Schuff N, Ezekiel F, Gamst AC, Amend DL, Capizzano AA, Maudsley AA, Weiner MW. Region and tissue differences of metabolites in normally aged brain using multislice 1H magnetic resonance spectroscopic imaging. Magn Reson Med 454 (5): 899–907, 2001.

    Google Scholar 

  71. Chang L, Lee PL, Yiannoutsos CT, Ernst T, Marra CM, Richards T, Kolson D, Schifitto G, Jarvik JG, Miller EN, Lenkinski R, Gonzalez G, Navia BA. A multicenter in vivo proton-MRS study of HIV-associated dementia and its relationship to age. Neuroimage 23(4): 1336–1347, 2004.

    CAS  Google Scholar 

  72. Ernst T, Chang L. Effect of aging on brain metalism in antiretroviral naive HIV patients. AIDS 18(Suppl 1): S61–S67, 2004.

    CAS  Google Scholar 

  73. Yiannoutsos C, Ernst T, Chang L, Lee P, Richards T, Marra C, Meyerhoff D, Jarvick J, Kolson D, Schifitto G, Ellis R, Swindles S, Simpson D, Miller E, Gonzalez R, Navia B. Regional pattern of brain metabolites in AIDS dementia complex. Neuroimage 23: 928–935, 2004.

    Google Scholar 

  74. Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13(4): 534–546, 2001.

    CAS  Google Scholar 

  75. Perry W, Carlson M, Barakat F, Hilsabeck R, Schiehser D, Mathews C, Hassanein T. Neuropsychological test performance in patients co-infected with hepatitis C virus and HIV. AIDS 19(Suppl 3): S79–S84, 2005.

    Google Scholar 

  76. Beaulieu C, Allen PS. Water diffusion in the giant axon of the squid: implications for diffusion-weighted MRI of the nervous system. Magn Reson Med 32(5): 579–583, 1994.

    CAS  Google Scholar 

  77. Huppi PS, Maier SE, Peled S, Zientara GP, Barnes PD, Jolesz FA, Volpe JJ. Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr Res 44(4): 584–590, 1998.

    CAS  Google Scholar 

  78. Neil JJ, Shiran SI, McKinstry RC, Schefft GL, Snyder AZ, Almli CR, Akbudak E, Aronovitz JA, Miller JP, Lee BC, Conturo TE. Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging. Radiology 209(1): 57–66, 1998.

    CAS  Google Scholar 

  79. Gulani V, Webb AG, Duncan ID, Lauterbur PC. Apparent diffusion tensor measurements in myelin-deficient rat spinal cords. Magn Reson Med 45(2): 191–195, 2001.

    CAS  Google Scholar 

  80. Schmierer K, Wheeler-Kingshott CA, Boulby PA, Scaravilli F, Altmann DR, Barker GJ, Tofts PS, Miller DH. Diffusion tensor imaging of post mortem multiple sclerosis brain. Neuroimage 35(2): 467–477, 2007.

    Google Scholar 

  81. Beaulieu C. The basis of anisotropic water diffusion in the nervous system – a technical review. NMR Biomed 15(7–8): 435–455, 2002.

    Google Scholar 

  82. Ragin AB, Storey P, Cohen BA, Epstein LG, Edelman RR. Whole brain diffusion tensor imaging in HIV-associated cognitive impairment. AJNR Am J Neuroradiol 25(2): 195–200, 2004.

    Google Scholar 

  83. Filippi M, Dousset V, McFarland HF, Miller DH, Grossman RI. Role of magnetic resonance imaging in the diagnosis and monitoring of multiple sclerosis: consensus report of the White Matter Study Group. J Magn Reson Imaging 15(5): 499–504, 2002.

    CAS  Google Scholar 

  84. Ragin A, Storey P, Cohen B, Edelman R, Epstein L. Disease burden in HIV-associated cogntive impairment: a study of whole-brain imaging measures. Neurology 63: 2293–2297, 2004.

    CAS  Google Scholar 

  85. Ragin AB, Wu Y, Storey P, Cohen BA, Edelman RR, Epstein LG. Diffusion tensor imaging of subcortical brain injury in patients infected with human immunodeficiency virus. J Neurovirol 11(3): 292–298, 2005.

    Google Scholar 

  86. Wu Y, Storey P, Cohen BA, Epstein LG, Edelman RR, Ragin AB. Diffusion alterations in corpus callosum of patients with HIV. AJNR Am J Neuroradiol 27(3): 656–60, 2006.

    CAS  Google Scholar 

  87. Thurnher MM, Castillo M, Stadler A, Rieger A, Schmid B, Sundgren PC. Diffusion-tensor MR imaging of the brain in human immunodeficiency virus-positive patients. AJNR Am J Neuroradiol 26(9): 2275–2281, 2005.

    Google Scholar 

  88. Pfefferbaum A, Rosenbloom MJ, Adalsteinsson E, Sullivan EV. Diffusion tensor imaging with quantitative fibre tracking in HIV infection and alcoholism comorbidity: synergistic white matter damage. Brain 130(Pt 1): 48–64, 2007.

    Google Scholar 

  89. Tate DF, Zhang S, Sampat M, Conley J, Russel T, Kertesz K, Paul RH, Coop K, Laidlaw DH, Guttmann CRC, Navia B, Tashima K, and Flanigan T (submitted). Altered fractional anisotropy and tractography metrics in the corpus callosum is associated with measures of HIV infection disease burden and cognitive performance. Submitted to Journal of Neurovirology.

    Google Scholar 

  90. Zhang S, Demiralp C, Laidlaw D. Visualizing diffusion tensor MRI images using streamtubes and streamsurfaces. IEEE Transaction on Visualization and Comuter Graphics 9(4): 454–462, 200.

    Google Scholar 

  91. Correia S, Lee SY, Voorn T, Tate DF, Paul RH, Zhang S, Salloway SP, Malloy PF, Laidlaw DH (2008). Quantitative tractrography metrics in white matter integrity in diffusion tensor MRI. Neuroimage, 42(2): 568–581.

    Google Scholar 

  92. Chang L, Speck O, Miller EN, Braun J, Jovicich J, Koch C, Itti L, Ernst T. Neural correlates of attention and working memory deficits in HIV patients. Neurology 57(6): 1001–1007, 2001.

    CAS  Google Scholar 

  93. Ernst T, Chang L, Arnold S. Increased glial metabolites predict increased working memory network activation in HIV brain injury. Neuroimage 19: 1686–1693, 2003.

    CAS  Google Scholar 

  94. Tracey I, Hamberg LM, Guimaraes AR, Hunter G, Chang I, Navia BA, Gonzalez RG. Increased cerebral blood volume in HIV-positive patients detected by functional MRI. Neurology 50(6): 1821–1826, 1998.

    CAS  Google Scholar 

  95. Juengst S, Aizenstein H, Figurski J, Lopez O, Becker J. Alterations in the hemodynamic response function in cognitively impaired HIV/AIDS subjects. J Neurosci Meth 163: 208–212, 2007.

    Google Scholar 

  96. Costa DC, Ell PJ, Burns A, Philpot M, Levy R. CBF tomograms with [99mTc-HM-PAO in patients with dementia (Alzheimer type and HIV) and Parkinson’s disease–initial results. J Cereb Blood Flow Metab 8(6): S109–S115, 1988.

    CAS  Google Scholar 

  97. Holman BL, Garada B, Johnson KA, Mendelson J, Hallgring E, Teoh SK, Worth J, Navia B. A comparison of brain perfusion SPECT in cocaine abuse and AIDS dementia complex. J Nucl Med 33(7): 1312–1315, 1992.

    CAS  Google Scholar 

  98. Rosci MA, Pigorini F, Bernabei A, Pau FM, Volpini V, Merigliano DE, Meligrana MF. Methods for detecting early signs of AIDS dementia complex in asymptomatic HIV-1-infected subjects. AIDS 6(11): 1309–1316, 1992.

    CAS  Google Scholar 

  99. Tozzi V, Narciso P, Galgani S, Sette P, Balestra P, Gerace C, Pau FM, Pigorini F, Volpini V, Camporiondo MP, et al. Effects of zidovudine in 30 patients with mild to end-stage AIDS dementia complex. AIDS 7(5): 683–692, 1993.

    CAS  Google Scholar 

  100. Ernst T, Itti E, Itti L, Chang L. Changes in cerebral metabolism are detected prior to perfusion changes in early HIV-CMC: A coregistered (1)H MRS and SPECT study. J Magn Reson Imaging 12(6): 859–865, 2000.

    CAS  Google Scholar 

  101. Chang L, Ernst T, Leonido-Yee M, Speck O. Perfusion MRI detects rCBF abnormalities in early stages of HIV-cognitive motor complex. Neurology 54(2): 389–396, 2000.

    CAS  Google Scholar 

  102. Christensson B, Ljungberg B, Ryding E, Svenson G, Rosen I. SPECT with 99mTc-HMPAO in subjects with HIV infection: cognitive dysfunction correlates with high uptake. Scand J Infect Dis 31(4): 349–354, 1999.

    CAS  Google Scholar 

  103. Hinkin CH, van Gorp WG, Mandelkern MA, Gee M, Satz P, Holston S, Marcotte TD, Evans G, Paz DH, Ropchan JR, et al. Cerebral metabolic change in patients with AIDS: report of a six-month follow-up using positron-emission tomography. J Neuropsychiatry Clin Neurosci 7(2): 180–187, 1995.

    CAS  Google Scholar 

  104. Rottenberg DA, Sidtis JJ, Strother SC, Schaper KA, Anderson JR, Nelson MJ, Price RW. Abnormal cerebral glucose metabolism in HIV-1 seropositive subjects with and without dementia. J Nucl Med 37(7): 1133–1141, 1996.

    CAS  Google Scholar 

  105. Rottenberg DA, Moeller JR, Strother SC, Sidtis JJ, Navia BA, Dhawan V, Ginos JZ, Price RW. The metabolic pathology of the AIDS dementia complex. Ann Neurol 22(6): 700–706, 1987.

    CAS  Google Scholar 

  106. van Gorp WG, Mandelkern MA, Gee M, Hinkin CH, Stern CE, Paz DK, Dixon W, Evans G, Flynn F, Frederick CJ, et al. Cerebral metabolic dysfunction in AIDS: findings in a sample with and without dementia. J Neuropsychiatr Clin Neurosci 4(3): 280–287, 1992.

    CAS  Google Scholar 

  107. O’Doherty MJ, Barrington SF, Campbell M, Lowe J, Bradbeer CS. PET scanning and the human immunodeficiency virus-positive patient. J Nucl Med 38(10): 1575–1583, 1997.

    Google Scholar 

  108. Wenserski F, Giesen Hv, Wittsack H, Aulich A, Arendt G. Human immundeficiency virus 1-associated minor motor disorders: perfusion weighted MR imaging and H MR spectroscopy. Radiology 228: 185–192, 2003.

    Google Scholar 

  109. Ances B, Roc A, Wang J, Korczykowski M, Okawa J, Stern J, Kim J, Wolf R, lawler K, Kolson D, Detre J. Caudate blood flow and volume are reduced in HIV+ neurocognitively impaired patients. Neurology 66: 826–866, 2006.

    Google Scholar 

  110. Kucharczyk W, Macdonald PM, Stanisz GJ, Henkelman RM. Relaxivity and magnetization transfer of white matter lipids at MR imaging: importance of cerebrosides and pH. Radiology 192(2): 521–529, 1994.

    CAS  Google Scholar 

  111. Leary SM, Silver NC, Stevenson VL, Barker GJ, Miller DH, Thompson AJ. Magnetisation transfer of normal appearing white matter in primary progressive multiple sclerosis. Mult Scler 5(5): 313–316, 1999.

    CAS  Google Scholar 

  112. Ropele S, Strasser-Fuchs S, Augustin M, Stollberger R, Enzinger C, Hartung HP, Fazekas F. A comparison of magnetization transfer ratio, magnetization transfer rate, and the native relaxation time of water protons related to relapsing-remitting multiple sclerosis. AJNR Am J Neuroradiol 21(10): 1885–1891, 2000.

    CAS  Google Scholar 

  113. Santos AC, Narayanan S, de Stefano N, Tartaglia MC, Francis SJ, Arnaoutelis R, Caramanos Z, Antel JP, Pike GB, Arnold DL. Magnetization transfer can predict clinical evolution in patients with multiple sclerosis. J Neurol 249(6): 662–668, 2002.

    Google Scholar 

  114. McGowan JC, Yang JH, Plotkin RC, Grossman RI, Umile EM, Cecil KM, Bagley LJ. Magnetization transfer imaging in the detection of injury associated with mild head trauma. AJNR Am J Neuroradiol 21(5): 875–880, 2000.

    CAS  Google Scholar 

  115. Price G, Cercignani M, Bagary MS, Barnes TR, Barker GJ, Joyce EM, Ron MA. A volumetric MRI and magnetization transfer imaging follow-up study of patients with first-episode schizophrenia. Schizophr Res 87(1–3): 100–108, 2006.

    Google Scholar 

  116. Kimura H, Grossman RI, Lenkinski RE, Gonzalez-Scarano F. Proton MR spectroscopy and magnetization transfer ratio in multiple sclerosis: correlative findings of active versus irreversible plaque disease. AJNR Am J Neuroradiol 17(8): 1539–1547, 1996.

    CAS  Google Scholar 

  117. Kalkers NF, Hintzen RQ, van Waesberghe JH, Lazeron RH, van Schijndel RA, Ader HJ, Polman CH, Barkhof F. Magnetization transfer histogram parameters reflect all dimensions of MS pathology, including atrophy. J Neurol Sci 184(2): 155–162, 2001.

    CAS  Google Scholar 

  118. Lycklama a Nijeholt GJ, Castelijns JA, Lazeron RH, van Waesberghe JH, Polman CH, Uitdehaag BM, Barkhof F. Magnetization transfer ratio of the spinal cord in multiple sclerosis: relationship to atrophy and neurologic disability. J Neuroimaging 10(2): 67–72, 2000.

    Google Scholar 

  119. Ge Y, Kolson D, Babb J, Mannon L, Grossman R. Whole brain imaging of HIV-infected patients: quantitative analysis of magnetization transfer ratio histogram and fractional brain volume. Am J Neuroradiol 24: 82–87, 2003.

    Google Scholar 

  120. Avison M, Nath A, Greene-Avison R, Schmitt F, Greenberg R, Berger J. Neruoimaging correlates of HIV-associated BBB compromise. J Neuroimmunol 157: 140–146, 2004.

    CAS  Google Scholar 

  121. Martin E, Nixon H, Pitrak D, Weddington W, Rains N, Nunnally G, Grbesic S, Gonzalez R, Jacobus J, Bechara A. Characteristics of prospective memory deficits in HIV-seropositive substance-dependent individuals: preliminary observations. J Clin Exp Neuropsychol 29(5): 496–504, 2007.

    Google Scholar 

  122. Martin E, Pitrak D, Weddington W, Rains N, Nunnally G, Nixon H, Grbesic S, Vassileva J, Bechara A. Cognitive impulsivity and HIV serostatus in substance dependent males. J Int Neuropsychol Soc 10(7): 931–938, 2004.

    Google Scholar 

  123. Cherner M, Letendre S, Heaton R, Durelle J, Marquie-Beck J, Gragg B, Grant I, Group HNRC. Hepatitis C augments cognitive deficits associated with HIV infection and methamphetamine. Neurology 64(8): 1343–1347, 2005.

    CAS  Google Scholar 

  124. Letendre S, Cherner M, Ellis R, Marquie-Beck J, Gragg B, Marcotte T, Heaton R, McCutchan J, Grant I, Group. H. The effects of hepatitis C, HIV, and methamphetamine dependence on neuropsychological performance: biological correlates of disease. AIDS 19(Suppl 3): S72–S78, 2005.

    CAS  Google Scholar 

  125. Leow A, Klunder A, Jr CJ, Toga A, Dale A, Bernstein M, Britson P, Gunter J, Ward C, Whitwell J, Borowski B, Fleisher A, Fox N, Harvey D, Kornak J, Schuff N, Studholme C, Alexander G, Weiner M, Thompson P, Study APP. Longitudinal stability of MRI for mapping brain change using tensor-based morphometry. Neuroimage 31(2): 627–640, 2006.

    Google Scholar 

  126. Meier DS, Guttmann CR. MRI time series modeling of MS lesion development. Neuroimage 32(2): 531–537, 2006.

    Google Scholar 

  127. Barnes J, Lewis E, Scahill R, Bartlett J, Frost C, Schott J, Rossor M, Fox N. Automated measurement of hippocampal atrophy using fluid-registered serial MRI in AD and controls. J Comput Assist Tomogr 31(4): 581–587, 2007.

    Google Scholar 

  128. Bradley K, Bydder G, Budge M, Hajnal J, White S, Ripley B, Smith A. Serial brain MRI at 3–6 month intervals as a surrogate marker for Alzheimer’s disease. Br J Radiol (75): 894, 2002.

    Google Scholar 

  129. Avison M, Nath A, Berger J. Understanding pathogenesis and treatment of HIV dementia: a role for magnetic resonance ? Trends Neurosci 25(9): 468–473, 2002.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David F. Tate .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tate, D.F., Conley, J.J., Meier, D.S., Navia, B.A., Cohen, R., Guttmann, C.R. (2009). Neuroimaging Among HIV-Infected Patients: Current Knowledge and Future Directions. In: Paul, R., Sacktor, N., Valcour, V., Tashima, K. (eds) HIV and the Brain. Current Clinical Neurology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-434-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-434-6_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-08-4

  • Online ISBN: 978-1-59745-434-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics