Skip to main content

Measurement of Body Composition in Obesity

  • Chapter
Treatment of the Obese Patient

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

This chapter examines common methods for measuring body composition in obesity. These methods range from simple anthropometric measures that indirectly assess adiposity to more complex measures such as magnetic resonance imaging (MRI) and computed tomography (CT) that are able to directly measure numerous tissues in vivo. Anthropometric measurements are inexpensive, and are readily used in clinical settings and epidemiological studies, but lack precision to accurately quantify specific fat depots. On the other hand, imaging techniques such as MRI and CT are associated with high accuracy, but are limited by their availability and high cost. Application of other body composition measurement techniques such as dual-energy X-ray absorptiometry and magnetic resonance spectroscopy will also be considered. The focus of this review is on strengths and limitations of these body composition measurement techniques, and how they advance our understanding of how body composition influences the associations between obesity, morbidity, and mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Folsom AR, Kusbi LH, Anderson KE, et al. Associations of general and abdominal obesity with multiple health outcomes in older women: the Iowa Women’s Health Study. Arch Intern Med 2000; 160:2117–2128.

    Article  PubMed  CAS  Google Scholar 

  2. Ho SC, Chen YM, Woo JL, et al. Association between simple anthropometric indices and cardiovascular risk factors. Int J Obes Relat Metab Disord 2001;25:1689–1697.

    Article  PubMed  CAS  Google Scholar 

  3. Scidell JC, Cigolini M, Charzewska J, et al. Regional obesity and serum lipids in European women born in 1948. A multicenter study. Acta Med Scand Suppl 1988;723:189–197.

    Google Scholar 

  4. Vague J. La differenciation sexuelle, facteur determinant des formes de l’obesité. La Presse Médicale 1947;30:339–340.

    Google Scholar 

  5. Janssen I, Katzmarzyk PT, Ross R. Waist circumference and not body mass index explains obesityrelated health risk. Am J Clin Nutr 2004;79:379–384.

    PubMed  CAS  Google Scholar 

  6. Ohlson LO, Larsson B, Svardsudd K, et al. The influence of body fat distribution on the incidence of diabetes mellitus. 13.5 years of follow-up of the participants in the study of men born in 1913. Diabetes 1985;34:1055–1058.

    Article  PubMed  CAS  Google Scholar 

  7. Allison DB, Gallagher D, Heo M, et al. Body mass index and all-cause mortality among people age 70 and over: the Longitudinal Study of Aging. Int J Obes Relat Metab Disord 1997;21:424–431.

    Article  PubMed  CAS  Google Scholar 

  8. Calle EE, Thun MJ, Petrelli JM, et al. Body-mass index and mortality in a prospective cohort of U. S. adults. N Engl J Med 1999; 41:1097–1105.

    Article  Google Scholar 

  9. Bigaard J, Tjonneland A, Thomsen BL, et al. Waist circumference, BMI, smoking, and mortality in middle-aged men and women. Obes Res 2003; 11:895–903.

    PubMed  Google Scholar 

  10. Lapidus L, Bengtsson C, Lissner L. Di stribution of adipose tissue in relation to cardiovascular and total mortality as observed during 20 years in a prospective population study of women in Gothenburg, Sweden. Diabetes Res Clin Pract 1990; 10 Suppl 1:S185–S189.

    Article  Google Scholar 

  11. Larsson B, Svardsudd K, Welin L, et al. Abdominal adipose tissue distribution, obesity, and risk of cardiovascular disease and death: 13 year follow up of participants in the study of men born in 1913. Br Med J (Clin Res Ed) 1984;288:1401–1404.

    CAS  Google Scholar 

  12. Kuk JL, Katzmarzyk PT, Nichaman MZ, et al. Visceral fat is an independent predictor of all-cause mortality in men. Obes Res 2006;14:336–341.

    Google Scholar 

  13. Spencer EA, Appleby PN, Davey GK, et al. Validity of self-reported height and weight in 4808 EPIC-Oxford participants. Public Health Nutr 2002;5:561–565.

    Article  PubMed  Google Scholar 

  14. Executive summary of the clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults. Arch Intern Med 1998;158:1855–1867.

    Google Scholar 

  15. Gallagher D, Heymsfield SB, Heo M, et al. Healthy percentage body fat ranges: an approach for developing guidelines based on body mass index. Am J Clin Nutr 2000;72:694–701.

    PubMed  CAS  Google Scholar 

  16. Deurenberg-Yap M, Chew SK, Deurenberg P. Elevated body fat percentage and cardiovascular risks at low body mass index levels among Singaporean Chinese, Malays and Indians. Obes Rev 2002;3:209–215.

    Article  PubMed  CAS  Google Scholar 

  17. Janssen I, Katzmarzyk PT, Ross R, et al. Fitness alters the associations of BMI and waist circumference with total and abdominal fat. Obes Res 2004; 12:525–537.

    PubMed  Google Scholar 

  18. Stevens J, Cai J, Pamuk ER, et al. The effect of age on the association between body-mass index and mortality. N Engl J Med 1998;338:1–7.

    Article  PubMed  CAS  Google Scholar 

  19. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004;363:157–163.

    Google Scholar 

  20. Stevens J, Nowicki EM. Body mass index and mortality in asian populations: implications for obesity cut-points. Nutr Rev 2003;61:104–107.

    Article  PubMed  Google Scholar 

  21. Song YM, Sung J. Body mass index and mortality: a twelve-year prospective study in Korea. Epidemiology 2001; 12:173–179.

    Article  PubMed  CAS  Google Scholar 

  22. Lee RC, Wang Z, Heo M, et al. Total-body skeletal muscle mass: development and cross-validation of anthropometric prediction models. Am J Clin Nutr 2000;72:796–803.

    PubMed  CAS  Google Scholar 

  23. Rice B, Janssen I, Hudson R, et al. Effects of aerobic or resistance exercise and/or diet on glucose tolerance and plasma insulin levels in obese men. Diabetes Care 1999;22:684–691.

    Article  PubMed  CAS  Google Scholar 

  24. Wang J, Thornton JC, Bari S, et al. Comparisons of waist circumferences measured at 4 sites. Am J Clin Nutr 2003;77:379–384.

    PubMed  Google Scholar 

  25. Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults—The Evidence Report. National Institutes of Health. Obes Res 1998;6Suppl 2:51S–209S.

    Google Scholar 

  26. Zhu S, Heymsfield SB, Toyoshima H, et al. Race-ethnicity-specific waist circumference cutoffs for identifying cardiovascular disease risk factors. Am J Clin Nutr 2005;81:409–415.

    PubMed  CAS  Google Scholar 

  27. The IDF consensus worldwide definition of the metabolic syndrome: International Diabetes Federation, 2005.

    Google Scholar 

  28. Flan TS, Lean ME. Self-reported waist circumference compared with the ‘Waist Watcher’ tapemeasure to identify individuals at increased health risk through intra-abdominal fat accumulation. Br J Nutr 1998;80:81–88.

    Article  Google Scholar 

  29. Han TS, McNeill G, Scidell JC, et al. Predicting intra-abdominal fatness from anthropometric measures: the influence of stature. Int J Obes Relat Metab Disord 1997;21:587–593.

    Article  PubMed  CAS  Google Scholar 

  30. Janssen I, Heymsfield SB, Allison DB, et al. Body mass index and waist circumference independently contribute to the prediction of nonabdominal, abdominal subcutaneous, and visceral fat. Am J Clin Nutr 2002;75:683–688.

    PubMed  CAS  Google Scholar 

  31. Despres JP, Prud’ homme D, Pouliot MC, et al. Estimation of deep abdominal adipose-tissue accumulation from simple anthropometric measurements in men. Am J Clin Nutr 1991;54:471–477.

    PubMed  CAS  Google Scholar 

  32. Ross R, Shaw KD, Rissanen J, et al. Sex differences in lean and adipose tissue distribution by magnetic resonance imaging: anthropometric relationships. Am J Clin Nutr 1994;59:1277–1285.

    PubMed  CAS  Google Scholar 

  33. Ross R, Leger L, Morris D, et al. Quantification of adipose tissue by MRI: relationship with anthropometric variables. J Appl Physiol 1992;72:787–795.

    PubMed  CAS  Google Scholar 

  34. Scidell JC, Bjorntorp P, Sjostrom L, et al. Regional distribution of muscle and fat mass in men—new insight into the risk of abdominal obesity using computed tomography. Int J Obes 1989; 13:289–303.

    Google Scholar 

  35. van der Kooy K, Leenen R, Scidell JC, et al. Waist-hip ratio is a poor predictor of changes in visceral fat. Am J Clin Nutr 1993;57:327–333.

    PubMed  Google Scholar 

  36. Carr DB, Utzschneider KM, Hull RL, et al. Intra-abdominal fat is a major determinant of the National Cholesterol Education Program Adult Treatment Panel III criteria for the metabolic syndrome. Diabetes 2004;53:2087–2094.

    Article  PubMed  CAS  Google Scholar 

  37. Kuk JL, Nichaman MZ, Church TS, et al. Liver fat is not a marker of metabolic risk in lean premenopausal women. Metabolism 2004;53:1066–1071.

    Article  PubMed  CAS  Google Scholar 

  38. Goodpaster BH, Krishnaswami S, Harris TB, et al. Obesity, regional body fat distribution, and the metabolic syndrome in older men and women. Arch Intern Med 2005; 165:777–783.

    Article  PubMed  Google Scholar 

  39. Boyko EJ, Fujimoto WY, Leonetti DL, et al. Visceral adiposity and risk of type 2 diabetes: a prospective study among Japanese Americans. Diabetes Care 2000;23:465–471.

    Article  PubMed  CAS  Google Scholar 

  40. Kuk JL, Lee S, Heymsfield SB, et al. Waist circumference and abdominal adipose tissue distribution: influence of age and sex. Am J Clin Nutr 2005;81:1330–1334.

    PubMed  CAS  Google Scholar 

  41. Wong SL, Katzmarzyk P, Nichaman MZ, et al. Cardiorespiratory fitness is associated with lower abdominal fat independent of body mass index. Med Sci Sports Exerc 2004;36:286–291.

    Article  PubMed  Google Scholar 

  42. Ross R, Rissanen J, Pedwell H, et al. Influence of diet and exercise on skeletal muscle and visceral adipose tissue in men. J Appl Physiol 1996;81:2445–2455.

    PubMed  CAS  Google Scholar 

  43. Ross R, Pedwell H, Rissanen J. Effects of energy restriction and exercise on skeletal muscle and adipose tissue in women as measured by magnetic resonance imaging. Am J Clin Nutr 1995;61:1179–1185.

    PubMed  CAS  Google Scholar 

  44. Ross R, Janssen I, Dawson J, et al. Exercise-induced reduction in obesity and insulin resistance in women: a randomized controlled trial. Obes Res 2004; 12:789–798.

    PubMed  Google Scholar 

  45. Ross R, Dagnone D, Jones PJ, et al. Reduction in obesity and related comorbid conditions after dietinduced weight loss or exercise-induced weight loss in men. A randomized, controlled trial. Ann Intern Med 2000;133:92–103.

    CAS  Google Scholar 

  46. Ducimetiere P, Richard JL. The relationship between subsets of anthropometric upper versus lower body measurements and coronary heart disease risk in middle-aged men. The Paris Prospective Study. I. Int J Obes 1989;13:111–121.

    CAS  Google Scholar 

  47. Yusuf S, Hawken S, Ounpuu S, et al. Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a case-control study. Lancet 2005;366:1640–1649.

    Article  PubMed  Google Scholar 

  48. Kamel EG, McNeill G, Han TS, et al. Measurement of abdominal fat by magnetic resonance imaging, dual-energy X-ray absorptiometry and anthropometry in non-obese men and women. Int J Obes Relat Metab Disord 1999;23:686–692.

    Article  PubMed  CAS  Google Scholar 

  49. Bonora E, Micciolo R, Ghiatas AA, et al. Is it possible to derive a reliable estimate of human visceral and subcutaneous abdominal adipose tissue from simple anthropometric measurements? Metabolism 1995;44:1617–1625.

    Article  PubMed  CAS  Google Scholar 

  50. Ross R, Rissanen J, Hudson R. Sensitivity associated with the identification of visceral adipose tissue levels using waist circumference in men and women: effects of weight loss. Int J Obes Relat Metab Disord 1996;20:533–538.

    PubMed  CAS  Google Scholar 

  51. Ross R, Shaw KD, Martel Y, et al. Adipose tissue distribution measured by magnetic resonance imaging in obese women. Am J Clin Nutr 1993;57:470–475.

    PubMed  CAS  Google Scholar 

  52. Kamel EG, McNeill G, Van Wijk MC. Change in intra-abdominal adipose tissue volume during weight loss in obese men and women: correlation between magnetic resonance imaging and anthropometric measurements. Int J Obes Relat Metab Disord 2000;24:607–613.

    Article  PubMed  CAS  Google Scholar 

  53. Empana JP, Ducimetiere P, Charles MA, et al. Sagittal abdominal diameter and risk of sudden death in asymptomatic middle-aged men: the Paris Prospective Study I. Circulation 2004; 110:2781–2785.

    Article  PubMed  CAS  Google Scholar 

  54. Ohrvall M, Berglund L, Vessby B. Sagittal abdominal diameter compared with other anthropometric measurements in relation to cardiovascular risk. Int J Obes Relat Metab Disord 2000;24:497–501.

    Article  PubMed  CAS  Google Scholar 

  55. Pouliot MC, Despres JP, Lemieux S, et al. Waist circumference and abdominal sagittal diameter: best simple anthropometric indexes of abdominal visceral adipose tissue accumulation and related cardiovascular risk in men and women. Am J Cardiol 1994;73:460–468.

    Article  PubMed  CAS  Google Scholar 

  56. Onat A, Avci GS, Bari an MM, et al. Measures of abdominal obesity assessed for visceral adiposity and relation to coronary risk. Int J Obes Relat Metab Disord 2004;28:1018–1025.

    Article  PubMed  CAS  Google Scholar 

  57. Lohman TG, Roche AF, Martello R. Anthropometric Standardization Reference Manual. Human Kinetics, Champaign, IL: 1988.

    Google Scholar 

  58. Peterson MJ, Czerwinski SA, Siervogel RM. Development and validation of skinfold-thickness prediction equations with a 4-compartment model. Am J Clin Nutr 2003;77:1186–1191.

    PubMed  CAS  Google Scholar 

  59. Wang J, Thornton JC, Koiesnik S, et al. Anthropometry in body composition. An overview. Ann NY Acad Sci 2000;904:317–326.

    Article  CAS  Google Scholar 

  60. Heymsfield SB, Lohman TG, Wang Z, et al. Human Body Composition. Human Kinetics, Windsor, ON: 2005.

    Google Scholar 

  61. Bray GA, Bouchard C, James WPT. Handbook of Obesity. Marcel Dekker, New York: 1998.

    Google Scholar 

  62. Mueller WH, Malina RM. Reiative reliabi1ity of circumferences and skinfolds as measures of body fat distribution. Am J Phys Anthropol 1987;72:437–439.

    Article  PubMed  CAS  Google Scholar 

  63. Cronk CE, Roche AF. Race-and sex-specific reference data for triceps and subscapular skinfolds and weight/stature. Am J Clin Nutr 1982;35:347–354.

    PubMed  CAS  Google Scholar 

  64. Fogelholm GM, Sievanen HT, van Marken Lichtenbelt WD, et al. Assessment of fat-mass loss during weight reduction in obese women. Metabolism 1997;46:968–975.

    Article  PubMed  CAS  Google Scholar 

  65. Ellis KJ, Bell SJ, Chertow GM, et al. Bioelectrical impedance methods in clinical research: a followup to the NIH Technology Assessment Conference. Nutrition 1999; 15:874–880.

    Article  PubMed  CAS  Google Scholar 

  66. Fogelholm M, van Marken Lichtenbelt W. Comparison of body composition methods: a literature analysis. Eur J Clin Nutr 1997;51:495–503.

    Article  PubMed  CAS  Google Scholar 

  67. Kim J, Wang Z, Heymsfield SB, Baumgartner RN, et al. Total-body skeletal muscle mass: estimation by a new dual-energy X-ray absorptiometry method. Am J Clin Nutr 2002;76:378–383.

    PubMed  CAS  Google Scholar 

  68. Genton L, Hans D, Kyle UG, et al. Dual-energy X-ray absorptiometry and body composition: differences between devices and comparison with reference methods. Nutrition 2002; 18:66–70.

    Article  PubMed  CAS  Google Scholar 

  69. Visser M, FuerstT, Lang T, et al. Validity of fan-beam dual-energy X-ray absorptiometry for measuring fat-free mass and leg muscle mass. Health, Aging, and Body Composition Study—Dual-Energy X-ray Absorptiometry and Body Composition Working Group. J Appl Physiol 1999;87:1513–1520.

    PubMed  Google Scholar 

  70. Tylavsky F, Lohman T, Blunt BA, et al. QDR 4500A DXA overestimates fat-free mass compared with criterion methods. J Appl Physiol 2003;94:959–965.

    PubMed  Google Scholar 

  71. Brownbill RA, Ilich JZ. Measuring body composition in overweight individuals by dual energy X-ray absorptiometry. BMC Med Imaging 2005;5:1.

    Article  PubMed  Google Scholar 

  72. Salamone LM, Fuerst T, Visser M, et al. Measurement of fat mass using DEXA: a validation study in elderly adults. J Appl Physiol 2000;89:345–352.

    PubMed  CAS  Google Scholar 

  73. Wang W, Wang Z, Faith MS, et al. Regional skeletal muscle measurement: evaluation of new dualenergy X-ray absorptiometry model. J Appl Physiol 1999;87:1163–1171.

    PubMed  CAS  Google Scholar 

  74. Levine JA, Abboud L, Barry M, et al. Measuring leg muscle and fat mass in humans: comparison of CT and dual-energy X-ray absorptiometry. J Appl Physiol 2000;88:452–456.

    PubMed  CAS  Google Scholar 

  75. Snijder MB, Visser M, Dekker JM, et al. The prediction of visceral fat by dual-energy X-ray absorptiometry in the elderly: a comparison with computed tomography and anthropometry. Int J Obes Relat Metab Disord 2002;26:984–993.

    Article  PubMed  CAS  Google Scholar 

  76. Clasey JL, Bouchard C, Teates CD, et al. The use of anthropometric and dual-energy X-ray absorptiometry (DXA) measures to estimate total abdominal and abdominal visceral fat in men and women. Obes Res 1999;7:256–264.

    PubMed  CAS  Google Scholar 

  77. Park YW, Heymsfield SB, Gallagher D. Are dual-energy X-ray absorptiometry regional estimates associated with visceral adipose tissue mass? Int J Obes Relat Metab Disord 2002;26:978–983.

    Article  PubMed  Google Scholar 

  78. Snead DB, Birge SJ, Kohrt WM. Age-related differences in body composition by hydrodensitometry and dual-energy X-ray absorptiometry. J Appl Physiol 1993;74:770–775.

    PubMed  CAS  Google Scholar 

  79. Kohrt WM. Preliminary evidence that DEXA provides an accurate assessment of body composition. J Appl Physiol 1998;84:372–377.

    PubMed  CAS  Google Scholar 

  80. Evans EM, Saunders MJ, Spano MA, et al. Body-composition changes with diet and exercise in obese women: a comparison of estimates from clinical methods and a 4-component model. Am J Clin Nutr 1999;70:5–12.

    PubMed  CAS  Google Scholar 

  81. Tylavsky FA, Lohman TG, Docktrell M, et al. Comparison of the effectiveness of 2 dual-energy X-ray absorptiometers with that of total body water and computed tomography in assessing changes in body composition during weight change. Am J Clin Nutr 2003;77:356–363.

    PubMed  CAS  Google Scholar 

  82. Nelson ME, Fiatarone MA, Layne JE, et al. Analysis of body-composition techniques and models for detecting change in soft tissue with strength training. Am J Clin Nutr 1996;63:678–686.

    PubMed  CAS  Google Scholar 

  83. Houtkooper LB, Going SB, Sproul J, et al. Comparison of methods for assessing body-composition changes over 1 y in postmenopausal women. Am J Clin Nutr 2000;72:401–406.

    PubMed  CAS  Google Scholar 

  84. Roubenoff R, Kehayias JJ, Dawson-Hughes B, et al. Use of dual-energy X-ray absorptiometry in body-composition studies: not yet a “gold standard.” Am J Clin Nutr 1993;58:589–591.

    PubMed  CAS  Google Scholar 

  85. Mitsiopoulos N, Baumgartner RN, Heymsfield SB, et al. Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J Appl Physiol 1998;85:115–122.

    PubMed  CAS  Google Scholar 

  86. Ross R, Goodpaster B, Kelley D, et al. Magnetic resonance imaging in human body composition research. From quantitative to qualitative tissue measurement. Ann NY Acad Sci 2000;904:12–17.

    Article  PubMed  CAS  Google Scholar 

  87. Ross R. Magnetic resonance imaging provides new insights into the characterization of adipose and lean tissue distribution. Can J Physiol Pharmacol 1996;74:778–785.

    Article  PubMed  CAS  Google Scholar 

  88. Thomas EL, Saeed N, Hajnal JV, et al. Magnetic resonance imaging of total body fat. J Appl Physiol 1998;85:1778–1785.

    PubMed  CAS  Google Scholar 

  89. Abate N, Burns D, Peshock RM, et al. Estimation of adipose tissue mass by magnetic resonance imaging: validation against dissection in human cadavers. J Lipid Res 1994;35:1490–1496.

    PubMed  CAS  Google Scholar 

  90. Mourier A, Gautier JF, De Kerviler E, et al. Mobilization of visceral adipose tissue related to the improvement in insulin sensitivity in response to physical training in NIDDM. Effects of branchedchain amino acid supplements. Diabetes Care 1997;20:385–391.

    Article  PubMed  CAS  Google Scholar 

  91. Kvist H, Sjostrom L, Tylen U. Adipose tissue volume determinations in women by computed tomography: technical considerations. Int J Obes 1986;10:53–67.

    PubMed  CAS  Google Scholar 

  92. Shen W, Wang Z, Tang H, et al. Volume estimates by imaging methods: model comparisons with visible women as the reference. Obes Res 2003;11:217–225.

    PubMed  Google Scholar 

  93. Snyder WS, Cooke MJ, Manssett ES, et al. Report of the Task Group on Reference Man. Pergamon, Oxford: 1975.

    Google Scholar 

  94. Gallagher D, Belmonte D, Deurenberg P, et al. Organ-tissue mass measurement allows modeling of REE and metabolically active tissue mass. Am J Physiol 1998;275:E249–E258.

    PubMed  CAS  Google Scholar 

  95. Lee SJ, Janssen I, Heymsfield SB, et al. Relation between whole-body and regional measures of human skeletal muscle. Am J Clin Nutr 2004;80:1215–1221.

    PubMed  CAS  Google Scholar 

  96. Kuk JL, Church TS, Blair SN, et al. Does the measurement site for visceral and abdominal subcutaneous adipose tissue alter the associations with the metabolic syndrome? Diabetes Care 2006;29: 679–684.

    Article  PubMed  Google Scholar 

  97. Monzon JR, Basile R, Heneghan S, et al. Lipolysis in adipocytes isolated from deep and superficial subcutaneous adipose tissue. Obes Res 2002; 10:266–269.

    PubMed  Google Scholar 

  98. Jansson PA, Smith U, Lonnroth P. Interstitial glycerol concentration measured by microdialysis in two subcutaneous regions in humans. Am J Physiol 1990;258:E918–E922.

    PubMed  CAS  Google Scholar 

  99. Nguyen-Duy TB, Nichaman MZ, Church TS, et al. Visceral fat and liver fat are independent predictors of metabolic risk factors in men. Am J Physiol Endocrinol Metab 2003;284:E1065–E1071.

    PubMed  CAS  Google Scholar 

  100. Tiikkainen M, Tamminen M, Hakkinen AM, et al. Liver-fat accumulation and insulin resistance in obese women with previous gestational diabetes. Obes Res 2002; 10:859–867.

    Article  PubMed  CAS  Google Scholar 

  101. Boden G, Lebed B, Schatz M, et al. Effects of acute changes of plasma free fatty acids on intramyocellular fat content and insulin resistance in healthy subjects. Diabetes 2001;50:1612–1617.

    Article  PubMed  CAS  Google Scholar 

  102. Laurin J. Motion—All patients with NASH need to have a liver biopsy: Arguments against the motion. Can J Gastroenterol 2002;16:722–726.

    PubMed  Google Scholar 

  103. Montani JP, Carroll JF, Dwyer TM, et al. Ectopic fat storage in heart, blood vessels and kidneys in the pathogenesis of cardiovascular diseases. Int J Obes Relat Metab Disord 2004;28Suppl 4:S58–S65.

    Article  PubMed  CAS  Google Scholar 

  104. Banerji MA, Buckley VIC, Chaiken RL, et al. Liver fat, serum triglycerides and visceral adipose tissue in insulin-sensitive and insulin-resistant black men with NIDDM. Int J Obes Relat Metab Disord 1995; 19:846–850.

    PubMed  CAS  Google Scholar 

  105. Ricci C, Longo R, Gioulis E, et al. Noninvasive in vivo quantitative assessment of fat content in human liver. J Hepatol 1997;27:108–113.

    Article  PubMed  CAS  Google Scholar 

  106. Goto T, Onuma T, Takebe K, et al. The influence of fatty liver on insulin clearance and insulin resistance in non-diabetic Japanese subjects. Int J Obes Relat Metab Disord 1995; 19:841–845.

    PubMed  CAS  Google Scholar 

  107. Piekarski J, Goldberg HI, Royal SA, et al. Difference between liver and spleen CT numbers in the normal adult: its usefulness in predicting the presence of diffuse liver disease. Radiology 1980; 137:727–729.

    PubMed  CAS  Google Scholar 

  108. Longo R, Ricci C, Masutti F, et al. Fatty infiltration of the liver. Quantification by 1H localized magnetic resonance spectroscopy and comparison with computed tomography. Invest Radiol 1993;28:297–302.

    Article  PubMed  CAS  Google Scholar 

  109. Davidson LE, Kuk JL, Church TS, et al. Protocol for measurement of liver fat by computedtomography. J Appl Physiol 2006; 100:864–868.

    Article  PubMed  Google Scholar 

  110. Joy D, Thava VR, Scott B B. Diagnosis of fatty liver di sease: is biopsy necessary? Eur J Gastroenterol Hepatol 2003;15:539–543.

    Article  PubMed  Google Scholar 

  111. Kovanlikaya A, Mittelman SD, Ward A, et ai. Obesity and fat quantification in lean tissues using three-point Dixon MR imaging. Pediatr Radiol 2005;35:601–607.

    Article  PubMed  Google Scholar 

  112. Marks SJ, Moore NR, Ryley NG, et al. Measurement of liver fat by MRI and its reduction by dexfenfluramine in NIDDM. Int J Obes Relat Metab Disord 1997;21:274–279.

    Article  PubMed  CAS  Google Scholar 

  113. Schick F, Machann J, Brechtel K, et al. MRI of muscular fat. Magnet Reson Med 2002;47:720–727.

    Article  Google Scholar 

  114. Fishbein M, Castro F, Cheruku S, et al. Hepatic MRI for fat quantitation: its relationship to fat morphology, diagnosis, and ultrasound. J Clin Gastroenterol 2005;39:619–625.

    Article  PubMed  Google Scholar 

  115. Boesch C, Decombaz J, Slotboom J, et al. Observation of intramyocellular lipids by means of 1FI magnetic resonance spectroscopy. Proc Nutr Soc 1999;58:841–850.

    Article  PubMed  CAS  Google Scholar 

  116. Boesch C, Kreis R. Observation of intramyocellular lipids by 1H-magnetic resonance spectroscopy. Ann NY Acad Sci 2000;904:25–31.

    Article  PubMed  CAS  Google Scholar 

  117. Szczepaniak LS, Babcock EE, Schick F, et al. Measurement of intracellular triglyceride stores by FI spectroscopy: validation in vivo. Am J Physiol 1999;276:E977–E989.

    PubMed  CAS  Google Scholar 

  118. Schick F, Eismann B, Jung WI, et al. Comparison of localized proton NMR signals of skeletal muscle and fat tissue in vivo: two lipid compartments in muscle tissue. Magn Reson Med 1993;29:158–167.

    Article  PubMed  CAS  Google Scholar 

  119. Steidle G, Machann J, Claussen CD, et al. Separation of intra-and extramyocellular lipid signals in proton MR spectra by determination of their magnetic field distribution. J Magn Reson 2002; 154:228–235.

    Article  PubMed  CAS  Google Scholar 

  120. Hwang JH, Pan JW, Heydari S, et al. Regional differences in intramyocellular lipids in humans observed by in vivo 1H-MR spectroscopic imaging. J Appl Physiol 2001;90:1267–1274.

    PubMed  CAS  Google Scholar 

  121. Essen B, Jansson E, Henriksson J, et al. Metabolic characteristics of fiber types in human skeletal muscle. Acta Physiol Scand 1975;95:153–165.

    Article  PubMed  CAS  Google Scholar 

  122. Larson-Meyer DE, Newcomer BR, Hunter GR. Influence of endurance running and recovery diet on intramyocellular lipid content in women: a 1H NMR study. Am J Physiol Endocrinol Metab 2002;282:E95–E106.

    PubMed  CAS  Google Scholar 

  123. Malenfant P, Joanisse DR, Theriault R, et al. Fat content in individual muscle fibers of lean and obese subjects. Int J Obes Relat Metab Disord 2001;25:1316–1321.

    Article  PubMed  CAS  Google Scholar 

  124. Szczepaniak LS, Nurenberg P, Leonard D, et al. Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab 2005;288:E462–E468.

    Article  PubMed  CAS  Google Scholar 

  125. Thomsen C, Becker U, Winkler K, et al. Quantification of liver fat using magnetic resonance spectroscopy. Magn Reson Imaging 1994; 12:487–495.

    Article  PubMed  CAS  Google Scholar 

  126. Iacobellis G, Ribaudo MC, Zappaterreno A, et al. Relation between epicardial adipose tissue and left ventricular mass. Am J Cardiol 2004;94:1084–1087.

    Article  PubMed  Google Scholar 

  127. Taguchi R, Takasu J, Itani Y, et al. Pericardial fat accumulation in men as a risk factor for coronary artery disease. Atherosclerosis 2001; 157:203–209.

    Article  PubMed  CAS  Google Scholar 

  128. Mazurek T, Zhang L, Zalewski A, et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 2003; 108:2460–2466.

    Article  PubMed  Google Scholar 

  129. Olsen TS. Lipomatosi s of the pancreas in autopsy material and its relation to age and overweight. Acta Pathol Microbiol Scand [A] 1978;86A:367–373.

    CAS  Google Scholar 

  130. Lewis GF, Carpentier A, Adeli K, et al. Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endoer Rev 2002; 23:201–229.

    Article  CAS  Google Scholar 

  131. Raz I, Eldor R, Cernea S, et al. Diabetes: insulin resistance and derangements in lipid metabolism. Cure through intervention in fat transport and storage. Diabetes Metab Res Rev 2004;21:3–14.

    Article  CAS  Google Scholar 

  132. Koyama K, Chen G, Lee Y, et al. Tissue triglycerides, insulin resistance, and insulin production: implications for hyperinsulinemia of obesity. Am J Physiol 1997;273:E708–E713.

    PubMed  CAS  Google Scholar 

  133. linger RH. Longevity, lipotoxicity and leptin: the adipocyte defense against feasting and famine. Biochimie 2005;87:57–64.

    Article  CAS  Google Scholar 

  134. Sugerman HJ, DeMaria EJ, Felton WL 3rd, et al. Increased intra-abdominal pressure and cardiac filling pressures in obesity-associated pseudotumor cerebri. Neurology 1997;49:507–511.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Kuk, J.L., Ross, R. (2007). Measurement of Body Composition in Obesity. In: Kushner, R.F., Bessesen, D.H. (eds) Treatment of the Obese Patient. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-59745-400-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-400-1_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-735-8

  • Online ISBN: 978-1-59745-400-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics