Skip to main content

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 680 Accesses

Abstract

Significant strides from personalized medicine hold great promise to improve early detection, guide targeted therapies, and enhance disease monitoring while simultaneously incorporating specific contributions from race and ethnicity in disease pathogenesis. Hypertension underscores complex gene–environment interactions related to salt sensitivity. Genetic disorders in which certain candidate genes result in a loss of function and the aberrant expression of an abnormal gene product might give rise to either autosomal dominant or recessive inheritance patters. For example, impaired vascular function has been reported in both healthy and hypertensive African Americans. To account for ethnic differences in cardiovascular disease prevalence and outcome, however, the bioavailability of nitric oxide has been proposed as one mechanism to explain difference in vascular function. Alteration of nitric oxide production has been linked to olymorphisms in the gene encoding the endothelial nitric oxide synthase (ecNOS) in African Americans.

Distinctive variations, either by gender or by ethnicity, in the prevalence of significant CAD and mortality are often attributed to provider bias, in equities in heath care access or both. In spite of the earlier literature showing gaps by gender or ethnicity for heath-care access and treatment, direct evidence that disparities might be explained only by biases is lacking. Investigations such as the African-American Heart Failure Trial (A-HeFT) may now serve as a powerful reminder for us to avoid similar missed opportunities to explore emerging disciplines such as pharmacogenetics in the genomic era. Future guidelines on beta-adrenergic blockade for patients with heart failure or cardiac ischemia will inevitably be revised when the genetic information is available utilizing pharmacogenetics. Specific knowledge of an individual’s genetic composition will eliminate existing proxies using skin color for phenotyping disease susceptibility or resistance while enabling adequate monitoring and surveillance measures to be instituted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bell J. Predicting disease using genomics. Nature 2004; 429(6990):453–456.

    Article  CAS  PubMed  Google Scholar 

  2. Liu PP, Mason JW. Advances in the understanding of myocarditis. Circulation 2001; 104(9):1076–1082.

    Article  CAS  PubMed  Google Scholar 

  3. Humphries SE, Ridker PM, Talmud PJ. Genetic testing for cardiovascular disease susceptibility: a useful clinical management tool or possible misinformation? Arterioscler Thromb Vasc Biol 2004; 24(4):628–636.

    Article  CAS  PubMed  Google Scholar 

  4. Budoff MJ, Nasir K, Mao S, Tseng PH, Chau A, Liu ST, Flores F, Blumenthal RS. Ethnic differences of the presence and severity of coronary atherosclerosis. Atherosclerosis 2006; 187(2):343–350.

    Article  CAS  PubMed  Google Scholar 

  5. Takasu J, Katz R, Nasir K, Carr JJ, Wong N, Detrano R, Budoff MJ. Relationships of thoracic aortic wall calcification to cardiovascular risk factors: the Multi-Ethnic Study of Atherosclerosis (MESA). Am Heart J 2008; 155(4):765–771.

    Article  PubMed  Google Scholar 

  6. Nasir K, Katz R, Takasu J, Shavelle DM, Detrano R, Lima JA, Blumenthal RS, O'Brien K, Budoff MJ. Ethnic differences between extra-coronary measures on cardiac computed tomography: multi-ethnic study of atherosclerosis (MESA). Atherosclerosis 2008; 198(1):104–114.

    Article  CAS  PubMed  Google Scholar 

  7. Benjamin IJ, Arnett DK, Loscalzo J. Discovering the full spectrum of cardiovascular disease: Minority Health Summit 2003: report of the Basic Science Writing Group. Circulation 2005; 111(10):e120–123.

    Article  PubMed  Google Scholar 

  8. Kahn DF, Duffy SJ, Tomasian D, Holbrook M, Rescorl L, Russell J, Gokce N, Loscalzo J, Vita JA. Effects of black race on forearm resistance vessel function. Hypertension 2002; 40(2):195–201.

    Article  CAS  PubMed  Google Scholar 

  9. Lang CC, Stein CM, Brown RM, Deegan R, Nelson R, He HB, Wood M, Wood AJ. Attenuation of isoproterenol-mediated vasodilatation in blacks. N Engl J Med 1995; 333(3):155–160.

    Article  CAS  PubMed  Google Scholar 

  10. Song J, Yoon Y, Park KU, Park J, Hong YJ, Hong SH, Kim JQ. Genotype-specific influence on nitric oxide synthase gene expression, protein concentrations, and enzyme activity in cultured human endothelial cells. Clin Chem 2003; 49(6 Pt 1):847–852.

    Article  CAS  PubMed  Google Scholar 

  11. Tanus-Santos JE, Desai M, Flockhart DA. Effects of ethnicity on the distribution of clinically relevant endothelial nitric oxide variants. Pharmacogenetics 2001; 11(8): 719–725.

    Article  CAS  PubMed  Google Scholar 

  12. Hooper WC, Lally C, Austin H, Benson J, Dilley A, Wenger NK, Whitsett C, Rawlins P, Evatt BL. The relationship between polymorphisms in the endothelial cell nitric oxide synthase gene and the platelet GPIIIa gene with myocardial infarction and venous thromboembolism in African Americans. Chest 1999; 116(4):880–886.

    Article  CAS  PubMed  Google Scholar 

  13. Marks PA, Gross RT. Erythrocyte glucose-6-phosphate dehydrogenase deficiency: evidence of differences between Negroes and Caucasians with respect to this genetically determined trait. J Clin Invest 1959; 38:2253–2262.

    Article  CAS  PubMed  Google Scholar 

  14. Butler T. G-6-PD deficiency and malaria in Black Americans in Vietnam. Mil Med 1973; 138(3):153–155.

    CAS  PubMed  Google Scholar 

  15. Jain M, Brenner DA, Cui L, Lim CC, Wang B, Pimentel DR, Koh S, Sawyer DB, Leopold JA, Handy DE, Loscalzo J, Apstein CS, Liao R. Glucose-6-phosphate dehydrogenase modulates cytosolic redox status and contractile phenotype in adult cardiomyocytes. Circ Res 2003; 93(2):e9–e16.

    Article  CAS  PubMed  Google Scholar 

  16. Leopold JA, Walker J, Scribner AW, Voetsch B, Zhang YY, Loscalzo AJ, Stanton RC, Loscalzo J. Glucose-6-phosphate dehydrogenase modulates vascular endothelial growth factor-mediated angiogenesis. J Biol Chem 2003; 278(34):32100–32106.

    Article  CAS  PubMed  Google Scholar 

  17. Leopold JA, Zhang YY, Scribner AW, Stanton RC, Loscalzo J. Glucose-6-phosphate dehydrogenase overexpression decreases endothelial cell oxidant stress and increases bioavailable nitric oxide. Arterioscler Thromb Vasc Biol 2003; 23(3):411–417.

    Article  CAS  PubMed  Google Scholar 

  18. Kilaru PK, Kelly RF, Calvin JE, Parrillo JE. Utilization of coronary angiography and revascularization after acute myocardial infarction in men and women risk stratified by the American College of Cardiology/American Heart Association guidelines. J Am Coll Cardiol 2000; 35(4):974–979.

    Article  CAS  PubMed  Google Scholar 

  19. Nguyen JT, Berger AK, Duval S, Luepker RV. Gender disparity in cardiac procedures and medication use for acute myocardial infarction. Am Heart J 2008; 155(5):862–868.

    Article  PubMed  Google Scholar 

  20. Shaw LJ, Shaw RE, Merz CN, Brindis RG, Klein LW, Nallamothu B, Douglas PS, Krone RJ, McKay CR, Block PC, Hewitt K, Weintraub WS, Peterson ED. Impact of ethnicity and gender differences on angiographic coronary artery disease prevalence and in-hospital mortality in the American College of Cardiology-National Cardiovascular Data Registry. Circulation 2008; 117(14):1787–1801.

    Article  PubMed  Google Scholar 

  21. Taylor AL, Ziesche S, Yancy C, Carson P, D'Agostino R, Jr., Ferdinand K, Taylor M, Adams K, Sabolinski M, Worcel M, Cohn JN. Combination of isosorbide dinitrate and hydralazine in blacks with heart failure. N Engl J Med 2004; 351(20):2049–2057.

    Article  CAS  PubMed  Google Scholar 

  22. Temple R, Stockbridge NL. BiDil for heart failure in black patients: The U.S. Food and Drug Administration perspective. Ann Intern Med 2007; 146(1):57–62.

    PubMed  Google Scholar 

  23. Liggett SB, Mialet-Perez J, Thaneemit-Chen S, Weber SA, Greene SM, Hodne D, Nelson B, Morrison J, Domanski MJ, Wagoner LE, Abraham WT, Anderson JL, Carlquist JF, Krause-Steinrauf HJ, Lazzeroni LC, Port JD, Lavori PW, Bristow MR. A polymorphism within a conserved beta(1)-adrenergic receptor motif alters cardiac function and beta-blocker response in human heart failure. Proc Natl Acad Sci U S A 2006; 103(30):11288–11293.

    Article  CAS  PubMed  Google Scholar 

  24. Liggett SB, Cresci S, Kelly RJ, Syed FM, Matkovich SJ, Hahn HS, Diwan A, Martini JS, Sparks L, Parekh RR, Spertus JA, Koch WJ, Kardia SL, Dorn GW, II. A GRK5 polymorphism that inhibits beta-adrenergic receptor signaling is protective in heart failure. Nat Med 2008; 14(5):510–517.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Benjamin, I.J., Owan, T. (2009). Race, Genetics and Cardiovascular Disease. In: Ferdinand, K.C., Armani, A. (eds) Cardiovascular Disease in Racial and Ethnic Minorities. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59745-410-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-410-0_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-981-9

  • Online ISBN: 978-1-59745-410-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics