Skip to main content

DNA Oxidative Damage and Cancer

  • Chapter
Oxidative Stress in Aging

Part of the book series: Aging Medicine ((AGME))

  • 1378 Accesses

Summary

Cancer cells have undergone several distinct transformational events leading to alterations of the normal growth and proliferation regulatory pathways. The probabilities of these events are increased by agents that damage and mutate DNA. It is now well established that oxygen is one such mutagen. Within the cell, the metabolic conversion of oxygen to reactive forms, particularly the hydroxyl radical, is an initial step in this process. Hydroxyl radical-mediated oxidative damage to DNA results in a variety of mutagenic lesions. However, this is a normal occurrence in every cell, and a host of proteins is involved in surveillance of the genome and removal of the damage. The link between DNA oxidative damage and cancer is evident from animal models lacking these DNA repair and antioxidant proteins. Mice deficient in repair of DNA oxidative damage or reactive oxygen species (ROS) detoxification typically are susceptible to cancer. Mitochondria, as a major source of intracellular ROS, and organelles essential for the maintenance of metabolic homeostasis, can also play critical roles in the initiation and promotion of cancer. Important mechanistic details of mitochondrial participation in tumori-genesis have recently been uncovered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Campisi J. Cancer and ageing: rival demons? Nat Rev Cancer 2003; 339–349.

    Google Scholar 

  2. Shiloh Y, Lehmann AR. Maintaining integrity. Nat Cell Biol 2004; 6:923–928.

    Article  PubMed  CAS  Google Scholar 

  3. Parrinello S, Samper E, Krtolica A, Goldstein J, Melov S, Campisi J. Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol 2003; 5:741–7.

    Article  PubMed  CAS  Google Scholar 

  4. Brown MF, Gratton TP, Stuart JA. Metabolic rate does not scale with body mass in cultured mammalian cells. Am J Physiol 2007; 292:R2115–R2121.

    CAS  Google Scholar 

  5. Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol 2003; 552:335–344.

    Article  PubMed  CAS  Google Scholar 

  6. Busuttil RA, Rubio M, Dolle MET, Campisi J, Vijg J. Oxygen accelerates the accumulation of mutations during the senescence and immortalization of murine cells in culture. Aging Cell 2003; 2:287–294.

    Article  PubMed  CAS  Google Scholar 

  7. Suh Y-A, Arnold RS, Lassegue B, Shi J, Xu X, Sorescu D, Chung AB, Griendling KK, Lambeth JD. Cell transformation by the superoxide-generating oxidase Mox1. Nature 1999; 401:79–82.

    Article  PubMed  CAS  Google Scholar 

  8. Li Y, Huang T T, Carlson EJ et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 1995; 11:376–381.

    Article  PubMed  CAS  Google Scholar 

  9. Lebowitz RM, Zhang H, Vogel H et al. Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc Natl Acad Sci U S A 1996; 93:9782–9787.

    Article  Google Scholar 

  10. Van Remmen H, Ikeno Y, Hamilton M et al. Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol Genomics 2003; 16:29–37.

    Article  PubMed  Google Scholar 

  11. Elchuri S, Oberley TD, Qi W et al. CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene 2005; 24:367–380.

    Article  PubMed  CAS  Google Scholar 

  12. Williams MD, Van Remmen H, Conrad CC, Huang TT, Epstein CJ, Richardson A. Increased oxidative damage is correlated to altered mitochondrial function in heterozygous manganese superoxide dismutase knockout mice. J Biol Chem 1998; 273:28510–28515.

    Article  PubMed  CAS  Google Scholar 

  13. Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H. Free radical-induced damage to DNA: mechanisms and measurement. Free Radic Biol Med 2002; 32:1102–1115.

    Article  PubMed  CAS  Google Scholar 

  14. Fortini P, Dogliotti E. Base damage and single-strand break repair: mechanisms and functional significance of short- and long-patch repair subpathways. DNA Repair 2007; 6:398–409.

    Article  PubMed  CAS  Google Scholar 

  15. Nakabeppu Y, Kajitani K, Sakamoto K, Yamaguchi H, Tsuchimoto D. MTH1, an oxidized purine nucleoside triphosphatase, prevents the cytotoxicity and neurotoxicity of oxidized purine nucleotides. DNA Repair 2006; 5:761–772.

    Article  PubMed  CAS  Google Scholar 

  16. Russo MT, De Luca G, Degan P, Bignami M. Different DNA repair strategies to combat the threat from 8-oxoguanine. Mutat. Res. 2007; 614:69–76.

    PubMed  CAS  Google Scholar 

  17. Tsuzuki T, Egashira A, Igarashi H et al. Spontaneous tumorigenesis in mice defective in the MTH1 gene encoding 8-oxodGTPase. Proc Natl Acad Sci U S A 2001; 98:11456–11461.

    Article  PubMed  CAS  Google Scholar 

  18. Klungland A, Rosewell I, Hollenbach S et al. Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage. Proc Natl Acad Sci U S A 1999; 96:11300–13305.

    Article  Google Scholar 

  19. Minowa O, Arai T, Hirano M et al. Mmh/Ogg1 gene inactivation results in accumulation of 8-hydroxyguanine in mice. Proc Natl Acad Sci U S A 2000; 97:4156–4161.

    Article  PubMed  CAS  Google Scholar 

  20. Arai T, Kelly VP, Minowa O, Noda T, Nishimura S. The study using wild-type and Ogg1 knockout mice exposed to potassium bromate shows no tumor induction despite an extensive accumulation of 8-hydroxyguanine in kidney DNA. Toxicology 2006; 221:179–186.

    Article  PubMed  CAS  Google Scholar 

  21. Hirano S, Tominaga Y, Ichinoe A et al. Mutator phenotype of MUTYH-null mouse embryonic stem cells. J Biol Chem 2003; 278:38121–38124.

    Article  PubMed  CAS  Google Scholar 

  22. Arai T, Kelly VP, Minowa O, Noda T, Nishimura S. High accumulation of oxidative DNA damage, 8-hydroxyguanine, in Mmh/Ogg1 deficient mice by chronic oxidative stress. Carcinogenesis 2002; 23:2005–2010.

    Article  PubMed  CAS  Google Scholar 

  23. Kunisada M, Sakumi K, Tominaga Y et al. 8-oxoguanine formation induced by chronic UVB exposure makes Ogg1 knockout mice susceptible to skin carcinogenesis. Cancer Res 2005; 65:6006–6010.

    Article  PubMed  CAS  Google Scholar 

  24. Paz-Elizur T, Krupsky M, Blumenstein S, Elinger D, Schechtman E, Livneh Zvi. DNA repair activity for oxidative damage and risk of lung cancer. J Natl Cancer Inst 2003; 95:1312–1319.

    PubMed  CAS  Google Scholar 

  25. Xie Y, Hanjing H, Cunanan C et al. Deficiencies in mouse Myh and Ogg1 result in tumor predisposition and G to T mutations in Codon 12 of the K-Ras oncogene in lung tumors. Cancer Res 2004; 64:3096–3102.

    Article  PubMed  CAS  Google Scholar 

  26. Sampson JR, Jones S, Dolwani S, Cheadle JP. MutYH (MYH) and colorectal cancer. Biochem Soc Trans 2005; 33:679–683.

    Article  PubMed  CAS  Google Scholar 

  27. Sweasy JB, Lang T, DiMaio, D. Is base excision repair a tumor suppressor mechanism? Cell Cycle 2006; 5:250–259.

    Article  PubMed  CAS  Google Scholar 

  28. Ludwig DL, MacInnes MA, Takiguchi Y et al. A murine AP-endonuclease gene-targeted deficiency with post-implantation embryonic progression and ionizing radiation sensitivity. Mutat Res 1998; 409:17–29.

    PubMed  CAS  Google Scholar 

  29. Sugo N, Aratani Y, Nagashima Y, Kubota Y, Koyama H. Neonatal lethality with abnormal neurogenesis in mice deficient in DNA polymerase β. EMBO J 2000; 19:1397–1404.

    Article  PubMed  CAS  Google Scholar 

  30. Meira LB, Devaraj S, Kisby GE et al. Heterozygosity for the mouse Apex gene results in phenotypes associated with oxidative stress. Cancer Res 2001; 61:5552–5557.

    PubMed  CAS  Google Scholar 

  31. Huamani J, McMahan CA, Herbert DC et al. Spontaneous mutagenesis is enhanced in Apex heterozygous mice. Mol Cell Biol 2004; 24:8145–8153.

    Article  PubMed  CAS  Google Scholar 

  32. Evans AR, Limp-Foster M, Kelley MR. Going APE over ref-1. Mutat Res 2000; 461:83–108.

    PubMed  CAS  Google Scholar 

  33. Hazra TK, Das A, Das S, Choudhury S, Kow YW, Roy R. Oxidative DNA damage repair in mammalian cells: a new perspective. DNA Repair 2007; 6:470–480.

    Article  PubMed  CAS  Google Scholar 

  34. Klaunig JE, Kamendulis LM. The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol 2004; 44:239–267.

    Article  PubMed  CAS  Google Scholar 

  35. Srivastava DK, Ber BJ, Prasad R et al. Mammalian abasic site base excision repair. Identification of the reaction sequence and rate-determining steps. J Biol Chem 1998; 273:21203–21209.

    Article  PubMed  CAS  Google Scholar 

  36. Starcevic D, Dalal S, Sweasy JB. Is there a link between DNA polymerase β and cancer? Cell Cycle 2004; 3:998–1001.

    Article  PubMed  CAS  Google Scholar 

  37. Lang T, Maitra M, Starcevic D, Li S-X, Sweasy JB. A DNA polymerase β mutant from colon cancer cells induces mutations. Proc Natl Acad Sci U S A 2004; 101:6074–6079.

    Article  PubMed  CAS  Google Scholar 

  38. Sweasy JB, Lang T, Starcevic D et al. Expression of DNA polymerase β cancer-associated variants in mouse cells results in cellular transformation. Proc Natl Acad Sci U S A 2005; 102: 14350–14355.

    Article  PubMed  CAS  Google Scholar 

  39. Chan K, Houlbrook S, Zhang Q-M, Harrison M, Hickson ID, Dianov GL. Overexpression of DNA polymerase β results in an increased rate of frameshift mutations during base excision repair. Mutagenesis 2007; 22:183–188.

    Article  PubMed  CAS  Google Scholar 

  40. Bergoglio V, Pillaire M-J, Lacroix-Triki M et al. Deregulated DNA polymerase β induces chromosome instability and tumorigenesis. Cancer Res. 2002; 62:3511–3514.

    PubMed  CAS  Google Scholar 

  41. Cabelof DC, Ikeno Y, Nyska A et al. Haploinsufficiency in DNA polymerase β increases cancer risk with age and alters mortality rate. Cancer Res. 2006; 66:7460–7465.

    Article  PubMed  CAS  Google Scholar 

  42. Van Remmen H, Williams MD, Guo Z et al. Knockout mice heterozygous for Sod2 show alterations in cardiac mitochondrial function and apoptosis. Am J Physiol 2001; 281:H1422–H1432.

    Google Scholar 

  43. Liu L, Trimarchi JR, Smith PJS, Keefe DL. Mitochondrial dysfunction leads to telomere attrition and genomic instability. Aging Cell 2002; 1:40–46.

    Article  PubMed  CAS  Google Scholar 

  44. Oberley LW. Mechanism of the tumor suppressive effect of MnSOD overexpression. Biomed Pharmacother 2005; 59:143–148.

    Article  PubMed  CAS  Google Scholar 

  45. Petros JA, Baumann AK, Ruiz-Pesini E et al. mtDNA mutations increase tumorgenicity in prostate cancer. Proc Natl Acad Sci U S A 2005; 102:719–724.

    Article  PubMed  CAS  Google Scholar 

  46. Shidara Y, Yamagata K, Kanamori T et al. Positive contribution of pathogenic mutations in the mitochondrial genome to the promotion of cancer by prevention from apoptosis. Cancer Res 2005; 65:1655–1663.

    Article  PubMed  CAS  Google Scholar 

  47. Baysal BE, Ferrell RE, Willett-Brozick JE et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 2000; 287:848–851.

    Article  PubMed  CAS  Google Scholar 

  48. Eng C, Kiuru M, Fernandez MJ, Aaltonen LA. A role for mitochondrial enzymes in inherited neoplasia and beyond. Nat. Rev. Cancer 2003; 3:193–202.

    Article  PubMed  CAS  Google Scholar 

  49. Gottlieb E, Tomlinson IPM. Mitochondrial tumour suppressors: a genetic and biochemical update. Nat Rev Cancer 2005; 5:857–866.

    Article  PubMed  CAS  Google Scholar 

  50. Slane BG, Aykin-Burns N, Smith BJ et al. Mutation of succinate dehydrogenase subunit C results in increased O•− 2, oxidative stress, and genomic instability. Cancer Res 2006; 66:7615–7620.

    Article  PubMed  CAS  Google Scholar 

  51. Selak MA, Armour SM, MacKenzie ED et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell 2005; 7:77–85.

    Article  PubMed  CAS  Google Scholar 

  52. Semenza GL. VHL and p53: tumor suppressors team up to prevent cancer. Mol Cell 2006; 22:437–439.

    Article  PubMed  CAS  Google Scholar 

  53. Kim J-W, Dang CV. Cancer's molecular sweet tooth and the Warburg effect. Cancer Res 2006; 66:8927–8930.

    Article  PubMed  CAS  Google Scholar 

  54. Semenza GL. HIF-1 mediates the Warburg effect in clear cell renal carcinoma. J Bioenerg Biomemb 2007; 39:231–234.

    Article  CAS  Google Scholar 

  55. Sanjuan-Pla A, Cervera AM, Apostolova N et al. A targeted antioxidant reveals the importance of mitochondrial reactive oxygen species in the hypoxic signalling of HIF-1alpha. FEBS Lett 2005; 579:2669–2674.

    Article  PubMed  CAS  Google Scholar 

  56. Isaacs JS, Jung YJ, Mole DR et al. HIF overexpression correlates with biallelic loss of fumurate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell 2005; 8:143–153.

    Article  PubMed  CAS  Google Scholar 

  57. Zanssen S, Schon EA. Mitochondrial DNA mutations in cancer. PLoS Med 2005; 2:1082–1084.

    Article  CAS  Google Scholar 

  58. Salas A, Yao Y-G, Macaulay V, Vega A, Carracedo A, Bandelt H-J. A critical reassessment of the role of mitochondria in tumorigenesis. PLOS Med 2005; 2:1158–1166.

    Article  CAS  Google Scholar 

  59. Coller HA, Khrapko K, Bodyak ND, Nekhaeva E, Herrero-Jiminez P, Thilly WG. High frequency of homoplasmic mitochondrial DNA mutations in human tumors can be explained without selection. Nat Genet 2001; 28:147–150.

    Article  PubMed  CAS  Google Scholar 

  60. Trifunovic A, Wredenberg A, Falkenberg M et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 2004; 429:417–423.

    Article  PubMed  CAS  Google Scholar 

  61. Kujoth GC, Hiona A, Pugh TD et al. Mitochondrial DNA mutations, oxidative stress and apoptosis in mammalian aging. Science 2005; 309:481–484.

    Article  PubMed  CAS  Google Scholar 

  62. Trifunovic A, Hansson, A, Wredenber A et al. Somatic mtDNA mutations cause aging pheno-types without affecting reactive oxygen species production. Proc Natl Acad Sci U S A 2005; 102:17993–17998.

    Article  PubMed  CAS  Google Scholar 

  63. de Souza-Pinto NC, Hogue BA, Bohr VA. DNA repair and aging in mouse liver: 8-oxodG glycosylase activity increase in mitochondrial but not in nuclear extracts. Free Radic Biol Med 2001; 30:916–923.

    Article  PubMed  CAS  Google Scholar 

  64. Stuart JA, Bourque BM, de Souza-Pinto NC, Bohr VA. No evidence of mitochondrial respiratory dysfunction in OGG1-null mice deficient in removal of 8-oxodeoxyguanine from mitochondrial DNA. Free Radic Biol Med 2005; 38:737–745.

    Article  PubMed  CAS  Google Scholar 

  65. Stuart JA, Brown MF. Mitochondrial DNA maintenance and bioenergetics. Biochim Biophys Acta 2006; 1757:79–89.

    Article  PubMed  CAS  Google Scholar 

  66. Ohtsubo T, Nishioka K, Imaiso Y et al. Identification of human MutY homolog (hMYH) as a repair enzyme for 2-hydroxyadenine in DNA and detection of multiple forms of hNYH located in nuclei and mitochondria. Nucleic Acids Res 2000; 28:1355–1364.

    Article  PubMed  CAS  Google Scholar 

  67. Nakabeppu Y Regulation of intracellular localization of human MTH1, OGG1, and MYH proteins for repair of oxidative DNA damage. Prog Nucleic Acid Res Mol Biol 2001; 68:75–94.

    Article  PubMed  CAS  Google Scholar 

  68. Hursting SD, Lavigne JA, Berrigan D, Perkins SN, Barrett JC. Calorie restriction, aging, and cancer prevention: mechanisms of action and applicability to humans. Annu Rev Med 2003; 54:131–152.

    Article  PubMed  CAS  Google Scholar 

  69. Hagopian K, Harper ME, Ram JJ, Humble SJ, Weindruch R, Ramsey JJ. Long-term calorie restriction reduces proton leak and hydrogen peroxide production in liver mitochondria. Am J Physiol 2005; 288:E674–E684.

    CAS  Google Scholar 

  70. Sanz A, Caro P, Ibanez J, Gomez J, Gredilla R, Barja G. Dietary restriction at old age lowers mitochondrial oxygen radical production and leak at complex I and oxidative DNA damage in rat brain. J Bioenerg Biomemb 2005; 37:83–90.

    Article  CAS  Google Scholar 

  71. Bevilacqua L, Ramsey JJ, Hagopian K, Weindruch R, Harper ME. Long-term caloric restriction increases UCP3 content but decreases proton leak and reactive oxygen species production in rat skeletal muscle mitochondria. Am J Physiol 2005; 289:E429–E438.

    CAS  Google Scholar 

  72. Wu A, Sun X, Wan F, Liu Y. Modulations by dietary restriction on antioxidant enzymes and lipid peroxidation in developing mice. J Appl Physiol 2003; 94:947–952.

    PubMed  CAS  Google Scholar 

  73. Stuart JA, Karahalil B, Hogue BA, de Souza-Pinto NC, Bohr VA . Mitochondrial and nuclear DNA base excision repair are affected differently by caloric restriction. FASEB J 2004; 18:595–597.

    PubMed  CAS  Google Scholar 

  74. Cabelof DC, Yanamadala S, Raffoul JJ, Guo Z, Soofi A, Heydari AR. Caloric restriction promotes genomic stability by induction of base excision repair and reversal of its age-related decline. DNA Repair 2003; 2:295–307.

    Article  PubMed  CAS  Google Scholar 

  75. Hamilton ML, Van Remmen H, Drake JA et al. Does oxidative damage to DNA increase with age? Proc Natl Acad Sci U S A 2001; 98:10469–10474.

    Article  PubMed  CAS  Google Scholar 

  76. Russo MT, De Luca G, Degan P et al. Accumulation of the oxidative base lesion 8-hydroxy-guanine in DNA of tumor-prone mice defective in both the Myh and Ogg1 DNA glycosylases. Cancer Res 2004; 64:4411–4414.

    Article  PubMed  CAS  Google Scholar 

  77. Larsen E, Gran C, Sæther BE, Seeberg E, Klungland A. Proliferation failure and gamma radiation sensitivity of Fen1 null mutant mice at the blastocyte stage. Mol Cell Biol 2003; 23:5346–5353.

    Article  PubMed  CAS  Google Scholar 

  78. Kucherlapati M, Yang K, Kuraguchi M et al. Haploinsufficiency of Flap endonuclease (Fen1) leads to rapid tumor progression. Proc Natl Acad Sci U S A 2002; 99:9924–9929.

    Article  PubMed  CAS  Google Scholar 

  79. Goldsby RE, Lawrence NA, Hays LE et al. Defective DNA polymerase-δ proofreading causes cancer susceptibility in mice. Nat Med 2001; 7:638–639.

    Article  PubMed  CAS  Google Scholar 

  80. Goldsby RE, Hays LE, Chen X et al. High incidence of epithelial cancers in mice deficient for DNA polymerase delta proofreading. Proc Natl Acad Sci U S A 2002; 99:15560–15565.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Stuart, J.A., Page, M.M. (2008). DNA Oxidative Damage and Cancer. In: Miwa, S., Beckman, K.B., Muller, F.L. (eds) Oxidative Stress in Aging. Aging Medicine. Humana Press. https://doi.org/10.1007/978-1-59745-420-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-420-9_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-991-8

  • Online ISBN: 978-1-59745-420-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics