Skip to main content

Oxidative Stress and Aging in the Budding Yeast Saccharomyces cerevisiae

  • Chapter
Oxidative Stress in Aging

Part of the book series: Aging Medicine ((AGME))

  • 1331 Accesses

Summary

The production of reactive oxygen species is an unavoidable consequence of life in an aerobic environment. The accumulation of macromolecular damage caused by these highly reactive substances is thought to be one of the major contributors to the aging phenotype. Protection against this damage provided by antioxidant enzymes such as superoxide dismutases is critically important for the maintenance of an aging yeast population. The role of superoxide signaling in age-dependent apoptosis suggests that reactive oxygen species are involved in the regulation of multiple maintenance and repair systems during yeast aging. Enhanced protection against oxidative stress seems to be necessary but not sufficient for life span extension in model organisms ranging from yeast to mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fabrizio P, Longo VD. The chronological life span of Saccharomyces cerevisiae. Aging Cell 2003;2(2):73–81.

    Article  PubMed  CAS  Google Scholar 

  2. Fabrizio P, Gattazzo C, Battistella L et al. Sir2 blocks extreme life-span extension. Cell 2005;123(4):655–67.

    Article  PubMed  CAS  Google Scholar 

  3. Fabrizio P, Pletcher SD, Minois N, Vaupel JW, Longo VD. Chronological aging-independent replicative life span regulation by Msn2/Msn4 and Sod2 in Saccharomyces cerevisiae. FEBS Lett 2004;557(1–3):136–42.

    Article  PubMed  CAS  Google Scholar 

  4. Ashrafi K, Sinclair D, Gordon JI, Guarente L. Passage through stationary phase advances rep-licative aging in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1999;96:9100–5.

    Article  PubMed  CAS  Google Scholar 

  5. Fabrizio P, Liou LL, Moy VN et al. SOD2 Functions downstream of Sch9 to extend longevity in yeast. Genetics 2003;163(1):35–46.

    PubMed  CAS  Google Scholar 

  6. Piper PW, Harris NL, MacLean M. Preadaptation to efficient respiratory maintenance is essential both for maximal longevity and the retention of replicative potential in chronologically ageing yeast. Mech Ageing Dev 2006;127(9):733–40.

    Article  PubMed  Google Scholar 

  7. Fabrizio P, Battistella L, Vardavas R et al. Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae. J Cell Biol 2004;166(7):1055–67.

    Article  PubMed  CAS  Google Scholar 

  8. Harman D. A theory based on free radical and radiation chemistry. J Gerontol 1956;11:298–300.

    PubMed  CAS  Google Scholar 

  9. Reverter-Branchat G, Cabiscol E, Tamarit J, Ros J. Oxidative damage to specific proteins in replicative and chronological-aged Saccharomyces cerevisiae: common targets and prevention by calorie restriction. J Biol Chem 2004;279(30):31983–9.

    Article  PubMed  CAS  Google Scholar 

  10. Gralla EB, Kosman D. Molecular genetics of superoxide dismutases in yeasts and related fungi. Adv Genet 1992;30:251–319.

    Article  PubMed  CAS  Google Scholar 

  11. Wallace MA, Liou LL, Martins J et al. Superoxide inhibits 4Fe-4S cluster enzymes involved in amino acid biosynthesis. Cross-compartment protection by CuZn-superoxide dismutase. J Biol Chem 2004;279(31):32055–62.

    Article  PubMed  CAS  Google Scholar 

  12. Sturtz LA, Diekert K, Jensen LT, Lill R, Culotta VC. A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. J Biol Chem 2001;276(41):38084–9.

    PubMed  CAS  Google Scholar 

  13. Liochev SI, Fridovich I. Cross-compartment protection by SOD1. Free Radic Biol Med 2005;38(1):146–7.

    Article  PubMed  CAS  Google Scholar 

  14. Carlioz A, Touati D. Isolation of superoxide dismutase mutants in Escherichia coli: is super-oxide dismutase necessary for aerobic life? EMBO J 1986;5(3):623–30.

    PubMed  CAS  Google Scholar 

  15. Dukan S, Nystrom T. Oxidative stress defense and deterioration of growth-arrested Escherichia coli cells. J Biol Chem 1999;274(37):26027–32.

    Article  PubMed  CAS  Google Scholar 

  16. Balzan R, Agius DR, Bannister WH. Cloned prokaryotic iron superoxide dismutase protects yeast cells against oxidative stress depending on mitochondrial location. Biochem Biophys Res Commun 1999;256(1):63–7.

    Article  PubMed  CAS  Google Scholar 

  17. Longo VD, Gralla EB, Valentine JS. Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. Mitochondrial production of toxic oxygen species in vivo. J Biol Chem 1996;271(21):12275–80.

    Article  PubMed  CAS  Google Scholar 

  18. Barker MG, Brimage LJ, Smart KA. Effect of Cu,Zn superoxide dismutase disruption mutation on replicative senescence in Saccharomyces cerevisiae. FEMS Microbiol Lett 1999; 177(2):199–204.

    Article  PubMed  CAS  Google Scholar 

  19. Longo VD, Liou LL, Valentine JS, Gralla EB. Mitochondrial superoxide decreases yeast survival in stationary phase. Arch Biochem Biophys 1999;365(1):131–42.

    Article  PubMed  CAS  Google Scholar 

  20. Barros MH, Bandy B, Tahara EB, Kowaltowski AJ. Higher respiratory activity decreases mitochondrial reactive oxygen release and increases life span in Saccharomyces cerevisiae. J Biol Chem 2004;279(48):49883–8.

    Article  PubMed  CAS  Google Scholar 

  21. Gardner PR, Fridovich I. Inactivation-reactivation of aconitase in Escherichia coli. A sensitive measure of superoxide radical. J Biol Chem 1992;267(13):8757–63.

    PubMed  CAS  Google Scholar 

  22. Bonawitz ND, Rodeheffer MS, Shadel GS. Defective mitochondrial gene expression results in reactive oxygen species-mediated inhibition of respiration and reduction of yeast life span. Mol Cell Biol 2006;26(13):4818–29.

    Article  PubMed  CAS  Google Scholar 

  23. Gakh O, Park S, Liu G et al. Mitochondrial iron detoxification is a primary function of frataxin that limits oxidative damage and preserves cell longevity. Hum Mol Genet 2006;15(3):467–79.

    Article  PubMed  CAS  Google Scholar 

  24. Li Y, Huang TT, Carlson EJ et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 1995;11(4):376–81.

    Article  PubMed  CAS  Google Scholar 

  25. Maclean MJ, Aamodt R, Harris N et al. Base excision repair activities required for yeast to attain a full chronological life span. Aging Cell 2003;2(2):93–104.

    Article  PubMed  CAS  Google Scholar 

  26. Madia F, Gattazzo C, Fabrizio P, Longo VD. A simple model system for age-dependent DNA damage and cancer. Mech Ageing Dev 2007;128(1):45–9.

    Article  PubMed  CAS  Google Scholar 

  27. Manon S, Roucou X, Guerin M, Rigoulet M, Guerin B. Characterization of the yeast mitochondria unselective channel: a counterpart to the mammalian permeability transition pore? J Bioenerg Biomembr 1998;30(5):419–29.

    Article  PubMed  CAS  Google Scholar 

  28. Huang ME, Rio AG, Nicolas A, Kolodner RD. A genomewide screen in Saccharomyces cerevisiae for genes that suppress the accumulation of mutations. Proc Natl Acad Sci USA 2003;100(20):11529–34.

    Article  PubMed  CAS  Google Scholar 

  29. Farr SB, D'Ari R, Touati D. Oxygen-dependent mutagenesis in Escherichia coli lacking superoxide dismutase. Proc Natl Acad Sci U S A 1986;83(21):8268–72.

    Article  PubMed  CAS  Google Scholar 

  30. Van Zandycke SM, Sohier PJ, Smart KA. The impact of catalase expression on the replicative lifespan of Saccharomyces cerevisiae. Mech Ageing Dev 2002;123(4):365–73.

    Article  PubMed  Google Scholar 

  31. Ligr M, Madeo F, Frohlich E, Hilt W, Frohlich KU, Wolf DH. Mammalian Bax triggers apoptotic changes in yeast. FEBS Lett 1998;438(1–2):61–5.

    Article  PubMed  CAS  Google Scholar 

  32. Longo VD, Ellerby LM, Bredesen DE, Valentine JS, Gralla EB. Human Bcl-2 reverses survival defects in yeast lacking superoxide dismutase and delays death of wild-type yeast. J Cell Biol 1997;137(7):1581–8.

    Article  PubMed  CAS  Google Scholar 

  33. Herker E, Jungwirth H, Lehmann KA et al. Chronological aging leads to apoptosis in yeast. J Cell Biol 2004;164(4):501–7.

    Article  PubMed  Google Scholar 

  34. Zambrano MM, Siegele DA, Almiron M, Tormo A, Kolter R. Microbial competition: Escherichia coli mutants that take over stationary phase cultures. Science 1993;259(5102):1757–60.

    Article  PubMed  CAS  Google Scholar 

  35. Liu Z, Butow RA. Mitochondrial retrograde signaling. Annu Rev Genet 2006;40:159–85.

    Article  PubMed  CAS  Google Scholar 

  36. McCammon MT, Epstein CB, Przybyla-Zawislak B, McAlister-Henn L, Butow RA. Global transcription analysis of Krebs tricarboxylic acid cycle mutants reveals an alternating pattern of gene expression and effects on hypoxic and oxidative genes. Mol Biol Cell 2003;14(3):958–72.

    Article  PubMed  CAS  Google Scholar 

  37. Longo VD, Finch CE. Evolutionary medicine: from dwarf model systems to healthy centenarians. Science 2003;299:1342–6.

    Article  PubMed  Google Scholar 

  38. Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD. Regulation of longevity and stress resistance by Sch9 in yeast. Science 2001;292(5515):288–90.

    Article  PubMed  CAS  Google Scholar 

  39. Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 1997;277(5328):942–6.

    Article  PubMed  CAS  Google Scholar 

  40. Murphy CT, McCarroll SA, Bargmann CI, et al. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 2003;424(6946):277–83.

    Article  PubMed  CAS  Google Scholar 

  41. Harris N, Bachler M, Costa V, Mollapour M, Moradas-Ferreira P, Piper PW. Overexpressed Sod1p acts either to reduce or to increase the lifespans and stress resistance of yeast, depending on whether it is Cu(2+)-deficient or an active Cu,Zn-superoxide dismutase. Aging Cell 2005;4(1):41–52.

    Article  PubMed  CAS  Google Scholar 

  42. Harris N, Costa V, MacLean M, Mollapour M, Moradas-Ferreira P, Piper PW. Mnsod overex-pression extends the yeast chronological (G(0) ) life span but acts independently of Sir2p histone deacetylase to shorten the replicative life span of dividing cells. Free Radic Biol Med 2003;34(12):1599–606.

    Article  PubMed  CAS  Google Scholar 

  43. Keaney M, Matthijssens F, Sharpe M, Vanfleteren J, Gems D. Superoxide dismutase mimetics elevate superoxide dismutase activity in vivo but do not retard aging in the nematode Caenorhabditis elegans. Free Radic Biol Med 2004;37(2):239–50.

    Article  PubMed  CAS  Google Scholar 

  44. Melov S, Ravenscroft J, Malik S et al. Extension of life-span with superoxide dismutase/cata-lase mimetics. Science 2000;289(5484):1567–9.

    Article  PubMed  CAS  Google Scholar 

  45. Holzenberger M, Dupont J, Ducos B et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 2003;421(6919):182–7.

    Article  PubMed  CAS  Google Scholar 

  46. Huang TT, Carlson EJ, Gillespie AM, Shi Y, Epstein CJ. Ubiquitous overexpression of CuZn superoxide dismutase does not extend life span in mice. J Gerontol A Biol Sci Med Sci 2000;55(1):B5–B9.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Gonidakis, S., Longo, V.D. (2008). Oxidative Stress and Aging in the Budding Yeast Saccharomyces cerevisiae . In: Miwa, S., Beckman, K.B., Muller, F.L. (eds) Oxidative Stress in Aging. Aging Medicine. Humana Press. https://doi.org/10.1007/978-1-59745-420-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-420-9_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-991-8

  • Online ISBN: 978-1-59745-420-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics