Skip to main content

Energy Expenditure in Obesity

  • Chapter
Treatment of the Obese Patient

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Body weight is dependent on an intricate balance between energy intake and energy expenditure. When energy intake exceeds energy expenditure weight is gained, and the majority of this excess energy is stored as body fat. Whether the culprit of weight gain is increased food intake or reduced energy expenditure is generally unknown but it is most likely to be both, with proportions varying from case to case. An accurate assessment of dietary energy intake is difficult and precise only under laboratory conditions, but then the dietary intake tends not to accurately represent everyday life. Measurements of food intake in free-living conditions are, however, weakened by poor accuracy and precision. Scientists, therefore, have concentrated on the energy expenditure side of the energy balance equation. This chapter will review the methods by which energy expenditure can be measured in humans, the components of daily energy expenditure, their inherent interindividual variability, and their contribution to weight gain in adults and children. Finally, recent advances in our understanding of some of the molecular mechanisms underlying the regulation of energy expenditure will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benzinger T, Kitzinger G. Gradient layer calorimetry and human calorimetry. In: Hardy, ed. Temperature: Its Measurement and Control in Science and Industry. Reinhold, New York: 1963, pp. 87–109.

    Google Scholar 

  2. Spinnler G, Jequier E, Favre R, et al. Human calorimeter with a new type of gradient layer. J Appl Physiol 1973;35(1): 158–165.

    PubMed  CAS  Google Scholar 

  3. Webb P. Human calorimeters. In: Endocrinology and Metabolism. Praeger Publishers, Westwood, CT: 1985, pp 53–55.

    Google Scholar 

  4. Dauncey MJ, Murgatroyd PR, Cole TJ. A human calorimeter for the direct and indirect measurement of 24 h energy expenditure. Br J Nutr 1978;39(3):557–566.

    Article  PubMed  CAS  Google Scholar 

  5. Dullo A, Ismail M, Ryall M, et al. A low budget easy-to-operate room respirometer for measuring daily energy expenditure in man. Am J Clin Nutr 1988;48:1267–1274.

    Google Scholar 

  6. Jequier E, Schutz Y. Long-term measurements of energy expenditure in humans using a respiration chamber. Am J Clin Nutr 1983;38(6):989–998.

    PubMed  CAS  Google Scholar 

  7. Minghelli G, Schutz Y, Charbonnier A, et al. Twenty-four-hour energy expenditure and basal metabolic rate measured in a whole-body indirect calorimeter in Gambian men. Am J Clin Nutr 1990;51(4):563–570.

    PubMed  CAS  Google Scholar 

  8. Ravussin E, Lillioja S, Anderson TE, et al. Determinants of 24-hour energy expenditure in man. Methods and results using a respiratory chamber. J Clin Invest 1986;78(6): 1568–1578.

    PubMed  CAS  Google Scholar 

  9. Rumpler WV, Seale JL, Conway JM, et al. Repeatability of 24-h energy expenditure measurements in humans by indirect calorimetry. Am J Clin Nutr 1990;51(2): 147–152.

    PubMed  CAS  Google Scholar 

  10. Van Es AJ, Vogt JE, Niessen C, et al. Human energy metabolism below, near and above energy equilibrium. Br J Nutr 1984;52(3):429–442.

    Article  PubMed  Google Scholar 

  11. Heymsfield SB, Allison DB, Pi-Sunyer FX, Sun Y. Columbia respiratory-chamber indirect calorimeter: a new approach to air-flow modelling. Med Biol Eng Comput 1994;32(4):406–410.

    Article  PubMed  CAS  Google Scholar 

  12. Kriketos AD, Sharp TA, Seagle HM, et al. Effects of aerobic fitness on fat oxidation and body fatness. Med Sci Sports Exerc 2000;32(4):805–811.

    Article  PubMed  CAS  Google Scholar 

  13. Nguyen T, de Jonge L, Smith SR, et al. Chamber for indirect calorimetry with accurate measurement and time discrimination of metabolic plateaus of over 20 min. Med Biol Eng Comput 2003;41(5): 572–578.

    Article  PubMed  CAS  Google Scholar 

  14. Schoffelen PF, Westerterp KR, Saris WH, et al. A dual-respiration chamber system with automated calibration. J Appl Physiol 1997;83(6):2064–2072

    PubMed  CAS  Google Scholar 

  15. Sun M, Reed GW, Hill JO. Modification of a whole room indirect calorimeter for measurement of rapid changes in energy expenditure. J Appl Physiol 1994;76(6):2686–2691.

    PubMed  CAS  Google Scholar 

  16. White MD, Bouchard G, Buemann B, et al. Energy and macronutrient balances for humans in a whole body metabolic chamber without control of preceding diet and activity level. Int J Obes Relat Metab Disord 1997;21(2): 135–140.

    Article  PubMed  CAS  Google Scholar 

  17. Lifson N. Theory of use of the turnover rates of body water for measuring energy and material balance. J Theor Biol 1966;12(l):46–74.

    Article  PubMed  CAS  Google Scholar 

  18. Schoeller DA, van Santen E. Measurement of energy expenditure in humans by doubly labeled water method. J Appl Physiol 1982;53(4):955–959.

    PubMed  CAS  Google Scholar 

  19. Coward W, Prentice A, Murgatroyd P. Measurement of CO2 and water production rates in man using 2H, 18O-labelled H2O; comparisons between calorimeter and isotope values. In: Es WA, ed. Human energy metabolism: physical activity and energy expenditure measurements in epidemiological research based upon direct and indirect calorimetry (European Nutrition Report): Stichting Netherlands Instituut voor de Voeding: 1984; pp. 126–128.

    Google Scholar 

  20. Klein PD, James WP, Wong WW, et al. Calorimetric validation of the doubly-labelled water method for determination of energy expenditure in man. Hum Nutr Clin Nutr 1984;38(2):95–106.

    PubMed  CAS  Google Scholar 

  21. Schoeller DA, Webb P. Five-day comparison of the doubly labeled water method with respiratory gas exchange. Am J Clin Nutr 1984;40(l): 153–158.

    PubMed  CAS  Google Scholar 

  22. Garrow J. Energy Balance and Obesity in Man. 1st ed. North-Holland, Amsterdam: 1974.

    Google Scholar 

  23. Acheson KJ, Campbell IT, Edholm OG, et al. The measurement of daily energy expenditure—an evaluation of some techniques. Am J Clin Nutr 1980;33(5): 1155–1164.

    PubMed  CAS  Google Scholar 

  24. Borel MJ, Riley RE, Snook JT. Estimation of energy expenditure and maintenance energy requirements of college-age men and women. Am J Clin Nutr 1984;40(6): 1264–1272

    PubMed  CAS  Google Scholar 

  25. Bradfield RB, Huntzicker PB, Fruehan GJ. Simultaneous comparison of respirometer and heart-rate telemetry techniques as measures of human energy expenditure. Am J Clin Nutr 1969;22(6): 696–700.

    PubMed  CAS  Google Scholar 

  26. Durnin JV, Brockway JM. Determination of the total daily energy expenditure in man by indirect calorimetry: assessment of the accuracy of a modern technique. Br J Nutr 1959;13(l):41–53.

    Article  PubMed  CAS  Google Scholar 

  27. Edholm O. Energy expenditure and food intake. In: Apfelbaum M, ed. Energy Balance in Man. Masson, Paris: 1973; pp. 51–60.

    Google Scholar 

  28. Geissler CA, Dzumbira TM, Noor MI. Validation of a field technique for the measurement of energy expenditure: factorial method versus continuous respirometry. Am J Clin Nutr 1986;44(5):596–602.

    PubMed  CAS  Google Scholar 

  29. Tudor-Locke CE, Myers AM. Challenges and opportunities for measuring physical activity in sedentary adults. Sports Med 2001;31(2):91–100.

    Article  PubMed  CAS  Google Scholar 

  30. Westerterp KR, Plasqui G. Physical activity and human energy expenditure. Curr Opin Clin Nutr Metab Care 2004;7(6):607–613.

    Article  PubMed  Google Scholar 

  31. Bouten CV, Westerterp KR, Verduin M, et al. Assessment of energy expenditure for physical activity using a triaxial accelerometer. Med Sci Sports Exerc 1994;26(12): 1516–1523.

    PubMed  CAS  Google Scholar 

  32. Bouten CV, Verboeket-van de Venne WP, et al. Daily physical activity assessment: comparison between movement registration and doubly labeled water. J Appl Physiol 1996;81(2): 1019–1026.

    PubMed  CAS  Google Scholar 

  33. Busser HJ, Ott J, van Lummel RC, et al. Ambulatory monitoring of children’s activity. Med Eng Phys 1997; 19(5): 440–445.

    Article  PubMed  CAS  Google Scholar 

  34. Foerster F, Fahrenberg J. Motion pattern and posture: correctly assessed by calibrated accelerometers. Behav Res Methods Instrum Comput 2000;32(3):450–457.

    PubMed  CAS  Google Scholar 

  35. Kiani K, Snijders CJ, Gelsema ES. Computerized analysis of daily life motor activity for ambulatory monitoring. Technol Health Care 1997;5(4):307–318.

    PubMed  CAS  Google Scholar 

  36. Kiani K, Snijders CJ, Gelsema ES. Recognition of daily life motor activity classes using an artificial neural network. Arch Phys Med Rehabil 1998;79(2): 147–154.

    Article  PubMed  CAS  Google Scholar 

  37. Levine JA, Lanningham-Foster LM, McCrady SK, et al. Interindividual variation in posture allocation: possible role in human obesity. Science 2005;307(5709):584–586.

    Article  PubMed  CAS  Google Scholar 

  38. Uiterwaal M, Glerum EB, Busser HJ, et al. Ambulatory monitoring of physical activity in working situations, a validation study. J Med Eng Technol 1998;22(4): 168–172.

    Article  PubMed  CAS  Google Scholar 

  39. Walker DJ, Fleslop PS, Plummer CJ, et al. A continuous patient activity monitor: validation and relation to disability. Physiol Meas 1997;18(l):49–59.

    Article  PubMed  CAS  Google Scholar 

  40. Zhang K, Werner P, Sun M, et al. Measurement of human daily physical activity. Obes Res 2003;11(l):33–40.

    PubMed  CAS  Google Scholar 

  41. Zhang K, Pi-Sunyer FX, Boozer CN. Improving energy expenditure estimation for physical activity. Med Sci Sports Exerc 2004;36(5):883–889.

    Article  PubMed  Google Scholar 

  42. Black AE, Coward WA, Cole TJ, et al. Human energy expenditure in affluent societies: an analysis of 574 doubly-labelled water measurements. Eur J Clin Nutr 1996;50(2):72–92.

    PubMed  CAS  Google Scholar 

  43. Boothby W, Sandiford I. Summary of the basal metabolism data on 8,614 subjects with special reference to the normal standards for the estimation of the basal metabolic rate. J Biol Chem 1922;54:783–803.

    CAS  Google Scholar 

  44. Cunningham JJ. Body composition as a determinant of energy expenditure: a synthetic review and a proposed general prediction equation. Am J Clin Nutr 1991;54(6):963–969.

    PubMed  CAS  Google Scholar 

  45. Harris J, Benedict F. A Biometric Study of Basal Metabolism in Man. The Carnegie Institute, Washington, DC: 1919.

    Google Scholar 

  46. Roza AM, Shizgal HM. The Harris Benedict equation reevaluated: resting energy requirements and the body cell mass. Am J Clin Nutr 1984;40(l): 168–182.

    PubMed  CAS  Google Scholar 

  47. Schofield WN. Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr 1985;39Suppl 1:5–41.

    PubMed  Google Scholar 

  48. Bogardus C, Lillioja S, Ravussin E, et al. Familial dependence of the resting metabolic rate. N Engl J Med 1986;315(2):96–100.

    Article  PubMed  CAS  Google Scholar 

  49. Bouchard C, Tremblay A, Nadeau A, et al. Genetic effect in resting and exercise metabolic rates. Metabolism 1989;38(4):364–370.

    Article  PubMed  CAS  Google Scholar 

  50. Rising R, Keys A, Ravussin E, et al. Concomitant interindividual variation in body temperature and metabolic rate. Am J Physiol 1992;263(4 Pt l):E730–E734.

    PubMed  CAS  Google Scholar 

  51. Spraul M, Ravussin E, Fontvieille AM, et al. Reduced sympathetic nervous activity. A potential mechanism predisposing to body weight gain. J Clin Invest 1993;92(4): 1730–1735.

    PubMed  CAS  Google Scholar 

  52. Kirkwood SP, Zurlo F, Larson K, et al. Muscle mitochondrial morphology, body composition, and energy expenditure in sedentary individuals. Am J Physiol 1991;260(l Pt 1):E89–E94.

    PubMed  CAS  Google Scholar 

  53. Zurlo F, Larson K, Bogardus C, et al. Skeletal muscle metabolism is a major determinant of resting energy expenditure. J Clin Invest 1990;86(5): 1423–1427.

    PubMed  CAS  Google Scholar 

  54. Schrauwen P, Xia J, Walder K, et al. A novel polymorphism in the proximal UCP3 promoter region: effect on skeletal muscle UCP3 mRNA expression and obesity in male non-diabetic Pima Indians. Int J Obes Relat Metab Disord 1999;23(12): 1242–1245.

    Article  PubMed  CAS  Google Scholar 

  55. Bouchard C, Perusse L, Chagnon YC, et al. Linkage between markers in the vicinity of the uncoupling protein 2 gene and resting metabolic rate in humans. Hum Mol Genet 1997;6(11): 1887–1889.

    Article  PubMed  CAS  Google Scholar 

  56. Kovacs P, Ma L, Hanson RL, et al. Genetic variation in UCP2 (uncoupling protein-2) i s associated with energy metabolism in Pima Indians. Diabetologia 2005;48(11):2292–2295.

    Article  PubMed  CAS  Google Scholar 

  57. Hill JO, Sparling PB, Shields TW, et al. Effects of exercise and food restriction on body composition and metabolic rate in obese women. Am J Clin Nutr 1987;46(4):622–630.

    PubMed  CAS  Google Scholar 

  58. Poehlman ET, Melby CL, Badylak SF. Resting metabolic rate and postprandial thermogenesis in highly trained and untrained males. Am J Clin Nutr 1988;47(5):793–798.

    PubMed  CAS  Google Scholar 

  59. Schulz LO, Nyomba BL, Alger S, et al. Effect of endurance training on sedentary energy expenditure measured in a respiratory chamber. Am J Physiol 1991;260(2 Pt 1):E257–E261.

    PubMed  CAS  Google Scholar 

  60. Tremblay A, Fontaine E, Poehlman ET, et al. The effect of exercise-training on resting metabolic rate in lean and moderately obese individuals. Int J Obes 1986;10(6):511–517.

    PubMed  CAS  Google Scholar 

  61. Tataranni PA, Larson DE, Snitker S, et al. Thermic effect of food in humans: methods and results from use of a respiratory chamber. Am J Clin Nutr 1995;61(5): 1013–1019.

    PubMed  CAS  Google Scholar 

  62. Weststrate JA. Resting metabolic rate and diet-induced thermogenesis: a methodological reappraisal. Am J Clin Nutr 1993;58(5):592–601.

    PubMed  CAS  Google Scholar 

  63. de Jonge L, Bray GA. The thermic effect of food and obesity: a critical review. Obes Res 1997;5(6): 622–631.

    PubMed  Google Scholar 

  64. Granata GP, Brandon LJ. The thermic effect of food and obesity: discrepant results and methodological variations. Nutr Rev 2002;60(8):223–233.

    Article  PubMed  Google Scholar 

  65. Riumallo JA, Schoeller D, Barrera G, et al. Energy expenditure in underweight free-living adults: impact of energy supplementation as determined by doubly labeled water and indirect calorimetry. Am J Clin Nutr 1989;49(2):239–246.

    PubMed  CAS  Google Scholar 

  66. Prentice AM, Jebb SA. Obesity in Britain: gluttony or sloth? BMJ 1995;311(7002):437–439.

    PubMed  CAS  Google Scholar 

  67. Schoeller DA, Fjeld CR. Human energy metabolism: what have we learned from the doubly labeled water method? Annu Rev Nutr 1991;11:355–373.

    PubMed  CAS  Google Scholar 

  68. Prentice AM, Black AE, Coward WA, et al. Energy expenditure in overweight and obese adults in affluent societies: an analysis of 319 doubly-labelled water measurements. Eur J Clin Nutr 1996;50(2): 93–97.

    PubMed  CAS  Google Scholar 

  69. Schulz LO, Schoeller DA. A compilation of total daily energy expenditures and body weights in healthy adults. Am J Clin Nutr 1994;60(5):676–681.

    PubMed  CAS  Google Scholar 

  70. Swinburn BA, Jolley D, Kremer PJ, et al. Estimating the effects of energy imbalance on changes in body weight in children. Am J Clin Nutr 2006;83:859–863.

    PubMed  CAS  Google Scholar 

  71. Franks PW, Ravussin E, Hanson RL, et al. Habitual physical activity in children: the role of genes and the environment. Am J Clin Nutr 2005;82:901–908.

    PubMed  CAS  Google Scholar 

  72. Levine JA. Non-exercise activity thermogenesis (NEAT). Best Pract Res Clin Endocrinol Metab 2002; 16(4): 679–702.

    Article  PubMed  Google Scholar 

  73. Levine JA, Eberhardt NL, Jensen MD. Role of nonexercise activity thermogenesis in resistance to fat gain in humans. Science 1999;283(5399):212–214.

    Article  PubMed  CAS  Google Scholar 

  74. Zurlo F, Ferraro RT, Fontvielle AM, et al. Spontaneous physical activity and obesity: cross-sectional and longitudinal studies in Pima Indians. Am J Physiol 1992;263(2 Pt1):E296–E300.

    PubMed  CAS  Google Scholar 

  75. Ravussin E. Physiology. A NEAT way to control weight? Science 2005;307(5709):530–531.

    Article  PubMed  CAS  Google Scholar 

  76. Ravussin E, Swinburn BA. Metabolic predictors of obesity: cross-sectional versus longitudinal data. Int J Obes Relat Metab Disord 1993;17Suppl 3:S28–S31; discussion S41-S42.

    PubMed  Google Scholar 

  77. Knowler WC, Pettitt DJ, Saad MF, et al. Obesity in the Pima Indians: its magnitude and relationship with diabetes. Am J Clin Nutr 1991;53(6 Suppl): 1543S–1551S.

    PubMed  CAS  Google Scholar 

  78. Weyer C, Snitker S, Rising R, et al. Determinants of energy expenditure and fuel utilization in man: effects of body composition, age, sex, ethnicity and glucose tolerance in 916 subjects. Int J Obes Relat Metab Disord 1999;23(7):715–722.

    Article  PubMed  CAS  Google Scholar 

  79. Ravussin E, Lillioja S, Knowler WC, et al. Reduced rate of energy expenditure as a risk factor for body-weight gain. N Engl J Med 1988;318(8):467–472.

    Article  PubMed  CAS  Google Scholar 

  80. Tataranni PA, Harper IT, Snitker S, et al. Body weight gain in free-living Pima Indians: effect of energy intake vs expenditure. Int J Obes Relat Metab Disord 2003;27(12): 1578–1583.

    Article  PubMed  CAS  Google Scholar 

  81. Astrup A, Gotzsche PC, van de Werken K, et al. Meta-analysis of resting metabolic rate in formerly obese subjects. Am J Clin Nutr 1999;69(6): 1117–1122.

    PubMed  CAS  Google Scholar 

  82. Amatruda JM, Statt MC, Welle SL. Total and resting energy expenditure in obese women reduced to ideal body weight. J Clin Invest 1993;92(3): 1236–1242.

    PubMed  CAS  Google Scholar 

  83. Weinsier RL, Nelson KM, Hensrud DD, et al. Metabolic predictors of obesity. Contribution of resting energy expenditure, thermic effect of food, and fuel utilization to four-year weight gain of post-obese and never-obese women. J Clin Invest 1995;95(3):980–985.

    PubMed  CAS  Google Scholar 

  84. Snitker S, Tataranni PA, Ravussin E. Spontaneous physical activity in a respiratory chamber is correlated to habitual physical activity. Int J Obes Relat Metab Disord 2001;25(10): 1481–1486.

    Article  PubMed  CAS  Google Scholar 

  85. Schwartz RS, Jaeger LF, Veith RC. Effect of clonidine on the thermic effect of feeding in humans. Am J Physiol 1988;254(1 Pt 2):R90–R94.

    PubMed  CAS  Google Scholar 

  86. Christin L, O’Connell M, Bogardus C, et al. Norepinephrine turnover and energy expenditure in Pima Indian and white men. Metabolism 1993;42(6):723–729.

    Article  PubMed  CAS  Google Scholar 

  87. Snitker S, Tataranni PA, Ravussin E. Respiratory quotient is inversely associated with muscle sympathetic nerve activity. J Clin Endocrinol Metab 1998;83(11):3977–3979.

    Article  PubMed  CAS  Google Scholar 

  88. Astrup A, Bulow J, Madsen J, et al. Contribution of BAT and skeletal muscle to thermogenesis induced by ephedrine in man. Am J Physiol 1985;248(5 Pt l):E507–E515.

    PubMed  CAS  Google Scholar 

  89. McNeill G, Bruce AC, Ralph A, et al. Inter-individual differences in fasting nutrient oxidation and the influence of diet composition. Int J Obes 1988; 12(5):455–463.

    PubMed  CAS  Google Scholar 

  90. Flatt JP, Ravussin E, Acheson KJ, et al. Effects of dietary fat on postprandial substrate oxidation and on carbohydrate and fat balances. J Clin Invest 1985;76(3): 1019–1024.

    PubMed  CAS  Google Scholar 

  91. Zurlo F, Lillioja S, Esposito-Del Puente A, et al. Low ratio of fat to carbohydrate oxidation as predictor of weight gain: study of 24-h RQ. Am J Physiol 1990;259(5 Pt l):E650–E657.

    PubMed  CAS  Google Scholar 

  92. Toubro S, Sorensen TI, Hindsberger C, et al. Twenty-four-hour respiratory quotient: the role of diet and familial resemblance. J Clin Endocrinol Metab 1998;83(8):2758–2764.

    Article  PubMed  CAS  Google Scholar 

  93. Scidell JC, Muller DC, Sorkin JD, et al. Fasting respiratory exchange ratio and resting metabolic rate as predictors of weight gain: the Baltimore Longitudinal Study on Aging. Int J Obes Relat Metab Disord 1992;16(9):667–674.

    Google Scholar 

  94. Astrup A, Buemann B, Christensen NJ, et al. Failure to increase lipid oxidation in response to increasing dietary fat content in formerly obese women. Am J Physiol 1994;266(4 Pt 1): E592–E599.

    PubMed  CAS  Google Scholar 

  95. Larson DE, Ferraro RT, Robertson DS, et al. Energy metabolism i n weight-stable postobese individuals. Am J Clin Nutr 1995;62(4):735–739.

    PubMed  CAS  Google Scholar 

  96. Froidevaux F, Schutz Y, Christin L, et al. Energy expenditure in obese women before and during weight loss, after refeeding, and in the weight-relapse period. Am J Clin Nutr 1993;57(l):35–42.

    PubMed  CAS  Google Scholar 

  97. Mokdad AH, Serdula MK, Dietz WH, et al. The spread of the obesity epidemic in the United States, 1991-1998. JAMA 1999;282(16): 1519–1522.

    Article  PubMed  CAS  Google Scholar 

  98. Serdula MK, Ivery D, Coates RJ, et al. Do obese children become obese adults? A review of the literature. Prev Med 1993;22(2): 167–177.

    Article  PubMed  CAS  Google Scholar 

  99. McCance DR, Pettitt DJ, Flanson RL, et al. Glucose, insulin concentrations and obesity in childhood and adolescence as predictors of NIDDM. Diabetologia 1994;37(6):617–623.

    Article  PubMed  CAS  Google Scholar 

  100. Dietz WH. Critical periods in childhood for the development of obesity. Am J Clin Nutr 1994;59(5): 955–959.

    PubMed  CAS  Google Scholar 

  101. Stunkard AJ, Berkowitz RI, Stallings VA, et al. Energy intake, not energy output, is a determinant of body size in infants. Am J Clin Nutr 1999;69(3):524–530.

    PubMed  CAS  Google Scholar 

  102. Roberts SB, Savage J, Coward WA, et al. Energy expenditure and intake in infants born to lean and overweight mothers. N Engl J Med 1988;318(8):461–466.

    Article  PubMed  CAS  Google Scholar 

  103. Griffiths M, Payne PR, Stunkard AJ, et al. Metabolic rate and physical development in children at risk of obesity. Lancet 1990;336(8707):76–78.

    Article  PubMed  CAS  Google Scholar 

  104. Goran MI, Gower BA, Nagy TR, et al. Developmental changes in energy expenditure and physical activity in children: evidence for a decline in physical activity in girls before puberty. Pediatrics 1998;101(5):887–891.

    Article  PubMed  CAS  Google Scholar 

  105. Goran MI, Hunter G, Nagy TR, et al. Physical activity related energy expenditure and fat mass in young children. Int J Obes Relat Metab Disord 1997;21(3): 171–178.

    Article  PubMed  CAS  Google Scholar 

  106. Goran MI, Shewchuk R, Gower BA, etal. Longitudinal changes in fatness in white children: no effect of childhood energy expenditure. Am J Clin Nutr 1998;67(2):309–316.

    PubMed  CAS  Google Scholar 

  107. Johnson MS, Figueroa-Colon R, Herd SL, et al. Aerobic fitness, not energy expenditure, influences subsequent increase in adiposity in black and white children. Pediatrics 2000; 106(4):E50.

    Article  PubMed  CAS  Google Scholar 

  108. Robinson TN. Reducing children’s television viewing to prevent obesity: a randomized controlled trial. JAMA 1999;282(16): 1561–1567.

    Article  PubMed  CAS  Google Scholar 

  109. Salbe A, Weyer C, Fontvieille A, et al. Low levels of physical activity and time spent viewing television at 9 years of age predict weight gain 8 years later in Pima Indian children. Int J Obes 1998;22(Suppl 4):S10.

    Google Scholar 

  110. Foster DO, Frydman ML. Brown adipose tissue: the dominant site of nonshivering thermogenesis in the rat. Experientia Suppl 1978;32:147–151.

    PubMed  CAS  Google Scholar 

  111. Schiffelers SL, Brouwer EM, Saris WH, et al. Inhibition of lipolysis reduces betal-adrenoceptormediated thermogenesis in man. Metabolism 1998;47(12): 1462–1467.

    Article  PubMed  CAS  Google Scholar 

  112. Arch JR, Ainsworth AT, Ellis RD, et al. Treatment of obesity with thermogenic beta-adrenoceptor agonists: studies on BRL 26830A in rodents. Int J Obes 1984;8Suppl 1:1–11.

    PubMed  CAS  Google Scholar 

  113. Cawthorne MA, Carroll MJ, Levy AL, et al. Effects of novel beta-adrenoceptor agonists on carbohydrate metabolism: relevance for the treatment of non-insulin-dependent diabetes. Int J Obes 1984;8Suppl 1:93–102.

    PubMed  CAS  Google Scholar 

  114. Susulic VS, Frederich RC, Lawitts J, et al. Targeted disruption of the beta 3-adrenergic receptor gene. J Biol Chem 1995;270(49):29,483–29,492.

    CAS  Google Scholar 

  115. Connacher AA, Jung RT, Mitchell PE. Weight loss in obese subjects on a restricted diet given BRL 26830A, a new atypical beta adrenoceptor agonist. Br Med J (Clin Res Ed) 1988;296(6631): 1217–1220.

    Article  CAS  Google Scholar 

  116. Zed CA, Harris GS, Harrison PJ, et al. Anti-obesity activity of a novel b-adrenoreceptor agonist (BLR 26830A) in diet-restricted obese animals. Int J Obes 1985;9:231.

    Google Scholar 

  117. Weyer C, Tataranni PA, Snitker S, et al. Increase in insulin action and fat oxidation after treatment with CL 316,243, a highly selective beta3-adrenoceptor agonist in humans. Diabetes 1998;47(10): 1555–1561.

    Article  PubMed  CAS  Google Scholar 

  118. Henny C, Buckert A, Schutz Y, et al. Comparison of thermogenic activity induced by the new sympathomimetic Ro 16-8714 between normal and obese subjects. Int J Obes 1988;12(3):227–236.

    PubMed  CAS  Google Scholar 

  119. Connacher AA, Lakie M, Powers N, et al. Tremor and the anti-obesity drug BRL 26830A. Br J Clin Pharmacol 1990;30(4):613–615.

    PubMed  CAS  Google Scholar 

  120. Smith SJ, Cases S, Jensen DR, et al. Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking DGAT. Nat Genet 2000;25(l):87–90.

    PubMed  CAS  Google Scholar 

  121. Wheeldon NM, McDevitt DG, McFarlane LC, et al. Beta-adrenoceptor subtypes mediating the metabolic effects of BRL 35135 in man. Clin Sci (Lond) 1994;86(3):331–337.

    CAS  Google Scholar 

  122. Francke S. TAK-677 (Dainippon/Takeda). Curr Opin Investi g Drugs 2002;3(11): 1624–1628.

    CAS  Google Scholar 

  123. Zhang Y, Proenca R, Maffei M, et al. Positional cloning of the mouse obese gene and its human homologue. Nature 1994;372(6505): 425–432.

    Article  PubMed  CAS  Google Scholar 

  124. Campfield LA, Smith FJ, Guisez Y, et al. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 1995;269(5223):546–549.

    Article  PubMed  CAS  Google Scholar 

  125. Halaas JL, Gajiwala KS, Maffei M, et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 1995;269(5223):543–546.

    Article  PubMed  CAS  Google Scholar 

  126. Pelleymounter MA, Cullen MJ, Baker MB, et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 1995;269(5223):540–543.

    Article  PubMed  CAS  Google Scholar 

  127. Montague CT, Farooqi IS, Whitehead JP, et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 1997;387(6636):903–908.

    Article  PubMed  CAS  Google Scholar 

  128. Strobel A, Issad T, Camoin L, et al. A leptin missense mutation associated with hypogonadism and morbid obesity. Nat Genet 1998;18(3):213–215.

    Article  PubMed  CAS  Google Scholar 

  129. Ravussin E, Caglayan S, Williamson DE, et al. Effects of human leptin replacement on food intake and energy metabolism in 3 leptin-deficient adults. Int J Obes 2002;26(Sl): S136.

    Google Scholar 

  130. Licinio J, Caglayan S, Ozata M, et al. Phenotypic effects of leptin replacement on morbid obesity, diabetes mellitus, hypogonadism, and behavior in leptin-deficient adults. Proc Natl Acad Sci USA 2004;101(13):4531–4536.

    Article  PubMed  CAS  Google Scholar 

  131. Heymsfield SB, Greenberg AS, Fujioka K, et al. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA 1999;282(16): 1568–1575.

    Article  PubMed  CAS  Google Scholar 

  132. Rosenbaum M, Goldsmith R, Bloomfield D, et al. Low-dose leptin reverses skeletal muscle, autonomie, and neuroendocrine adaptations to maintenance of reduced weight. J Clin Invest 2005; 115(12): 3579–3586.

    Article  PubMed  CAS  Google Scholar 

  133. Rosenbaum M, Murphy EM, Heymsfield SB, et al. Low dose leptin administration reverses effects of sustained weight-reduction on energy expenditure and circulating concentrations of thyroid hormones. J Clin Endocrinol Metab 2002;87(5):2391–2394.

    Article  PubMed  CAS  Google Scholar 

  134. Arsenijevic D, Onuma H, Pecqueur C, et al. Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat Genet 2000;26(4):435–439.

    Article  PubMed  CAS  Google Scholar 

  135. Gong DW, Monemdjou S, Gavrilova O, et al. Lack of obesity and normal response to fasting and thyroid hormone in mice lacking uncoupling protein-3. J Biol Chem 2000;275(21): 16,251–16,257.

    Article  CAS  Google Scholar 

  136. Vidal-Puig AJ, Grujic D, Zhang CY, et al. Energy metabolism in uncoupling protein 3 gene knockout mice. J Biol Chem 2000;275(21): 16,258–16,266.

    Article  CAS  Google Scholar 

  137. Zhang CY, Baft’y G, Perret P, et ai. Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, beta cell dysfunction, and type 2 diabetes. Cell 2001; 105(6): 745–755.

    Article  PubMed  CAS  Google Scholar 

  138. Clapham JC, Arch JR, Chapman H, et al. Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean. Nature 2000;406(6794):415–418.

    Article  PubMed  CAS  Google Scholar 

  139. Stuart JA, Harper JA, Brindle KM, et al. Physiological levels of mammalian uncoupling protein 2 do not uncouple yeast mitochondria. J Biol Chem 2001;276(21): 18,633–18,639.

    Article  CAS  Google Scholar 

  140. Hesselink MK, Greenhaff PL, Constantin-Teodosiu D, et al. Increased uncoupling protein 3 content does not affect mitochondrial function in human skeletal muscle in vivo. J Clin Invest 2003;111(4): 479–486.

    Article  PubMed  CAS  Google Scholar 

  141. Walder K, Norman RA, Hanson RL, et al. Association between uncoupling protein polymorphisms (UCP2-UCP3) and energy metabolism/obesity in Pima Indians. Hum Mol Genet 1998;7(9): 1431–1435.

    Article  PubMed  CAS  Google Scholar 

  142. Cases S, Smith SJ, Zheng YW, et al. Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc Natl Acad Sci USA 1998;95(22): 13,018–13,023.

    Article  CAS  Google Scholar 

  143. Cases S, Stone SJ, Zhou P, et al. Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members. J Biol Chem 2001;276(42):38,870–38,876.

    Article  CAS  Google Scholar 

  144. Chen HC, Smith SJ, Ladha Z, et al. Increased insulin and leptin sensitivity in mice lacking acyl CoA:diacylglycerol acyltransferase 1. J Clin Invest 2002;109(8): 1049–1055.

    Article  PubMed  CAS  Google Scholar 

  145. Chen HC, Farese RV, Jr. Inhibition of triglyceride synthesis as a treatment strategy for obesity: lessons from DGATl-deficient mice. Arterioscler Thromb Vasc Biol 2005;25(3):482–486.

    Article  PubMed  CAS  Google Scholar 

  146. Chen HC, Ladha Z, Smith SJ, et al. Analysis of energy expenditure at different ambient temperatures in mice lacking DGAT1. Am J Physiol Endocrinol Metab 2003;284(l):E213–E218.

    PubMed  CAS  Google Scholar 

  147. Ludwig EH, Mahley RW, Palaoglu E, et al. DGAT1 promoter polymorphism associated with alterations in body mass index, high density lipoprotein levels and blood pressure in Turkish women. Clin Genet 2002;62(l):68–73.

    Article  PubMed  Google Scholar 

  148. Munday MR. Regulation of mammalian acetyl-CoA carboxylase. Biochem Soc Trans 2002;30 (Pt 6): 1059–1064.

    Article  PubMed  CAS  Google Scholar 

  149. Tong L. Acetyl-coenzyme A carboxylase: crucial metabolic enzyme and attractive target for drug discovery. Cell Mol Life Sci 2005;62(16): 1784–1803.

    Article  PubMed  CAS  Google Scholar 

  150. Abu-Elheiga L, Oh W, Kordari P, et al. Acetyl-CoA carboxylase 2 mutant mice are protected against obesity and diabetes induced by high-fat/high-carbohydrate diets. Proc Natl Acad Sci USA 2003;100(18): 10,207–10,212.

    Article  CAS  Google Scholar 

  151. Abu-Elheiga L, Matzuk MM, Abo-Hashema KA, et al. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 2001;291(5513):2613–2616.

    Article  PubMed  CAS  Google Scholar 

  152. Oh W, Abu-Elheiga L, Kordari P, et al. Glucose and fat metabolism in adipose tissue of acetyl-CoA carboxylase 2 knockout mice. Proc Natl Acad Sci USA 2005; 102(5): 1384–1389.

    Article  PubMed  CAS  Google Scholar 

  153. Harwood HJ, Jr., Petras SF, Shelly LD, etal. Isozyme-nonselective N-substituted bipiperidylcarboxamide acetyl-CoA carboxylase inhibitors reduce tissue malonyl-CoA concentrations, inhibit fatty acid synthesis, and increase fatty acid oxidation in cultured cells and in experimental animals. J Biol Chem 2003;278(39):37,099–37,111.

    Article  CAS  Google Scholar 

  154. Perusse L, Rankinen T, Zuberi A, et al. The human obesity gene map: the 2004 update. Obes Res 2005;13(3):381–490.

    Article  PubMed  CAS  Google Scholar 

  155. Neel JV. The ‘thrifty genotype’ in 1998. Nutr Rev 1999;57(5 Pt 2):S2–S9.

    CAS  Google Scholar 

  156. Weyer C, Pratley RE, Salbe AD, et al. Energy expenditure, fat oxidation, and body weight regulation: a study of metabolic adaptation to long-term weight change. J Clin Endocrinol Metab 2000;85(3): 1087–1094.

    Article  PubMed  CAS  Google Scholar 

  157. Chen AS, Marsh DJ, Trumbauer ME, et al. Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat Genet 2000;26(l):97–102.

    PubMed  CAS  Google Scholar 

  158. Huszar D, Lynch CA, Fairchild-Huntress V, et al. Targeted di sruption of the melanocortin-4 receptor results in obesity in mice. Cell 1997;88(1): 131–141.

    Article  PubMed  CAS  Google Scholar 

  159. Shimada M, Tritos NA, Lowell BB, et al. Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature 1998;396(6712):670–674.

    Article  PubMed  CAS  Google Scholar 

  160. Hahm S, Mizuno TM, Wu TJ, et al. Targeted deletion of the Vgf gene indicates that the encoded secretory peptide precursor plays a novel role in the regulation of energy balance. Neuron 1999;23(3):537–548.

    Article  PubMed  CAS  Google Scholar 

  161. Cummings DE, Brandon EP, Planas JV, et al. Genetically lean mice result from targeted disruption of the RII beta subunit of protein kinase A. Nature 1996;382(6592):622–626.

    Article  PubMed  CAS  Google Scholar 

  162. Elchebly M, Fayette P, Michaliszyn E, et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-lB gene. Science 1999;283(5407): 1544–1548.

    Article  PubMed  CAS  Google Scholar 

  163. Miller KA, Gunn TM, Carrasquillo MM, et al. Genetic studies of the mouse mutations mahogany and mahoganoid. Genetics 1997;146(4): 1407–1415.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Redman, L.M., Ravussin, E. (2007). Energy Expenditure in Obesity. In: Kushner, R.F., Bessesen, D.H. (eds) Treatment of the Obese Patient. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-59745-400-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-400-1_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-735-8

  • Online ISBN: 978-1-59745-400-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics