Skip to main content

Pathophysiology of Heart Failure

  • Chapter
  • First Online:
  • 1020 Accesses

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Heart failure (HF) is a clinical syndrome resulting from structural or functional disorders that impair the heart’s ability to fill with or eject blood. The pathophysiologic mechanisms leading to HF are complex and encompass hemodynamic alterations and neurohormonal changes that contribute to the chronic, progressive nature of the disease. This chapter reviews the pathophysiologic mechanisms that underlie the clinical manifestations of the HF syndrome, primarily focusing on HF due to left ventricular systolic dysfunction. Cardiac compensatory mechanisms, hemodynamic adjustments, neurohormonal activation, ventricular remodeling, and arrhythmogenesis will be reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hunt SA, Abraham WT, Chin MA, et al. ACC/AHA 2005 Guideline update for the diagnosis and management of chronic heart failure in the adult – Summary article. Journal of the American College of Cardiology 2005;46:1114–1142.

    Article  Google Scholar 

  2. Jessup M, Brozena S. Heart Failure. New England Journal of Medicine 2003;348: 2007–2018.

    Article  PubMed  Google Scholar 

  3. Sweeney MO, Ellison KE, Stevenson WG. Implantable cardioverter defibrillators in heart failure. Cardiology Clinics 2001;19(4):653–667.

    Article  PubMed  CAS  Google Scholar 

  4. Johnson JA, Parker RB, Patterson JH. Heart failure. In: DiPiro JT, Talbert RL, Yee GC, Matzke GR, Wells BG, Posey LM, eds. Pharmacotherapy: A Pathophysiologic Approach. 5th ed. New York: McGraw-Hill; 2002:185–218.

    Google Scholar 

  5. Opie LH. Mechanisms of cardiac contraction and relaxation. In: Zipes DP, Libby P, Bonow RO, Braunwald E, eds. Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine. Philadelphia: Elsevier Saunders; 2005:457–489.

    Google Scholar 

  6. Stevenson LW, Bellil D, Grover-McKay M, et al. Effects of afterload reduction (diuretics and vasodilators) on left ventricular volume and mitral regurgitation in severe congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. American Journal of Cardiology 1987;60:654–658.

    Article  PubMed  CAS  Google Scholar 

  7. Banasik JL, Copstead LC. Heart failure and dysrhythmias: Common sequelae of cardiac diseases. In: Copstead LC, Banasik JL, eds. Pathophysiology. 3rd ed. St. Louis: Elsevier Saunders; 2005:499–526.

    Google Scholar 

  8. Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling - concepts and clinical implications: A consensus paper from an international forum on cardiac remodeling. Journal of the American College of Cardiology 2000;35:569–582.

    Article  PubMed  CAS  Google Scholar 

  9. Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA. Controversies in ventricular remodelling. Lancet 2006;367:356–367.

    Article  PubMed  Google Scholar 

  10. Udelson JE, Konstam MA. Relation between left ventricular remodeling and clinical outcomes in heart failure patients with left ventricular systolic dysfunction. Journal of Cardiac Failure 2002;8(6 Suppl):S465–471.

    Article  PubMed  Google Scholar 

  11. Yousef ZR, Redwood SR, Marber MS. Postinfarction left ventricular remodelling: where are the theories and trials leading us? Heart 2000;83:76–80.

    Article  PubMed  CAS  Google Scholar 

  12. Chien KR, Knowlton KU, Zhu H, Chien S. Regulation of cardiac gene expression during myocardial growth and hypertrophy: Molecular studies of an adaptive physiologic response. FASEB Journal 1991;5:3037–3046.

    PubMed  CAS  Google Scholar 

  13. Aoki H, Richmond M, Izumo S, Sadoshima J. Specific role of the extracellular signal-regulated kinase pathway in angiotensin II-induced cardiac hypertrophy in vitro. The Biochemical Journal 2000;347:275–284.

    CAS  Google Scholar 

  14. Chien KR, Zhu H, Knowlton KU, et al. Transcriptional regulation during cardiac growth and development. Annual Review of Physiology 1993;55:77–95.

    Article  PubMed  CAS  Google Scholar 

  15. Ruwhof C, van der Laarse A. Mechanical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways. Cardiovascular Research 2000;47:23–37.

    Article  PubMed  CAS  Google Scholar 

  16. Sugden PH. Signaling pathways in cardiac myocyte hypertrophy. Annals of Medicine 2001;33:611–622.

    PubMed  CAS  Google Scholar 

  17. Thorburn A, Thorburn J, Chen SY, et al. HRas-dependent pathways can activate morphological and genetic markers of cardiac muscle cell hypertrophy. Journal of Biological Chemistry 1993;268:2244–2249.

    PubMed  CAS  Google Scholar 

  18. Shiojima I, Walsh K. Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes & Development 2006;20(24):3347–3365.

    Article  CAS  Google Scholar 

  19. Frey N, Katus HA, Olson EN, Hill JA. Hypertrophy of the heart: A new therapeutic target? Circulation 2004;109:1580–1589.

    Article  PubMed  Google Scholar 

  20. Serneri N, Modesti PA, Boddi M, et al. Cardiac growth factors in human hypertrophy: relations with myocardial contractility and wall stress. Circulation Research 1999;85:57–67.

    PubMed  CAS  Google Scholar 

  21. Schultz JJ, Witt SA, Glascock BJ, et al. TGF-?1 mediates the hypertrophic cardiomyocyte growth induced by angiotensin II. Journal of Clinical Investigation 2002;109:787–796.

    CAS  Google Scholar 

  22. Hein S, Amon E, Kostin S, et al. Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: Structural deterioration and compensatory mechanisms. Circulation 2003;107:984–991.

    Article  PubMed  Google Scholar 

  23. Iwanaga Y, Aoyama T, Kihara Y, Onozawa Y, Yoneda T, Sasayama S. Excessive activation of matrix metalloproteinases coincides with left ventricular remodeling during transition from hypertrophy to heart failure in hypertensive rats. Journal of the American College of Cardiology 2002;39:1384–1391.

    Article  PubMed  CAS  Google Scholar 

  24. Lopez B, Gonzalez A, Querejeta R, Larman M, Diez J. Alterations in the pattern of collagen deposition may contribute to the deterioration of systolic function in hypertensive patients with heart failure. Journal of the American College of Cardiology 2006;48:89–96.

    Article  PubMed  CAS  Google Scholar 

  25. Carabello BA. Concentric versus eccentric remodeling. Journal of Cardiac Failure 2002;8(6 Suppl):S258–263.

    Article  PubMed  Google Scholar 

  26. Colucci WS, Braunwald E. Pathophysiology of heart failure. In: Zipes DP, Libby P, Bonow RO, Braunwald E, eds. Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine. 7th ed. Philadelphia: Elsevier Saunders; 2005:509–538.

    Google Scholar 

  27. Imamura T, McDermott PJ, Kent RL, Nagatsu M, Cooper Gt, Carabello BA. Acute changes in myosin heavy chain synthesis rate in pressure versus volume overload. Circulation Research 1994;75(3):418–425.

    PubMed  CAS  Google Scholar 

  28. Matsuo T, Carabello BA, Nagatomo Y, et al. Mechanisms of cardiac hypertrophy in canine volume overload. American Journal of Physiology 1998;275(1 Pt 2):H65–74.

    PubMed  CAS  Google Scholar 

  29. Mann DL. Stress-activated cytokines and the heart: From adaptation to maladaptation. Annual Review of Physiology 2003;65:81–101.

    Article  PubMed  CAS  Google Scholar 

  30. Mitchell GF, Lamas GA, Vaughan DE, Pfeffer MA. Left ventricular remodeling in the year after first anterior myocardial infarction: A quantitative analysis of contractile segment length and ventricular shape. Journal of the American College of Cardiology 1992;19:1136–1144.

    Article  PubMed  CAS  Google Scholar 

  31. Baig MK, Mahon N, McKenna WJ, et al. The pathophysiology of advanced heart failure. American Heart Journal 1999;28(2):87–101.

    CAS  Google Scholar 

  32. Braunwald E. Biomarkers in heart failure. New England Journal of Medicine 2008;358(20):2148–2159.

    Article  PubMed  CAS  Google Scholar 

  33. Esler M, Kaye D, Lambert G, Esler D, Jennings G. Adrenergic nervous system in heart failure. American Journal of Cardiology 1997;80:7L–14L.

    Article  PubMed  CAS  Google Scholar 

  34. Zucker I. Novel mechanisms of sympathetic regulation in chronic heart failure. Hypertension 2006;48:1005–1011.

    Article  PubMed  CAS  Google Scholar 

  35. Houser SR, Margulies KB. Is depressed myocyte contractility centrally involved in heart failure? Circulation Research 2003;92:350–358.

    Article  PubMed  CAS  Google Scholar 

  36. Mann DL, Kent RL, Parsons B, Cooper G. Adrenergic effects on the biology of the adult mammalian cardiocyte. Circulation 1992;85:790–804.

    PubMed  CAS  Google Scholar 

  37. Singh K, Xiao L, Remondino A, Sawyer DB, Colucci WS. Adrenergic regulation of cardiac myocyte apoptosis. Journal of Cellular Physiology 2001;189(3):257–265.

    Article  PubMed  CAS  Google Scholar 

  38. Lohse MJ, Engelhardt S, Eschenhagen T. What is the role of adrenergic signaling in heart failure? Circulation Research 2003;93:896–906.

    Article  PubMed  CAS  Google Scholar 

  39. Cohn JN, Levine TB, Olivari MT, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. New England Journal of Medicine 1984;311:819–823.

    Article  PubMed  CAS  Google Scholar 

  40. The Cardiac Insufficiency Bisoprolol Study (CIBIS). A randomized trial of beta-blockade in heart failure. CIBIS Investigators and Committees. Circulation 1994;90(4):1765–1773.

    Google Scholar 

  41. CIBIS-II. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet 1999;353(9146):9–13.

    Google Scholar 

  42. MERIT-HF. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet 1999;353(9169):2001–2007.

    Google Scholar 

  43. Dargie HJ. Effect of carvedilol on outcome after myocardial infarction in patients with left-ventricular dysfunction: the CAPRICORN randomised trial. Lancet 2001;357(9266):1385–1390.

    Article  PubMed  CAS  Google Scholar 

  44. Packer M, Bristow MR, Cohn JN, et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group. New England Journal of Medicine 1996;334(21):1349–1355.

    Article  PubMed  CAS  Google Scholar 

  45. Packer M, Coats AJ, Fowler MB, et al. Effect of carvedilol on survival in severe chronic heart failure. New England Journal of Medicine 2001;344(22):1651–1658.

    Article  PubMed  CAS  Google Scholar 

  46. Poole-Wilson PA, Swedberg K, Cleland JG, et al. Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET): randomised controlled trial. Lancet 2003;362(9377):7–13.

    Article  PubMed  CAS  Google Scholar 

  47. Dubach P, Myers J, Bonetti P, et al. Effects of bisoprolol fumarate on left ventricular size, function, and exercise capacity in patients with heart failure: Analysis with magnetic resonance myocardial tagging. American Heart Journal 2002;143(4):676–683.

    Article  PubMed  CAS  Google Scholar 

  48. Lowes BD, Gill EA, Abraham WT, et al. Effects of carvedilol on left ventricular mass, chamber geometry, and mitral regurgitation in chronic heart failure. American Journal of Cardiology 1999;83(8):1201–1205.

    Article  PubMed  CAS  Google Scholar 

  49. Waagstein F, Strömblad O, Andersson B, et al. Increased exercise ejection fraction and reversed remodeling after long-term treatment with metoprolol in congestive heart failure: a randomized, stratified, double-blind, placebo-controlled trial in mild to moderate heart failure due to ischemic or idiopathic dilated cardiomyopathy. Eur J Heart Fail 2003;5(5):679–691.

    Article  PubMed  CAS  Google Scholar 

  50. Fox K, Ford I, Steg PG, Tendera M, Robertson M, Ferrari R; BEAUTIFUL investigators. Lancet 2008;372(9641):817–821.

    Article  PubMed  Google Scholar 

  51. Kim S, Ohta K, Hamaguchi A, Yukimura T, Miura K, Iwao H. Angiotensin II induces cardiac phenotypic modulation and remodeling in vivo in rats. Hypertension 1995;25:1252–1259.

    PubMed  CAS  Google Scholar 

  52. Kim S, Iwao H. Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal disease. Pharmacological Reviews 2000;52:11–34.

    PubMed  CAS  Google Scholar 

  53. Latini R, Masson S, Anand I, et al. The comparative prognostic value of plasma neurohormones at baseline in patients with heart failure enrolled in Val-HeFT. European Heart Journal 2004;25:292–299.

    Article  PubMed  CAS  Google Scholar 

  54. Swedberg K, Eneroth P, Kjekshus J, Wilhelmsen L. Hormones regulating cardiovascular function in patients with severe congestive heart failure and their relation to mortality. CONSENSUS Trial Study Group. Circulation 1990;82(5):1730–1736.

    PubMed  CAS  Google Scholar 

  55. Rosenkranz S. TGF-beta1 and angiotensin networking in cardiac remodeling. Cardiovascular Research 2004;63(3):423–432.

    Article  PubMed  CAS  Google Scholar 

  56. CONSENSUS. Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). The CONSENSUS Trial Study Group. New England Journal of Medicine 1987;316(23):1429–1435.

    Article  Google Scholar 

  57. Cohn JN, Johnson G, Ziesche S, et al. A comparison of enalapril with hydralazine–isosorbide dinitrate in the treatment of chronic congestive heart failure. New England Journal of Medicine 1991;325(5):303–310.

    Article  PubMed  CAS  Google Scholar 

  58. Pfeffer MA, Braunwald E, Moye LA, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators. New England Journal of Medicine 1992;327(10):669–677.

    Article  PubMed  CAS  Google Scholar 

  59. The SOLVD Investigators. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. New England Journal of Medicine 1991;325(5):293–302.

    Article  Google Scholar 

  60. Pitt B, Poole-Wilson PA, Segal R, et al. Effect of losartan compared with captopril on mortality in patients with symptomatic heart failure: randomised trial–the Losartan Heart Failure Survival Study ELITE II. Lancet 2000;355(9215):1582–1587.

    Article  PubMed  CAS  Google Scholar 

  61. Spinale FG, de Gasparo M, Whitebread S, et al. Modulation of the renin–angiotensin pathway through enzyme inhibition and specific receptor blockade in pacing-induced heart failure: I. Effects on left ventricular performance and neurohormonal systems. Circulation 1997;96(7):2385–2396.

    PubMed  CAS  Google Scholar 

  62. Miyazaki M, Takai S. Tissue angiotensin II generating system by angiotensin-converting enzyme and chymase. Journal of Pharmacology Science 2006;100(5):391–397.

    Article  CAS  Google Scholar 

  63. Re RN. Mechanisms of disease: local renin–angiotensin–aldosterone systems and the pathogenesis and treatment of cardiovascular disease. Nature Clinical Practice. Cardiovascular Medicine 2004;1(1):42–47.

    PubMed  CAS  Google Scholar 

  64. Rajagopalan S, Pitt B. Aldosterone as a target in congestive heart failure. Medical Clinics of North America 2003;87(2):441–457.

    Article  PubMed  CAS  Google Scholar 

  65. Farquharson C, Struthers AD. Spironolactone increases nitric oxide bioactivity, improves endothelial vasodilator dysfunction, and suppresses vascular angiotensin I/angiotensin II conversion in patients with chronic heart failure. Circulation 2000;101:594–597.

    PubMed  CAS  Google Scholar 

  66. Weber KT. Aldosterone in congestive heart failure. New England Journal of Medicine 2001;345:1689–1697.

    Article  PubMed  CAS  Google Scholar 

  67. Zannad F, Radauceanu A. Effect of MR blockade on collagen formation and cardiovascular disease with a specific emphasis on heart failure. Heart Failure Reviews 2005;10(1):71–78.

    Article  PubMed  CAS  Google Scholar 

  68. Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. New England Journal of Medicine 1999;341:709–717.

    Article  PubMed  CAS  Google Scholar 

  69. Pitt B, Remme W, Zannad F, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. New England Journal of Medicine 2003;348(14):1309–1321.

    Article  PubMed  CAS  Google Scholar 

  70. Zannad F, Alla F, Dousset B, Perez A, Pitt B. Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure. Circulation 2000;102:2700–2706.

    PubMed  CAS  Google Scholar 

  71. Chan AK, Sanderson JE, Wang T, Lam W, Yip G, Wang M, Lam YY, Zhang Y, Yeung L, Wu EB, Chan WW, Wong JT, So N, Yu CM. Aldosterone receptor antagonism induces reverse remodeling when added to angiotensin receptor blockade in chronic heart failure. Journal of the American College of Cardiology 2007;50(7):597–599.

    Article  CAS  Google Scholar 

  72. Schrier RW, Abraham WT. Hormones and hemodynamics in heart failure. New England Journal of Medicine 1999;341(8):577–585.

    Article  PubMed  CAS  Google Scholar 

  73. Lee CR, Watkins ML, Patterson H, et al. Vasopressin: A new target for the treatment of heart failure. American Heart Journal 2003;146:9–18.

    Article  PubMed  CAS  Google Scholar 

  74. Chatterjee K. Neurohormonal activation in congestive heart failure and the role of vasopressin. American Journal of Cardiology 2005;95(9A):8B–13B.

    Article  PubMed  CAS  Google Scholar 

  75. Sanghi P, Uretsky BF, Schwarz ER. Vasopressin antagonism: a future treatment option in heart failure. European Heart Journal 2005;26(6):538–543.

    Article  PubMed  CAS  Google Scholar 

  76. Konstam MA, Gheorghiade M, Burnett JC Jr, Grinfeld L, Maggioni AP, Swedberg K, Udelson JE, Zannad F, Cook T, Ouyang J, Zimmer C, Orlandi C. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST Outcome Trial. JAMA 2007;297(12):1319–1331.

    Article  PubMed  CAS  Google Scholar 

  77. Gheorghiade M, Konstam MA, Burnett JC Jr, Grinfeld L, Maggioni AP, Swedberg K, Udelson JE, Zannad F, Cook T, Ouyang J, Zimmer C, Orlandi C. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST Clinical Status Trials. JAMA 2007;297(12):1332–1343.

    Article  PubMed  CAS  Google Scholar 

  78. Attina T, Camidge R, Newby DE, Webb DJ. Endothelin antagonism in pulmonary hypertension, heart failure, and beyond. Heart (British Cardiac Society) 2005;91(6):825–831.

    CAS  Google Scholar 

  79. Spieker LE, Luscher TF. Will endothelin receptor antagonists have a role in heart failure? Medical Clinics of North America 2003;87:459–474.

    Article  PubMed  CAS  Google Scholar 

  80. Cowburn PJ, Cleland JG. Endothelin antagonists for chronic heart failure: do they have a role? European Heart Journal 2001;22(19):1772–1784.

    Article  PubMed  CAS  Google Scholar 

  81. Wada A, Tsutamoto T, Fukai D, et al. Comparison of the effects of selective endothelin ETA and ETB receptor antagonists in congestive heart failure. Journal of the American College of Cardiology 1997;30(5):1385–1392.

    Article  PubMed  CAS  Google Scholar 

  82. Wei CM, Lerman A, Rodeheffer RJ, et al. Endothelin in human congestive heart failure. Circulation 1994;89(4):1580–1586.

    PubMed  CAS  Google Scholar 

  83. Kelland NF, Webb DJ. Clinical trials of endothelin antagonists in heart failure: a question of dose? Experimental Biology & Medicine 2006;231(6):696–699.

    CAS  Google Scholar 

  84. Malinski T. Understanding nitric oxide physiology in the heart: a nanomedical approach. American Journal of Cardiology 2005;96(7B):13i–24i.

    Article  PubMed  CAS  Google Scholar 

  85. Anand I, McMurray J, Cohn JN, Konstam MA, Notter T, Quitzau K, Ruschitzka F, Luscher TF. Long-term effects of darusentan on left-ventricular remodeling and clinical outcomes in the EndothelinA Receptor Antagonist Trial in Heart Failure (EARTH): randomized, double-blind, placebo-controlled trial. Lancet 2004;364(9421):347–54.

    Google Scholar 

  86. Wollert KC, Drexler H. Regulation of cardiac remodeling by nitric oxide: focus on cardiac myocyte hypertrophy and apoptosis. Heart Failure Reviews 2002;7(4):317–325.

    Article  PubMed  CAS  Google Scholar 

  87. Saraiva RM, Hare JM. Nitric oxide signaling in the cardiovascular system: Implications for heart failure. Current Opinion in Cardiology 2006;21:221–228.

    Article  PubMed  Google Scholar 

  88. Khan SA, Skaf MW, Harrison RW, et al. Nitric oxide regulation of myocardial contractility and calcium cycling: independent impact of neuronal and endothelial nitric oxide synthases. Circulation Research 2003;92(12):1322–1329.

    Article  PubMed  CAS  Google Scholar 

  89. Hare JM. Nitroso-redox balance in the cardiovascular system. New England Journal of Medicine 2004;351(20):2112–2114.

    Article  PubMed  CAS  Google Scholar 

  90. Taylor AL, Ziesche S, Yancy C, et al. Combination of isosorbide dinitrate and hydralazine in blacks with heart failure. New England Journal of Medicine 2004;351 (20):2049–2057.

    Article  PubMed  CAS  Google Scholar 

  91. Cataliotti A, Burnett JC, Jr. Natriuretic peptides: novel therapeutic targets in heart failure. Journal of Investigative Medicine 2005;53(7):378–384.

    Article  PubMed  CAS  Google Scholar 

  92. Nishikimi T, Maeda N, Matsuoka H. The role of natriuretic peptides in cardioprotection. Cardiovascular Research 2006;69(2):318–328.

    Article  PubMed  CAS  Google Scholar 

  93. McKie PM, Burnett JC, Jr. B-type natriuretic peptide as a biomarker beyond heart failure: speculations and opportunities. Mayo Clinic Proceedings 2005;80(8):1029–1036.

    Article  PubMed  CAS  Google Scholar 

  94. Berger R, Huelsman M, Strecker K, et al. B-type natriuretic peptide predicts sudden death in patients with chronic heart failure. Circulation 2002;105(20):2392–2397.

    Article  PubMed  Google Scholar 

  95. Latini R, Masson S, Wong M, et al. Incremental prognostic value of changes in B-type natriuretic peptide in heart failure. American Journal of Medicine 2006;119(1):70.e23–70.e30.

    Article  CAS  Google Scholar 

  96. Logeart D, Thabut G, Jourdain P, et al. Predischarge B-type natriuretic peptide assay for identifying patients at high risk of re-admission after decompensated heart failure. Journal of the American College of Cardiology 2004;43(4):635–641.

    Article  PubMed  CAS  Google Scholar 

  97. Torre-Amione G. Immune activation in chronic heart failure. American Journal of Cardiology 2005;95(11A):3C–8C.

    Article  PubMed  CAS  Google Scholar 

  98. Bradham WS, Bozkurt B, Gunasinghe H, Mann D, Spinale FG. Tumor necrosis factor-alpha and myocardial remodeling in progression of heart failure: a current perspective. Cardiovascular Research 2002;53(4):822–830.

    Article  PubMed  CAS  Google Scholar 

  99. Chung ES, Packer M, Lo KH, Fasanmade AA, Willerson JT, Anti TNFTACHFI. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation 2003;107(25):3133–3140.

    Article  PubMed  CAS  Google Scholar 

  100. Khanna D, McMahon M, Furst DE. Anti-tumor necrosis factor alpha therapy and heart failure: what have we learned and where do we go from here? Arthritis & Rheumatism 2004;50(4):1040–1050.

    Article  CAS  Google Scholar 

  101. Mann DL, McMurray JJ, Packer M, et al. Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation 2004;109(13):1594–1602.

    Article  PubMed  CAS  Google Scholar 

  102. Stevenson WG, Ellison KE, Sweeney MO, Epstein LM, Maisel WH. Management of arrhythmias in heart failure. Cardiology in Review 2002;10(1):8–14.

    Article  PubMed  Google Scholar 

  103. Tomaselli GF, Marban E. Electrophysiological remodeling in hypertrophy and heart failure. Cardiovascular Research 1999;42:270–283.

    Article  PubMed  CAS  Google Scholar 

  104. Rubart M, Zipes DP. Mechanisms of sudden cardiac death. Journal of Clinical Investigation 2005;115:2305–2315.

    Article  PubMed  CAS  Google Scholar 

  105. Tomaselli GF, Zipes DP. What causes sudden death in heart failure? Circulation Research 2004;95:754–763.

    Article  PubMed  CAS  Google Scholar 

  106. Eisner DA, Choi HS, Diaz ME, O’Neill SC, Trafford AW. Integrative analysis of calcium cycling in cardiac muscle. Circulation Research 2000;87(12):1087–1094.

    PubMed  CAS  Google Scholar 

  107. Pieske B, Kretschmann B, Meyer M, et al. Alterations in intracellular calcium handling associated with the inverse force–frequency relation in human dilated cardiomyopathy. Circulation 1995;92(5):1169–1178.

    PubMed  CAS  Google Scholar 

  108. del Monte F, Harding SE, Schmidt U, et al. Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA 2a. Circulation 1999;100(23):2308–2311.

    CAS  Google Scholar 

  109. Schmidt U, Hajjar RJ, Kim CS, Lebeche D, Doye AA, Gwathmey JK. Human heart failure: cAMP stimulation of SR Ca(2+)-ATPase activity and phosphorylation level of phospholamban. American Journal of Physiology 1999;277(2 Pt 2):H474–480.

    PubMed  CAS  Google Scholar 

  110. Boluyt MO, O’Neill L, Meredith AL, et al. Alterations in cardiac gene expression during the transition from stable hypertrophy to heart failure. Marked upregulation of genes encoding extracellular matrix components. Circulation Research 1994;75(1):23–32.

    PubMed  CAS  Google Scholar 

  111. Williams RE, Kass DA, Kawagoe Y, et al. Endomyocardial gene expression during development of pacing tachycardia-induced heart failure in the dog. Circulation Research 1994;75(4):615–623.

    PubMed  CAS  Google Scholar 

  112. Hasenfuss G, Burkert P. Calcium cycling in congestive heart failure. Journal of Molecular & Cellular Cardiology 2002;34(8):951–969.

    Article  CAS  Google Scholar 

  113. Marks AR, Reiken S, Marx SO. Progression to heart failure: Is protein kinase a hyperphosphorylation of the ryanodine receptor a contributing factor? Circulation 2002;105:272–275.

    PubMed  CAS  Google Scholar 

  114. Bodi I, Muth JN, Hahn HS, et al. Electrical remodeling in hearts from a calcium-dependent mouse model of hypertrophy and failure: complex nature of K+ current changes and action potential duration. Journal of the American College of Cardiology 2003;41(9):1611–1622.

    Article  PubMed  CAS  Google Scholar 

  115. Kaab S, Dixon J, Duc J, et al. Molecular basis of transient outward potassium current downregulation in human heart failure: a decrease in Kv4.3 mRNA correlates with a reduction in current density. Circulation 1998;98(14):1383–1393.

    PubMed  CAS  Google Scholar 

  116. Tomita F, Bassett AL, Myerburg RJ, Kimura S. Diminished transient outward currents in rat hypertrophied ventricular myocytes. Circulation Research 1994;75(2):296–303.

    PubMed  CAS  Google Scholar 

  117. Rubart M, Zipes DP. Genesis of cardiac arrhythmias: Electrophysiological considerations. In: Zipes DP, Libby P, Bonow RO, Braunwald E, eds. Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine. 7th ed. Philadelphia: Elsevier Saunders; 2005:653–687.

    Google Scholar 

  118. Weiss JN, Chen PS, Qu Z, Karagueuzian HS, Garfinkel A. Ventricular fibrillation: how do we stop the waves from breaking? Circulation Research 2000;87(12):1103–1107.

    PubMed  CAS  Google Scholar 

  119. Kawara T, Derksen R, de Groot JR, et al. Activation delay after premature stimulation in chronically diseased human myocardium relates to the architecture of interstitial fibrosis. Circulation 2001;104(25):3069–3075.

    Article  PubMed  CAS  Google Scholar 

  120. Spach MS, Heidlage JF, Dolber PC, Barr RC. Electrophysiological effects of remodeling cardiac gap junctions and cell size: experimental and model studies of normal cardiac growth. Circulation Research 2000;86(3):302–311.

    PubMed  CAS  Google Scholar 

  121. Kashani A, Barold SS. Significance of QRS complex duration in patients with heart failure. Journal of the American College of Cardiology 2005;46(12):2183–2192.

    Article  PubMed  Google Scholar 

  122. Knight BP. Atrial fibrillation in patients with congestive heart failure. Pacing & Clinical Electrophysiology 2003;26(7 Pt 2):1620–1623.

    Article  Google Scholar 

  123. Kannel WB, Abbott RD, Savage DD, McNamara PM. Epidemiologic features of chronic atrial fibrillation: the Framingham study. New England Journal of Medicine 1982;306(17):1018–1022.

    Article  PubMed  CAS  Google Scholar 

  124. Markides V, Peters NS. Mechanisms underlying the development of atrial arrhythmias in heart failure. Heart Failure Reviews 2002;7:243–253.

    Article  PubMed  Google Scholar 

  125. Dries DL, Exner DV, Gersh BJ, Domanski MJ, Waclawiw MA, Stevenson LW. Atrial fibrillation is associated with an increased risk for mortality and heart failure progression in patients with asymptomatic and symptomatic left ventricular systolic dysfunction: a retrospective analysis of the SOLVD trials: Studies of Left Ventricular Dysfunction. J Am Coll Cardiol 1998:32:695–703.

    Article  PubMed  CAS  Google Scholar 

  126. Roy D, Talajic M, Nattel S, Wyse DG, Dorian P, Lee KL, Bourassa MG, Arnold JM, Buston AE, Camm AJ, Connolly SJ, Dubuc M, Ducharme A, Guerra PG, Hohnloser SH, Lambert J, Le Heuzey JY, O’Hara G, Pedersen OD, Rouleau JL, Singh BN, Stevenson LW, Stevenson WG, Thibault B, Waldo AL. Atrial Fibrillation and Congestive Heart Failure investigators. Rhythm control versus rate control for atrial fibrillation and heart failure. New England Journal of Medicine 2008;358(25)2667–2677.

    Article  PubMed  CAS  Google Scholar 

  127. Khan MN, Jais P, Cummings J, Di Biase L, Sanders P, Martin DO, Kautzner J, Hao S, Themistoclakis S, Fanelli R, Potenza D, Massaro R, Wazni P, Schweikert R, Saliba W, Wang P, Al-Ahmad A, Behiery S, Santarelli P, Starlin RC, Dello Russo A, Pelargonio G, Brachmann J, Schibgilla V, Bonso A, Casella M, Raveile A, Haissaguerre M, Natala A, PABA-CHF investigators. Pulmonary-vein isolation for atrial fibrillation in patients with heart failure. New England Journal of Medicine 2008;359(17):1778–1785.

    Article  PubMed  CAS  Google Scholar 

  128. Hen S, Amon E, Kostin S, et al. Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: Structural deterioration and compensatory mechanisms. Circulation 2003;107:984–991.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Velez, M., Sweitzer, N.K. (2010). Pathophysiology of Heart Failure. In: Maisel, W. (eds) Device Therapy in Heart Failure. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59745-424-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-424-7_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-994-9

  • Online ISBN: 978-1-59745-424-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics