Skip to main content

Novel & Emerging Risk Factors in Racial/Ethnic Groups

  • Chapter
  • First Online:
Book cover Cardiovascular Disease in Racial and Ethnic Minorities

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 635 Accesses

Abstract

Over the last decade, the increased research focus on cardiovascular imaging for the identification of patients at risk for and with significant coronary artery disease (CAD) has augmented clinician awareness and ability to properly risk stratify and categorize patients. Cardiac imaging has now become a technique not only for assessing patients with established CAD but also for the identification of patients with subclinical CAD who are at risk for ischemic heart disease and cardiac events of death and myocardial infarction. The Multi-Ethnic Study of Atherosclerosis (MESA) is a 10-year longitudinal study supported by the National Heart, Lung, and Blood Institute with the goals of identifying and quantifying risk factors for subclinical atherosclerosis and for transition in patients from subclinical disease to clinically apparent events. Cardiac imaging findings from MESA with respect to racial/ethnic differences reveal that the incidence and prevalence of CAD differ among some racial and ethnic groups in the United States. The large number of patients affected by CAD has driven the development of effective, non-invasive methods to identify and risk-stratify patients with and at risk for CAD. When patients are properly identified, the appropriate treatment strategies can be applied to individual patients to prevent future events, such as death or myocardial infarction. Historically, exercise treadmill testing (ETT) with electrocardiogram (ECG) monitoring was the initial test applied to patients suspected of having CAD. Today, non-invasive cardiovascular testing with imaging has become the gold standard for the diagnostic and prognostic assessment of patients with suspected or known cardiovascular disease.

Most of the diagnostic non-invasive imaging tests currently available are based on assessment of regional and global function (echocardiography, radionuclide angiography, magnetic resonance imaging [MRI]), myocardial perfusion (single-photon emission computed tomography [CT], contrast-enhanced MRI), or coronary anatomy (CT angiography, magnetic resonance angiography) under resting conditions, stress conditions, or both. Diagnostic techniques such as electron beam CT, multi-slice cardiac CT scanning, and measurement of carotid intimal–medial thickness have emerged in recent years for detecting asymptomatic coronary or carotid atherosclerosis. Recent data on the assessment of long-term prognosis based upon the results of imaging tests to define false results have been shown to be reliable and helpful in risk prediction of cardiac events. In daily clinical practice, the assessment of risk allows for the identification of subsets of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ueland PM, Refsum H, Brattström L. Plasma homocysteine and cardiovascular disease. In: Francis RBJ, ed. Atherosclerotic cardiovascular disease, hemostasis, and endothelial function. New York: Marcel Dekker, Inc; 1992:183–236.

    Google Scholar 

  2. Stampfer MJ, Malinow MR, Willett WC, et al. A prospective study of plasma homocyst(e)ine and risk of myocardial infarction in US physicians. JAMA 1992; 268: 877–881.

    Article  PubMed  CAS  Google Scholar 

  3. Arnesen E, Refsum H, Bonna KH, Ueland PM, Forde OH, Nordrehaug JE. Serum total homocysteine and coronary heart disease. Int J Epidemiol 1995; 24:704–109.

    Article  PubMed  CAS  Google Scholar 

  4. Perry IJ, Refsum H, Morris RW, Ebrahim SB, Ueland PM, Shaper AG. Prospective study of serum total homocysteine concentration and risk of stroke in middle-aged British men. Lancet 1995; 346:1395–1398.

    Article  PubMed  CAS  Google Scholar 

  5. Perry IJ, Refsum H, Morris RW, Ebrahim SB, Ueland PM, Shaper AG. Serum total homocysteine and coronary heart disease in middle-aged British men. Heart 1996; 75(Suppl 1):P53 (abstr).

    Google Scholar 

  6. Malinow MR, Nieto FJ, Szklo M, Chambless LE, Bond G. Carotid artery intimal-medial wall thickening and plasma homocyst(e)ine in asymptomatic adults: the Atherosclerosis Risk in Communities Study. Circulation 1993; 87:1107–1113.

    Article  PubMed  CAS  Google Scholar 

  7. Selhub J, Jacques PF, Bostom AG, et al. Association between plasma homocysteine concentrations and extracranial carotid-artery stenosis. N Engl J Med 1995; 332: 286–291.

    Article  PubMed  CAS  Google Scholar 

  8. Nygard O, Nordrehaug JE, Refsum H, Ueland PM, Farstad M, Vollset SE. Plasma homocysteine levels and mortality in patients with coronary artery disease. N Engl J Med 1997; 337:230–236.

    Article  PubMed  CAS  Google Scholar 

  9. Jacques PF, Rosenberg IH, Rogers G, et al. Serum total homocysteine concentrations in adolescent and adult Americans: results from the Third National Health and Nutrition Examination Survey. Am J Clin Nutr 1999; 69:482–489.

    PubMed  CAS  Google Scholar 

  10. Ubbink JB, Vermaak WJ, Delport R, van der Merwe A, Becker PJ, Potgieter H. Effective homocysteine metabolism may protect South African blacks against coronary heart disease. Am J Clin Nutr 1995; 62:802–808.

    PubMed  CAS  Google Scholar 

  11. Refsum H, Yajnik CS, Gadkari M, et al. Hyperhomocysteinemia and elevated methylmalonic acid indicate a high prevalence of cobalamin deficiency in Asian Indians. Am J Clin Nutr 2001; 74:233–241.

    PubMed  CAS  Google Scholar 

  12. Sanders TA. The nutritional adequacy of plant-based diets. Proc Nutr Soc 1999; 58: 265–269.

    Article  PubMed  CAS  Google Scholar 

  13. Herbert V. Staging vitamin B-12 (cobalamin) status in vegetarians. Am J Clin Nutr 1994; 59(Suppl):1213S–1222S.

    PubMed  CAS  Google Scholar 

  14. The Heart Outcomes Prevention Evaluation (HOPE) 2 Investigators. Homocysteine lowering with folic acid and B vitamins in vascular disease. N Engl J Med 2006; 354: 1567–1577.

    Google Scholar 

  15. Bønaa KH, Njølstad I, Ueland PM, et al. Homocysteine lowering and cardiovascular events after acute myocardial infarction. N Engl J Med 2006; 354:1578–1588.

    Article  PubMed  Google Scholar 

  16. B-Vitamin Treatment Trialists’ Collaboration. Homocysteine-lowering trials for prevention of cardiovascular events: a review of the design and power of the large randomized trials. Am Heart J 2006; 151(2):282–287.

    Google Scholar 

  17. Reis RP, Azinheira J, Reis HP, Pina JE, Correia JM, Luis AS. Influence of smoking on homocysteinemia at baseline and after methionine load. Rev Port Cardiol 2000; 19: 471–474.

    PubMed  CAS  Google Scholar 

  18. Pagan K, Hou J, Goldenberg RL, Cliver SP, Tamura T. Effect of smoking on serum concentrations of total homocysteine and B vitamins in mid-pregnancy. Clin Chim Acta 2001; 306:103–109.

    Article  PubMed  CAS  Google Scholar 

  19. McCarty MF. Increased homocysteine associated with smoking, chronic inflammation and aging may reflect acute-phase induction of pyridoxal phosphatase activity. Med Hypotheses 2000; 55:289–293.

    Article  PubMed  CAS  Google Scholar 

  20. Nygard O, Refsum H, Ueland PM, Vollset SE. Major lifestyle determinants of plasma total homocysteine distribution: the Hordaland Homocysteine Study. Am J Clin Nutr 1998; 67:263–270.

    PubMed  CAS  Google Scholar 

  21. O’Callaghan P, Meleady R, Fitzgerald T, Graham I; European COMAC Group. Smoking and plasma homocysteine. Eur Heart J 2002; 23(20):1580–1586.

    Article  PubMed  Google Scholar 

  22. Uterman G. The mysteries of lipoprotein(a). Science 1989; 246:904–910.

    Article  Google Scholar 

  23. Gunther MF, Catherin AR, Angelo MS. Heterogeneity of human lipoprotein(a). J Biol Chem 1984; 259:11470–11478.

    Google Scholar 

  24. Para HG, Luyey I, Buramoue C, et al. Black-white differences in serum lipoprotein(a) levels. Clin Chim Acta 1987; 167:27–31.

    Article  Google Scholar 

  25. Scanu AM. Lipoprotein(a): a genetic risk factor for premature coronary heart disease. JAMA 1992; 267:3326–3329.

    Article  PubMed  CAS  Google Scholar 

  26. Macovina SM, Koshchinsky ML. Lipoprotein(a) as a risk factor for coronary artery disease. Am J Cardiol 1998; 82(12A):57U–66U.

    Article  Google Scholar 

  27. Rim L, Ali B, Slim BA, Bechir Z. Lipoprotein(a): a new risk factor for coronary artery disease. Tunis Med 2000; 78(11):648–652.

    PubMed  CAS  Google Scholar 

  28. Ridker PM. An epidemiologic reassessment of lipoprotein(a) and atherothrombotic risk. Trends Cardiovasc Med 1995; 5:225–229.

    Article  PubMed  CAS  Google Scholar 

  29. Wild SH, Fortmann SP, Marcovina SM. A prospective case-control study of lipoprotein(a) levels and apo(a) size and risk of coronary heart disease in Stanford Five-City Project participants. Arterioscler Thromb Vasc Biol 1997; 17:239–245

    Article  PubMed  CAS  Google Scholar 

  30. Sandholzer C, Saha N, Kark JD, Rees A, Jaross W, Dieplinger H, Hoppichler F, Boerwinkle E, Utermann G. Apo(a) isoforms predict risk for coronary heart disease: a study in six populations. Arterioscler Thromb 1992; 12:1214–1226.

    Article  PubMed  CAS  Google Scholar 

  31. Moliterno DJ, Jokinen EV, Miserez AR, Lange RA, Willard JE, Boerwinkle E, Hillis LD, Hobbs HH. No association between plasma lipoprotein(a) concentrations and the presence or absence of coronary atherosclerosis in African-Americans. Arterioscler Thromb Vasc Biol 1995; 15:850–855.

    Article  PubMed  CAS  Google Scholar 

  32. Sorrentino MJ, Vielhauer C, Eisenbart JD, Fless GM, Scanu AM, Feldman T. Plasma lipoprotein(a) protein concentration and coronary artery disease in black patients compared with white patients. Am J Med 1992; 93:658–662.

    Article  PubMed  CAS  Google Scholar 

  33. Marcovina SM, Albers JJ, Wijsman E, Zhang ZH, Chapman NH, Kennedy H. Differences in Lp(a) concentrations and apo(a) polymorphs between black and white Americans. J Lipid Res 1996; 37:2569–2585.

    PubMed  CAS  Google Scholar 

  34. Paultre F, Pearson TA, Weil HF, et al. High levels of Lp(a) with a small apo(a) isoform are associated with coronary artery disease in African American and white men. Arterioscler Thromb Vasc Biol 2000; 20(12):2619–2624.

    Article  PubMed  CAS  Google Scholar 

  35. Chiu L, Hamman RF, Kamboh MI. Apolipoprotein A polymorphisms and plasma lipoprotein(a) concentrations in non-Hispanic Whites and Hispanics. Hum Biol 2000; 72(5):821–835.

    PubMed  CAS  Google Scholar 

  36. Wang W, Hu D, Lee ET, Fabsitz RR, Welty TK, Robbins DC, J L Yeh, Howard BV. Lipoprotein(a) in American Indians is low and not independently associated with cardiovascular disease. The Strong Heart Study. Ann Epidemiol 2002; 12(2): 107–114.

    Article  PubMed  Google Scholar 

  37. Isser HS, Puri VK, Narain VS, Saran RK, Dwivedi SK, Singh S. Lipoprotein (a) and lipid levels in young patients with myocardial infarction and their first-degree relatives. Indian Heart J 2001; 53:463–466.

    PubMed  CAS  Google Scholar 

  38. Velmurugan K, Deepa R, Ravikumar R, Lawrence JB, Anshoo H, Senthilvelmurugan M, Enas EA, V. Mohan. Relationship of lipoprotein(a) with intimal medial thickness of the carotid artery in Type 2 diabetic patients in south India. Diabet Med 2003; 20(6): 455–461.

    Article  PubMed  CAS  Google Scholar 

  39. Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med 1999; 340:115–126.

    Article  PubMed  CAS  Google Scholar 

  40. Ness RB, Haggerty CL, Harger G, Ferrell R. Differential distribution of allelic variants in cytokine genes among African Americans and White Americans. Am J Epidemiol 2004; 160(11):1033–1038.

    Article  PubMed  Google Scholar 

  41. Ridker PM. High-sensitivity C-reactive protein: potential adjunct for global risk assessment in the primary prevention of cardiovascular disease. Circulation 2001; 103: 1813–1818.

    Article  PubMed  CAS  Google Scholar 

  42. Ridker PM, Glynn RJ, Hennekens CH. C-reactive protein adds to the predictive value of total and HDL cholesterol in determining risk of first myocardial infarction. Circulation 1998; 97: 2007–2011.

    Article  PubMed  CAS  Google Scholar 

  43. Wong, ND, Pio J. Valencia R, Thakal G. Distribution of C-reactive protein and its relation to risk factors and coronary heart disease risk estimation in the National Health and Nutrition Examination Survey (NHANES) III. Prev Cardiol 2001; 4(3):109–114.

    Article  PubMed  Google Scholar 

  44. LaMonte MJ, Durstine JL, Yanowitz FG, Lim T, DuBose KD, Davis P, Ainsworth BE. Cardiorespiratory fitness and C-reactive protein among a tri-ethnic sample of women. Circulation 2002; 106(4): 403–406.

    Article  PubMed  CAS  Google Scholar 

  45. Hassan MI, Aschner Y, Manning CH, et al. Racial differences in selected cytokine allelic and genotypic frequencies among healthy, pregnant women in North Carolina. Cytokine 2003; 21:10–16.

    Article  PubMed  CAS  Google Scholar 

  46. Reuben DB, Judd-Hamilton L, Harris TB, Seeman TE. MacArthur Studies of Successful Aging. The associations between physical activity and inflammatory markers in high-functioning older persons: MacArthur Studies of Successful Aging. J Am Geriatr Soc 2003; 51(8):1125–1130.

    Article  PubMed  Google Scholar 

  47. Roytblat L, Rachinsky M, Fisher A, et al. Raised interleukin-6 levels in obese patients. Obes Res 2000; 8(9):673–675.

    Article  PubMed  CAS  Google Scholar 

  48. Tappia PS, Troughton KL, Langley-Evans SC, Grimble RF. Cigarette smoking influences cytokine production and antioxidant defences. Clin Sci (Lond) 1995; 88(4): 485–459.

    CAS  Google Scholar 

  49. Okun ML, Hall M, Coussons-Read ME. Sleep disturbances increase interleukin-6 production during pregnancy: implications for pregnancy complications. Reprod Sci 2007; 14(6):560–567.

    Article  PubMed  CAS  Google Scholar 

  50. Harris TB, Ferrucci L, Tracy RP, et al. Associations of elevated interleukin-6 and C-reactive protein levels with mortality in the elderly. Am J Med 1999; 106:506–512.

    Article  PubMed  CAS  Google Scholar 

  51. Kiecolt-Glaser JK, Preache KJ, MacCallum RC, Atkinson C, Malarkey WB, Glaser R. Chronic stress and age-related increases in the proinflammatory cytokine IL-6. Proc Natl Acad Sci U S A 2003; 100(15):9090–9095.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Watson, K.E. (2009). Novel & Emerging Risk Factors in Racial/Ethnic Groups. In: Ferdinand, K., Armani, A. (eds) Cardiovascular Disease in Racial and Ethnic Minorities. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-410-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-410-0_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-981-9

  • Online ISBN: 978-1-59745-410-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics