Skip to main content

Oxidative Stress and Aging in the Nematode Caenorhabditis elegans

  • Chapter
Oxidative Stress in Aging

Part of the book series: Aging Medicine ((AGME))

Summary

The senescent decline that leads inevitably to death in most animal species is accompanied by a massive increase in molecular damage. Yet, the chain of events that initially causes this process, and the determinants of the rate at which it happens, remain poorly understood. For many years, much research on this topic has been guided by an interrelated set of theories that view oxidative damage as a potential primary cause of aging. These theories have framed the construction and interpretation of many studies in the nematode Caenorhabditis elegans. In this chapter, we critically survey these studies. Overall, these investigations have either disproved or, at least, failed to find clear evidence for many of the oxidative damage theories. In particular, they have failed to demonstrate any role of metabolic rate or mitochondrial superoxide (O2 •−) in aging. However, they have revealed a powerful influence of mitochondria on the rate of aging in C. elegans. This may or may not have something to do with mitochondrial O2 •− production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell 2005;120:483–95.

    PubMed  CAS  Google Scholar 

  2. Raha S, Robinson BH. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci 2000;25:502–8.

    PubMed  CAS  Google Scholar 

  3. Wood WB. The nematode Caenorhabditis elegans. Plainview, New York: Cold Spring Harbor Press; 1988.

    Google Scholar 

  4. Riddle DL, Blumenthal T, Meyer BJ, Priess JR. C. elegans II. Plainview, New York: Cold Spring Harbor Laboratory Press; 1997.

    Google Scholar 

  5. Fraser A, Kamath R, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer J. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 2000;408:325–30.

    PubMed  CAS  Google Scholar 

  6. Garigan D, Hsu A, Fraser A, Kamath R, Ahringer J, Kenyon C. Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation. Genetics 2002;161:1101–12.

    PubMed  CAS  Google Scholar 

  7. Gerstbrein B, Stamatas G, Kollias N, Driscoll M. In vivo spectrofluorimetry reveals endogenous biomarkers that report healthspan and dietary restriction in Caenorhabditis elegans. Aging Cell 2005;4:127–37.

    PubMed  CAS  Google Scholar 

  8. Ishii N, Fujii M, Hartman PS et al. A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature 1998;394:694–7.

    PubMed  CAS  Google Scholar 

  9. Ishii N, Takahashi K, Tomita S et al. A methyl viologen-sensitive mutant of the nematode Caenorhabditis elegans. Mutat Res 1990;237:165–71.

    PubMed  CAS  Google Scholar 

  10. Senoo-Matsuda N, Yasuda K, Tsuda M et al. A defect in the cytochrome b large subunit in complex II causes both superoxide anion overproduction and abnormal energy metabolism in Caenorhabditis elegans. J Biol Chem 2001;276:41553–8.

    PubMed  CAS  Google Scholar 

  11. Ishii N, Ishii T, Hartman PS. The role of the electron transport gene SDHC on lifespan and cancer. Exp Gerontol 2006;41:952–6.

    PubMed  CAS  Google Scholar 

  12. Kenyon C. The plasticity of aging: insights from long-lived mutants. Cell 2005;120:449–60.

    PubMed  CAS  Google Scholar 

  13. Larsen PL. Aging and resistance to oxidative stress in Caenorhabditis elegans. Proc Natl Acad Sci U S A 1993;90:8905–9.

    PubMed  CAS  Google Scholar 

  14. Vanfleteren JR. Oxidative stress and ageing in Caenorhabditis elegans. Biochem J 1993;292:605–8.

    PubMed  CAS  Google Scholar 

  15. Vanfleteren JR, De Vreese A. The gerontogenes age-1 and daf-2 determine metabolic rate potential in aging Caenorhabditis elegans. FASEB J 1995;9:1355–61.

    PubMed  CAS  Google Scholar 

  16. Sun J, Tower J. FLP recombinase-mediated induction of Cu/Zn-superoxide dismutase trans-gene expression can extend the life span of adult Drosophila melanogaster flies. Mol Cell Biol 1999;19:216–28.

    PubMed  CAS  Google Scholar 

  17. Parkes TL, Elia AJ, Dickinson D, Hilliker AJ, Phillips JP, Boulianne GL. Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nat Genet 1998;19:171–4.

    PubMed  CAS  Google Scholar 

  18. Orr W, Sohal R. Does overexpression of Cu,Zn-SOD extend life span in Drosophila mela-nogaster? Exp Gerontol 2003;38:227–30.

    PubMed  CAS  Google Scholar 

  19. Adachi H, Fujiwara Y, Ishii N. Effects of oxygen on protein carbonyl and aging in Caenorhabditis elegans mutants with long (age-1) and short (mev-1) life spans. J Gerontol 1998;53A:B240–B4.

    CAS  Google Scholar 

  20. Yasuda K, Ishii T, Suda H et al. Age-related changes of mitochondrial structure and function in Caenorhabditis elegans. Mech Ageing Dev 2006;127:763–70.

    PubMed  CAS  Google Scholar 

  21. Nakamura A, Yasuda K, Adachi H, Sakurai Y, Ishii N, Goto S. Vitellogenin-6 is a major carbonylated protein in aged nematode, Caenorhabditis elegans. Biochem Biophys Res Commun 1999;264:580–3.

    PubMed  CAS  Google Scholar 

  22. Herndon L, Schmeissner P, Dudaronek J et al. Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 2002;419:808–14.

    PubMed  CAS  Google Scholar 

  23. Shibata Y, Branicky R, Landaverde IO, Hekimi S. Redox regulation of germline and vulval development in Caenorhabditis elegans. Science 2003;302:1779–82.

    PubMed  CAS  Google Scholar 

  24. Klass M, Nguyen PN, Dechavigny A. Age-correlated changes in the DNA template in the nematode Caenorhabditis elegans. Mech Ageing Dev 1983;22:253–63.

    PubMed  CAS  Google Scholar 

  25. Melov S, Lithgow GJ, Fischer DR, Tedesco PM, Johnson TE. Increased frequency of deletions in the mitochondrial genome with age of Caenorhabditis elegans. Nucleic Acids Res 1995;23:1419–25.

    PubMed  CAS  Google Scholar 

  26. Yin D. Biochemical basis of lipofuscin, ceroid, and age pigment-like fluorophores. Free Radic Biol Med 1996;21:871–88.

    PubMed  CAS  Google Scholar 

  27. Terman A, Brunk UT. Oxidative stress, accumulation of biological ‘garbage’, and aging. Antioxid Redox Signal 2006;8:197–204.

    PubMed  CAS  Google Scholar 

  28. Sitte N, Huber M, Grune T et al. Proteasome inhibition by lipofuscin/ceroid during postmi-totic aging of fibroblasts. FASEB J 2000;14:1490–8.

    PubMed  CAS  Google Scholar 

  29. Davis BO, Anderson GL, Dusenbery DB. Total luminescence spectroscopy of fluorescence changes during aging in Caenorhabditis elegans. Biochemistry 1982;21:4089–95.

    PubMed  CAS  Google Scholar 

  30. Klass MR. Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech Ageing Dev 1977;6:413–29.

    PubMed  CAS  Google Scholar 

  31. Braeckman BP, Houthoofd K, Brys K et al. No reduction of energy metabolism in Clk mutants. Mech Ageing Dev 2002;123:1447–56.

    PubMed  CAS  Google Scholar 

  32. Houthoofd K, Braeckman BP, Lenaerts I et al. DAF-2 pathway mutations and food restriction in aging Caenorhabditis elegans differentially affect metabolism. Neurobiol Aging 2005;26:689–96.

    PubMed  CAS  Google Scholar 

  33. Hosokawa H, Ishii N, Ishida H, Ichimori K, Nakazawa H, Suzuki K. Rapid accumulation of fluorescent material with ageing in an oxygen-sensitive mutant mev-1 of Caenorhabditis elegans. Mech Ageing Dev 1994;74:161–70.

    PubMed  CAS  Google Scholar 

  34. Clokey G V, Jacobsen LA. The autofluorescent ‘lipofuscin’ granules in the intestinal cells of Caenorhabditis elegans are secondary lysosomes. Mech Ageing Dev 1986;35:79–94.

    PubMed  CAS  Google Scholar 

  35. Ishii N, Goto S, Hartman PS. Protein oxidation during aging of the nematode Caenorhabditis elegans. Free Radic Biol Med 2002;33:1021–5.

    PubMed  CAS  Google Scholar 

  36. Yasuda K, Adachi H, Fujiwara Y, Ishii N. Protein carbonyl accumulation in aging dauer formation-defective (daf) mutants of Caenorhabditis elegans. J Gerontol 1999;54A: B47–51; discussion B2–3.

    CAS  Google Scholar 

  37. Brys K, Vanfleteren JR, Braeckman BP. Testing the rate-of-living / oxidative damage theory of aging in the nematode model Caenorhabditis elegans. Exp Gerontol 2007;42:845–51.

    PubMed  CAS  Google Scholar 

  38. Hartman P, Ponder R, Lo HH, Ishii N. Mitochondrial oxidative stress can lead to nuclear hypermutability. Mech Ageing Dev 2004;125:417–20.

    PubMed  CAS  Google Scholar 

  39. Honda S, Ishii N, Suzuki K, Matsuo M. Oxygen-dependent perturbation of life span and aging rate in the nematode. J Gerontol 1993;48A:B57–B61.

    Google Scholar 

  40. Senoo-Matsuda N, Hartman PS, Akatsuka A, Yoshimura S, Ishii N. A complex II defect affects mitochondrial structure, leading to ced-3- and ced-4-dependent apoptosis and aging. J Biol Chem 2003;278:22031–6.

    PubMed  CAS  Google Scholar 

  41. Henderson ST, Johnson TE. daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr Biol 2001;11:1975–80.

    PubMed  CAS  Google Scholar 

  42. Keaney M, Matthijssens F, Sharpe M, Vanfleteren JR, Gems D. Superoxide dismutase mimetics elevate superoxide dismutase activity in vivo but do not retard aging in the nema-tode Caenorhabditis elegans. Free Radic Biol Med 2004;37:239–50.

    PubMed  CAS  Google Scholar 

  43. Ayyadevara S, Engle MR, Singh SP et al. Lifespan and stress resistance of Caenorhabditis elegans are increased by expression of glutathione transferases capable of metabolizing the lipid peroxidation product 4-hydroxynonenal. Aging Cell 2005;4:257–71.

    PubMed  CAS  Google Scholar 

  44. Arkblad EL, Tuck S, Pestov NB et al. A Caenorhabditis elegans mutant lacking functional nicotinamide nucleotide transhydrogenase displays increased sensitivity to oxidative stress. Free Radic Biol Med 2005;38:1518–25.

    PubMed  CAS  Google Scholar 

  45. Blum J, Fridovich I. Superoxide, hydrogen peroxide, and oxygen toxicity in two free-living nematode species. Arch Biochem Biophys 1983;222:35–43.

    PubMed  CAS  Google Scholar 

  46. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. Oxford, UK: Oxford Science Publications; 1999.

    Google Scholar 

  47. Mathers J, Fraser JA, McMahon M, Saunders RD, Hayes JD, McLellan LI. Antioxidant and cytoprotective responses to redox stress. Biochem Soc Symp 2004:157–76.

    Google Scholar 

  48. Fridovich I. Superoxide radical and superoxide dismutases. Annu Rev Biochem 1995;64:97–112.

    PubMed  CAS  Google Scholar 

  49. Giglio AM, Hunter T, Bannister J V, Bannister WH, Hunter GJ. The copper/zinc superoxide dismutase gene of Caenorhabditis elegans. Biochem Mol Biol Int 1994;33:41–4.

    PubMed  CAS  Google Scholar 

  50. Jensen LT, Culotta VC. Activation of CuZn superoxide dismutases from Caenorhabditis elegans does not require the copper chaperone CCS. J Biol Chem 2005;280:41373–9.

    PubMed  CAS  Google Scholar 

  51. Giglio M-P, Hunter T, Bannister JV, Bannister WH, Hunter GJ. The manganese superoxide dismutase gene of Caenorhabditis elegans. Biochem Mol Biol Int 1994;33:37–40.

    PubMed  CAS  Google Scholar 

  52. Hunter T, Bannister WH, Hunter GJ. Cloning, expression, and characterization of two manganese superoxide dismutases from Caenorhabditis elegans. J Biol Chem 1997;272:28652–9.

    PubMed  CAS  Google Scholar 

  53. Suzuki N, Inokuma K, Yasuda K, Ishii N. Cloning, sequencing and mapping of a manganese superoxide dismutase gene of the nematode Caenorhabditis elegans. DNA Res 1996;3:171–4.

    PubMed  CAS  Google Scholar 

  54. Honda Y, Honda S. The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB J 1999;13:1385–93.

    PubMed  CAS  Google Scholar 

  55. Wang J, Kim S. Global analysis of dauer gene expression in Caenorhabditis elegans. Development 2003;130:1621–34.

    PubMed  CAS  Google Scholar 

  56. Fujii M, Ishii N, Joguchi A, Yasuda K, Ayusawa D. Novel superoxide dismutase gene encoding membrane-bound and extracellular isoforms by alternative splicing in Caenorhabditis elegans. DNA Res 1998;5:25–30.

    PubMed  CAS  Google Scholar 

  57. Petriv OI, Rachubinski RA. Lack of peroxisomal catalase causes a progeric phenotype in Caenorhabditis elegans. J Biol Chem 2004;279:19996–20001.

    PubMed  CAS  Google Scholar 

  58. Taub J, Lau JF, Ma C et al. A cytosolic catalase is needed to extend lifespan in C. elegans daf-C and clk-1 mutants. Nature 1999;399:162–6.

    PubMed  CAS  Google Scholar 

  59. Togo SH, Maebuchi M, Yokota S, Bun-Ya M, Kawahara A, Kamiryo T. Immunological detection of alkaline-diaminobenzidine-negative peroxisomes of the nematode Caenorhabditis elegans purification and unique pH optima of peroxisomal catalase. Eur J Biochem 2000;267:1307–12.

    PubMed  CAS  Google Scholar 

  60. Yanase S, Yasuda K, Ishii N. Adaptive responses to oxidative damage in three mutants of Caenorhabditis elegans (age-1, mev-1 and daf-16) that affect life span. Mech Ageing Dev 2002;123:1579–87.

    PubMed  CAS  Google Scholar 

  61. McElwee J, Bubb K, Thomas J. Transcriptional outputs of the Caenorhabditis elegans fork-head protein DAF-16. Aging Cell 2003;2:111–21.

    PubMed  CAS  Google Scholar 

  62. McElwee JJ, Schuster E, Blanc E, Thomas JH, Gems D. Shared transcriptional signature in C. elegans dauer larvae and long-lived daf-2 mutants implicates detoxification system in longevity assurance. J Biol Chem 2004;279:44533–43.

    PubMed  CAS  Google Scholar 

  63. Murphy CT, McCarroll SA, Bargmann CI et al. Genes that act downstream of DAF-16 to influence the lifespan of C. elegans. Nature 2003;424:277–84.

    PubMed  CAS  Google Scholar 

  64. Houthoofd K, Braeckman B, Johnson T, Vanfleteren J. Life extension via dietary restriction is independent of the Ins/IGF-1 signalling pathway in Caenorhabditis elegans. Exp Gerontol 2003;38:947–54.

    PubMed  CAS  Google Scholar 

  65. Anderson GL. Superoxide dismutase activity in dauer larvae of Caenorhabditis elegans (Nematoda: Rhabditidae). Can J Zool 1982;60:288–91.

    CAS  Google Scholar 

  66. Houthoofd K, Braeckman B, Lenaerts I et al. Ageing is reversed, and metabolism is reset to young levels in recovering dauer larvae of C. elegans. Exp Gerontol 2002;37:1015–21.

    PubMed  CAS  Google Scholar 

  67. Taub J, Lau J, Ma C et al. A cytosolic catalase is needed to extend adult lifespan in C. elegans daf-C and clk-1 mutants. Nature 2003;421:764.

    PubMed  CAS  Google Scholar 

  68. Henderson ST, Bonafe M, Johnson TE. daf-16 protects the nematode Caenorhabditis elegans during food deprivation. J Gerontol 2006;61A:444–60.

    CAS  Google Scholar 

  69. Hsu A, Murphy C, Kenyon C. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 2003;300:1142–5.

    PubMed  CAS  Google Scholar 

  70. Sampayo JN, Olsen A, Lithgow GJ. Oxidative stress in Caenorhabditis elegans: protective effects of superoxide dismutase/catalase mimetics. Aging Cell 2003;2:319–26.

    PubMed  CAS  Google Scholar 

  71. Melov S, Ravenscroft J, Malik S et al. Extension of life-span with superoxide dismutase/ catalase mimetics. Science 2000;289:1567–9.

    PubMed  CAS  Google Scholar 

  72. Keaney M, Gems D. No increase in lifespan in Caenorhabditis elegans upon treatment with the superoxide dismutase mimetic EUK-8. Free Radic Biol Med 2003;34:277–82.

    PubMed  CAS  Google Scholar 

  73. Magwere T, West M, Riyahi K, Murphy MP, Smith RA, Partridge L. The effects of exogenous antioxidants on lifespan and oxidative stress resistance in Drosophila melanogaster. Mech Ageing Dev 2006;127:356–70.

    PubMed  CAS  Google Scholar 

  74. Bayne AC, Sohal RS. Effects of superoxide dismutase/catalase mimetics on life span and oxidative stress resistance in the housefly, Musca domestica. Free Radic Biol Med 2002;32:1229–34.

    PubMed  CAS  Google Scholar 

  75. Gourley BL, Parker SB, Jones BJ, Zumbrennen KB, Leibold EA. Cytosolic aconitase and ferritin are regulated by iron in Caenorhabditis elegans. J Biol Chem 2003;278:3227–34.

    PubMed  CAS  Google Scholar 

  76. Barsyte D, Lovejoy D, Lithgow G. Longevity and heavy metal resistance in daf-2 and age-1 long-lived mutants of Caenorhabditis elegans. FASEB J 2001;15:627–34.

    PubMed  CAS  Google Scholar 

  77. Golden TR, Melov S. Microarray analysis of gene expression with age in individual nema-todes. Aging Cell 2004;3:111–24.

    PubMed  CAS  Google Scholar 

  78. Gems D, McElwee JJ. Broad spectrum detoxification: the major longevity assurance process regulated by insulin/IGF-1 signaling? Mech Ageing Dev 2005;126:381–7.

    PubMed  CAS  Google Scholar 

  79. Gibson GG, Skett P. Introduction to drug metabolism. 3rd edn. Bath, UK: Nelson Thornes; 2001.

    Google Scholar 

  80. McElwee JJ, Schuster E, Blanc E et al. Evolutionary conservation of regulated longevity assurance mechanisms. Genome Biol 2007;8:R132.

    PubMed  Google Scholar 

  81. Hayes JD, McLellan LI. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic Res 1999;31:273–300.

    PubMed  CAS  Google Scholar 

  82. Tawe W, Eschbach M, Walter R, Henkle-Duhrsen K. Identification of stress-responsive genes in Caenorhabditis elegans using RT-PCR differential display. Nucleic Acids Res 1998;26:1621–7.

    PubMed  CAS  Google Scholar 

  83. Leiers B, Kampkotter A, Grevelding C, Link C, Johnson T, Henkle-Duhrsen K. A stress-response glutathione S-transferase confers resistance to oxidative stress in Caenorhabditis elegans. Free Radic Biol Med 2003;34:1405–15.

    PubMed  CAS  Google Scholar 

  84. Ayyadevara S, Dandapat A, Singh SP et al. Lifespan extension in hypomorphic daf-2 mutants of Caenorhabditis elegans is partially mediated by glutathione transferase CeGSTP2-2. Aging Cell 2005;4:299–307.

    PubMed  CAS  Google Scholar 

  85. Engle MR, Singh SP, Nanduri B, Ji X, Zimniak P. Intertebrate glutathione transferases conjugating 4-hydroxynonenal: CeGST 5.4 from Caenorhabditis elegans. Chemicobiol Int 2001;133:244–8.

    CAS  Google Scholar 

  86. Ayyadevara S, Dandapat A, Singh SP et al. Life span and stress resistance of Caenorhabditis elegans are differentially affected by glutathione transferases metabolizing 4-hydroxynon-2-enal. Mech Ageing Dev 2007;128:196–205.

    PubMed  CAS  Google Scholar 

  87. Epstein J, Gershon D. Studies on ageing in nematodes I V. The effect of anti-oxidants on cellular damage and life span. Mech Ageing Dev 1972;1:257–64.

    CAS  Google Scholar 

  88. Zuckerman BM, Geist MA. Effects of vitamin E on the nematode Caenorhabditis elegans. Age (Omaha, Nebr) 1983;6:1–4.

    CAS  Google Scholar 

  89. Harrington LA, Harley CB. Effect of vitamin E on lifespan and reproduction in Caenorhabditis elegans. Mech Ageing Dev 1988;43:71–8.

    PubMed  CAS  Google Scholar 

  90. Adachi H, Ishii N. Effects of tocotrienols on life span and protein carbonylation in Caenorhabditis elegans. J Gerontol 2000;55A:B280–5.

    CAS  Google Scholar 

  91. Ishii N, Senoo-Matsuda N, Miyake K et al. Coenzyme Q10 can prolong C. elegans lifespan by lowering oxidative stress. Mech Ageing Dev 2004;125:41–6.

    PubMed  CAS  Google Scholar 

  92. Boveris A. Mitochondrial production of superoxide radical and hydrogen peroxide. In: Reivich M, Coburn R, Lahiri S, Chance B, eds. Tissue hypoxia and ischemia. New York: Plenum Press; 1977:67–82.

    Google Scholar 

  93. St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD. Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 2002;277:44784–90.

    PubMed  CAS  Google Scholar 

  94. Staniek K, Nohl H. Are mitochondria a permanent source of reactive oxygen species? Biochim Biophys Acta 2000;1460:268–75.

    PubMed  CAS  Google Scholar 

  95. Imlay JA, Fridovich I. Assay of metabolic superoxide production in Escherichia coli. J Biol Chem 1991;266:6957–65.

    PubMed  CAS  Google Scholar 

  96. Nohl H, Hegner D. Do mitochondria produce oxygen radicals in vivo? Eur J Biochem 1978;82:563–7.

    PubMed  CAS  Google Scholar 

  97. Murfitt R, Vogel K, Sanadi D. Characterization of the mitochondria of the free-living nema-tode Caenorhabditis elegans. Comp Biochem Physiol 1976;53B:423–30.

    Google Scholar 

  98. Okimoto R, Macfarlane JL, Clary DO, Wolstenholme DR. The mitochondrial genomes of two nematodes, Caenorhabditis elegans and Ascaris suum. Genetics 1992;130:471–98.

    PubMed  CAS  Google Scholar 

  99. De Cuyper C, Vanfleteren JR. Oxygen consumption during development and aging of the nematode Caenorhabditis elegans. Comp Biochem Physiol 1982;73A(2):283–9.

    Google Scholar 

  100. Vanfleteren JR, De Vreese A. Rate of aerobic metabolism and superoxide production rate potential in the nematode Caenorhabditis elegans. J Exp Zool 1996;274:93–100.

    PubMed  CAS  Google Scholar 

  101. Suda H, Shouyama T, Yasuda K, Ishii N. Direct measurement of oxygen consumption rate on the nematode Caenorhabditis elegans by using an optical technique. Biochem Biophys Res Commun 2005;330:839–43.

    PubMed  CAS  Google Scholar 

  102. Anson RM, Hansford RG. Mitochondrial influence on aging rate in Caenorhabditis elegans. Aging Cell 2004;3:29–34.

    PubMed  CAS  Google Scholar 

  103. Dillin A, Hsu A, Arantes-Oliveira N et al. Rates of behavior and aging specified by mito-chondrial function during development. Science 2002;298:2398–401.

    PubMed  CAS  Google Scholar 

  104. Lee S, Lee R, Fraser A, Kamath R, Ahringer J, Ruvkun G. A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet 2003;33:40–8.

    PubMed  CAS  Google Scholar 

  105. Hansen M, Hsu AL, Dillin A, Kenyon C. New genes tied to endocrine, metabolic, and dietary regulation of lifespan from a Caenorhabditis elegans genomic RNAi screen. PLoS Genet 2005;1:119–28.

    PubMed  CAS  Google Scholar 

  106. Hamilton B, Dong Y, Shindo M et al. A systematic RNAi screen for longevity genes in C. elegans. Genes Dev 2005;19:1544–55.

    PubMed  CAS  Google Scholar 

  107. Rea SL. Metabolism in the Caenorhabditis elegans Mit mutants. Exp Gerontol 2005;40:841–9.

    PubMed  CAS  Google Scholar 

  108. Yoneda T, Benedetti C, Urano F, Clark SG, Harding HP, Ron D. Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones. J Cell Sci 2004;117:4055–66.

    PubMed  CAS  Google Scholar 

  109. Feng J, Bussiere F, Hekimi S. Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev Cell 2001;1:633–44.

    PubMed  CAS  Google Scholar 

  110. Tsang W Y, Sayles LC, Grad LI, Pilgrim DB, Lemire BD. Mitochondrial respiratory chain deficiency in Caenorhabditis elegans results in developmental arrest and increased life span. J Biol Chem 2001;276:32240–6.

    PubMed  CAS  Google Scholar 

  111. Tsang W Y, Lemire BD. Mitochondrial genome content is regulated during nematode development. Biochem Biophys Res Commun 2002;291:8–16.

    PubMed  CAS  Google Scholar 

  112. Ewbank JJ, Barnes TM, Lakowski B, Lussier M, Bussey H, Hekimi S. Structural and functional conservation of the Caenorhabditis elegans timing gene clk-1. Science 1997;275:980–3.

    PubMed  CAS  Google Scholar 

  113. Stenmark P, Grunler J, Mattsson J, Sindelar PJ, Nordlund P, Berthold DA. A new member of the family of di-iron carboxylate proteins. Coq7 (clk-1), a membrane-bound hydroxylase involved in ubiquinone biosynthesis. J Biol Chem 2001;276:33297–300.

    PubMed  CAS  Google Scholar 

  114. Felkai S, Ewbank JJ, Lemieux J, Labbe J-C, Brown GG, Hekimi S. CLK-1 controls respiration, behavior and aging in the nematode Caenorhabditis elegans. EMBO J 1999;18:1783–92.

    PubMed  CAS  Google Scholar 

  115. Stepanyan Z, Hughes B, Cliche DO, Camp D, Hekimi S. Genetic and molecular characterization of CLK-1/mCLK1, a conserved determinant of the rate of aging. Exp Gerontol 2006;41:940–51.

    PubMed  CAS  Google Scholar 

  116. Miyadera H, Amino H, Hiraishi A et al. Altered quinone biosynthesis in the long-lived clk-1 mutants of Caenorhabditis elegans. J Biol Chem 2001;276:7713–6.

    PubMed  CAS  Google Scholar 

  117. Wong AE, Boutis P, Hekimi S. Mutations in the clk-1 gene of Caenorhabditis elegans affect developmental and behavioral timing. Genetics 1995;139:1247–59.

    PubMed  CAS  Google Scholar 

  118. Larsen P, Clarke, CF. Extension of life-span in Caenorhabditis elegans by a diet lacking coenzyme Q. Science 2002;295:120–3.

    PubMed  CAS  Google Scholar 

  119. Hartman PS, Ishii N, Kayser EB, Morgan PG, Sedensky MM. Mitochondrial mutations differentially affect aging, mutability and anesthetic sensitivity in Caenorhabditis elegans. Mech Ageing Dev 2001;122:1187–201.

    PubMed  CAS  Google Scholar 

  120. Ichimiya H, Huet RG, Hartman P, Amino H, Kita K, Ishii N. Complex II inactivation is lethal in the nematode Caenorhabditis elegans. Mitochondrion 2002;2:191–8.

    PubMed  CAS  Google Scholar 

  121. Braeckman BP, Houthoofd K, De Vreese A, Vanfleteren JR. Apparent uncoupling of energy production and consumption in long-lived Clk mutants of Caenorhabditis elegans. Curr Biol 1999;9:493–6.

    PubMed  CAS  Google Scholar 

  122. Lass A, Sohal RS. Effect of coenzyme Q(10) and alpha-tocopherol content of mitochondria on the production of superoxide anion radicals. FASEB J 2000;14:87–94.

    PubMed  CAS  Google Scholar 

  123. Kwong LK, Kamzalov S, Rebrin I et al. Effects of coenzyme Q(10) administration on its tissue concentrations, mitochondrial oxidant generation, and oxidative stress in the rat. Free Radic Biol Med 2002;33:627–38.

    PubMed  CAS  Google Scholar 

  124. Miyadera H, Kano K, Miyoshi H, Ishii N, Hekimi S, Kita K. Quinones in long-lived clk-1 mutants of Caenorhabditis elegans. FEBS Lett 2002;512:33–7.

    PubMed  CAS  Google Scholar 

  125. Jonassen T, Davis DE, Larsen PL, Clarke CF. Reproductive fitness and quinone content of Caenorhabditis elegans clk-1 mutants fed coenzyme Q isoforms of varying length. J Biol Chem 2003;278:51735–42.

    PubMed  CAS  Google Scholar 

  126. Branicky R, Nguyen PA, Hekimi S. Uncoupling the pleiotropic phenotypes of clk-1 with tRNA missense suppressors in Caenorhabditis elegans. Mol Cell Biol 2006;26:3976–85.

    PubMed  CAS  Google Scholar 

  127. Lee SS, Kennedy S, Tolonen AC, Ruvkun G. DAF-16 target genes that control C. elegans life-span and metabolism. Science 2003;300:644–7.

    PubMed  CAS  Google Scholar 

  128. Murakami S, Johnson TE. A genetic pathway conferring life extension and resistance to UV stress in Caenorhabditis elegans. Genetics 1996;143:1207–18.

    PubMed  CAS  Google Scholar 

  129. Brand MD. Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Exp Geront 2000;35:811–20.

    CAS  Google Scholar 

  130. Iser WB, Kim D, Bachman E, Wolkow C. Examination of the requirement for ucp-4, a putative homolog of the mammalian uncoupling proteins, for stress tolerance and longevity in C. elegans. Mech Ageing Dev 2005;126;1090–1096.

    PubMed  CAS  Google Scholar 

  131. Houthoofd K, Fidalgo MA, Hoogewijs D et al. Metabolism, physiology and stress defense in three aging Ins/IGF-1 mutants of the nematode Caenorhabditis elegans. Aging Cell 2005;4:87–95.

    PubMed  CAS  Google Scholar 

  132. Kenyon C, Chang J, Gensch E, Rudener A, Tabtiang R. A C. elegans mutant that lives twice as long as wild type. Nature 1993;366:461–4.

    PubMed  CAS  Google Scholar 

  133. Pan KZ, Palter JE, Rogers AN et al. Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell 2007;6:111–9.

    PubMed  CAS  Google Scholar 

  134. Hansen M, Taubert S, Crawford D, Libina N, Lee SJ, Kenyon C. Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 2007;6:95–110.

    PubMed  CAS  Google Scholar 

  135. Syntichaki P, Troulinaki K, Tavernarakis N. eIF4E function in somatic cells modulates ageing in Caenorhabditis elegans. Nature 2007;445:922–6.

    PubMed  CAS  Google Scholar 

  136. Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev 1998;78:547–81.

    PubMed  CAS  Google Scholar 

  137. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000;408:239–47.

    PubMed  CAS  Google Scholar 

  138. Gems D, Sutton AJ, Sundermeyer ML et al. Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans. Genetics 1998;150:129–55.

    PubMed  CAS  Google Scholar 

  139. Van Voorhies W, Ward S. Genetic and environmental conditions that increase longevity in Caenorhabditis elegans decrease metabolic rate. Proc Natl Acad Sci USA 1999;96:11399–403.

    PubMed  Google Scholar 

  140. Braeckman B, Houthoofd K, De Vreese A, Vanfleteren J. Assaying metabolic activity in ageing Caenorhabditis elegans. Mech Ageing Dev 2002;123:105–19.

    PubMed  CAS  Google Scholar 

  141. Braeckman B, Houthoofd K, Vanfleteren J. Assessing metabolic activity in aging Caenorhabditis elegans: concepts and controversies. Aging Cell 2002;1:82–8.

    PubMed  CAS  Google Scholar 

  142. Van Voorhies W. The influence of metabolic rate on longevity in the nematode Caenorhabditis elegans. Aging Cell 2002;1:91–101.

    PubMed  Google Scholar 

  143. Houthoofd K, Braeckman B, Lenaerts I et al. Axenic growth up-regulates mass-specific metabolic rate, stress resistance, and extends life span in Caenorhabditis elegans. Exp Gerontol 2002;37:1371–8.

    PubMed  Google Scholar 

  144. Houthoofd K, Braeckman B, Lenaerts I et al. No reduction of metabolic rate in food restricted Caenorhabditis elegans. Exp Gerontol 2002;37:1359–69.

    PubMed  Google Scholar 

  145. McElwee JJ, Schuster E, Blanc E, Gems D. Partial reiteration of dauer larva metabolism in long lived daf-2 mutant adults in Caenorhabditis elegans. Mech Ageing Dev 2006;127:458–72.

    PubMed  CAS  Google Scholar 

  146. Takamiya S, Matsui T, Taka H, Murayama K, Matsuda M, Aoki T. Free-living nematodes Caenorhabditis elegans possess in their mitochondria an additional rhodoquinone, an essential component of the eukaryotic fumarate reductase system. Arch Biochem Biophys 1999;371:284–9.

    PubMed  CAS  Google Scholar 

  147. Tielens A, Rotte C, van Hellemond J, Martin W. Mitochondria as we don't know them. Trends Biochem Sci 2002; 27:564–72.

    PubMed  CAS  Google Scholar 

  148. Foll R, Pleyers A, Lewandovski G, Wermter C, Hegemann V, Paul R. Anaerobiosis in the nematode Caenorhabditis elegans. Comp Biochem Physiol B Biochem Mol Biol 1999;124:269–80.

    PubMed  CAS  Google Scholar 

  149. Rea S, Johnson TE. A metabolic model for lifespan determination in Caenorhabditis elegans. Dev Cell 2003; 5:197–203.

    PubMed  CAS  Google Scholar 

  150. Holt S, Riddle D. SAGE surveys C. elegans carbohydrate metabolism: evidence for an anaerobic shift in the long-lived dauer larva. Mech Ageing Dev 2003;124:779–800.

    PubMed  CAS  Google Scholar 

  151. Martin GM, Austad SN, Johnson TE. Genetic analysis of ageing: role of oxidative damage and environmental stresses. Nat Genet 1996;13:25–34.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to J. R. Vanfleteren and F. Matthijssens for communication of unpublished information, and for their careful reading of this review in draft form. Any errors that might remain are the fault of the authors. This work was supported by the European Union and the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Gems, D., Doonan, R. (2008). Oxidative Stress and Aging in the Nematode Caenorhabditis elegans . In: Miwa, S., Beckman, K.B., Muller, F.L. (eds) Oxidative Stress in Aging. Aging Medicine. Humana Press. https://doi.org/10.1007/978-1-59745-420-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-420-9_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-991-8

  • Online ISBN: 978-1-59745-420-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics