Skip to main content

NMR Measurement of Biomolecule Diffusion

  • Chapter
  • First Online:
Fundamental Concepts in Biophysics

Part of the book series: Handbook of Modern Biophysics ((HBBT))

The thermodynamic property of a molecule describes its energy state, often envisioned in terms of enthalpy, entropy, and free energy. Such a formulation accounts for energy flow and yields insight into the strength of molecular interaction as well as the direction of a chemical reaction. Despite its macroscopic overview, the energy states of thermodynamics have roots in the probability of quantum states. In a triumph of twentieth-century physics, Boltzmann linked entropy with the probability of quantum states and created a bridge from statistical to classical thermodynamics.

In the kinetic theory of gases, Boltzmann's ideas take form. Molecules diffuse randomly and exhibit velocities that follow a probability distribution and depend upon temperature. But each degree of motion contributes ½kT to the average energy of the system, where k is Boltzmann's constant and T is temperature. Because of the low density of molecules in gas, intermolecular collision doesn't significantly alter the average energy of the system. In liquid, these same laws still regulate molecular motion. However, they cannot overlook the concerns of intermolecular interaction as well as molecular size and shape. Molecules no longer exist in low density. Moreover, large molecules move slower than small molecules, and spherical shape molecules will move faster than a cylindrical one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Study

  • de Graaf RA. 1998 In-vivo NMR spectroscopy. New York: John Wiley.

    Google Scholar 

  • Jue T. 1994. Measuring tissue oxygenation with the 1H NMR signals of myoglobin. In NMR in physiology and biomedicine, pp. 196–204. Ed RJ Gillies. New York: Academic Press.

    Google Scholar 

  • Weiss TF. 1996. Cellular biophysics: transport. Cambridge: MIT Press.

    Google Scholar 

  • Liang ZP, Lauterbur PC. 2000. Principles of magnetic resonance imaging: a signal processing perspective. Piscataway, NJ: IEEE Press.

    Google Scholar 

References

  1. Lavalette D, Hink MA, Tourbez M, Tetreau C, Visser AJ. 2006. Proteins as micro viscosimeters: Brownian motion revisited. Eur Biophys J 35(6):517–522.

    Article  Google Scholar 

  2. Lavalette D, Tetreau C, Tourbez M, Blouquit Y. 1999. Microscopic viscosity and rotational diffusion of proteins in a macromolecular environment. Biophys J 76(5):2744–2751.

    Article  Google Scholar 

  3. Stejskal EO, Tanner JE. 1965. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42(1):288–292.

    Article  ADS  Google Scholar 

  4. Torrey HC. 1956. Bloch equations with diffusion terms. Phys Rev 104:563–565.

    Article  ADS  Google Scholar 

  5. Price WS. 1997. Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion, 1: basic theory. Conc Magn Reson 9(5):299–336.

    Article  Google Scholar 

  6. Garrido L, Wedeen VJ, Kwong KK, Spencer UM, Kantor HL. 1994. Anisotropy of water diffusion in the myocardium of the rat. Circ Res 74(5):789–793.

    Google Scholar 

  7. Moonen CT, van Zijl PC, Le Bihan D, DesPres D. 1990. In vivo NMR diffusion spectroscopy: 31P application to phosphorus metabolites in muscle. Magn Reson Med 13(3):467–477.

    Article  Google Scholar 

  8. Moonen CT, Pekar J, de Vleeschouwer MH, van Gelderen P, van Zijl PC, DesPres D. 1991. Restricted and anisotropic displacement of water in healthy cat brain and in stroke studied by NMR diffusion imaging. Magn Reson Med 19(2):327–332.

    Article  Google Scholar 

  9. Nicolay K, Braun KPJ, de Graaf RA, Dijkhuizen RM, Kruiskamp MJ. 2001. Diffusion NMR spectroscopy. NMR Biomed 14(2):94–111.

    Article  Google Scholar 

  10. van Gelderen P, DesPres D, van Zijl PC, Moonen CT. 1994. Evaluation of restricted diffusion in cylinders: phosphocreatine in rabbit leg muscle. J Magn Reson B 103(3):255–260.

    Article  Google Scholar 

  11. Basser P, Mateillo J, LeBihan D. 1994. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson 103:247–254.

    Article  Google Scholar 

  12. Wittenberg BA, Wittenberg JB. 1989. Transport of oxygen in muscle. Annu Rev Physiol 51:857–878.

    Article  Google Scholar 

  13. Guyton GP, Stanek KS, Schneider RC, Hochachka PW, Hurford WE, Zapol DG, Liggins GC, Zapol WM. 1995. Myoglobin saturation in free-diving Weddell seals. J Appl Physiol 79(4):1148–1155.

    Google Scholar 

  14. Ponganis PJ, Kreutzer U, Sailasuta N, Knower T, Hurd R, Jue T. 2002. Detection of myoglobin desaturation in Mirounga angustirostris during apnea. Am J Physiol Regul Integr Comp Physiol 282:R267–R272.

    Google Scholar 

  15. Wittenberg JB, Wittenberg BA. 2003. Myoglobin function reassessed. J Exp Biol 206(Pt 12):2011–2020.

    Article  Google Scholar 

  16. Chung Y, Jue T. 1996. Cellular response to reperfused oxygen in the postischemic myocardium. Am J Physiol 271:H687–H695.

    Google Scholar 

  17. Garry DJ, Ordway GA, Lorenz JN, Radford NB, Chin ER, Grange RW, Bassel-Duby R, Williams RS. 1998. Mice without myoglobin. Nature 395:905–908.

    Article  ADS  Google Scholar 

  18. Gödecke A, Flogel U, Zanger K, Ding Z, Hirchenhain J, Decking UK, Schrader J. 1999. Disruption of myoglobin in mice induces multiple compensatory mechanisms. Proc Natl Acad Sci USA 96(18):10495–10500.

    Article  Google Scholar 

  19. Wittenberg JB. 1970. Myoglobin-facilitated oxygen diffusion: role of myoglobin in oxygen entry into muscle. Physiol Rev 50:559–636.

    Google Scholar 

  20. Johnson RL, Heigenhauser GJF, Hsia CCW, Jones NL, Wagner PD. 1996. Determinants of gas exchange and acid-base balance during exercise. In Exercise: regulation and integration of multiple systems, pp. 515–584. Ed LB Rowell, JT Shepher. New York: Oxford UP.

    Google Scholar 

  21. Riveros-Moreno V, Wittenberg JB. 1972. The self-diffusion coefficients of myoglobin and hemoglobin in concentrated solution. J Biol Chem 247:895–901.

    Google Scholar 

  22. Baylor SM, Pape PC. 1988. Measurement of myoglobin diffusivity in the myoplasm of frog skeletal muscle fibres. J Physiol 406:247–275.

    Google Scholar 

  23. Moll W. 1968. The diffusion coefficient of myoglobin in muscle homogenate. Pflugers Arch Gesamte Physiol Menschen Tiere 299(3):247–251.

    Article  Google Scholar 

  24. Verkman AS. 2003. Diffusion in cells measured by fluorescence recovery after photobleaching. Methods Enzymol 360:635–648.

    Article  Google Scholar 

  25. Papadopoulos S, Endeward V, Revesz-Walker B, Jurgens KD, Gros G. 2001. Radial and longitudinal diffusion of myoglobin in single living heart and skeletal muscle cells. Proc Natl Acad Sci USA 98:5904–5909.

    Article  ADS  Google Scholar 

  26. Groebe K. 1995. An easy-to-use model for O2 supply to red muscle: validity of assumptions, sensitivity to errors in data. Biophys J 68(4):1246–1269.

    Article  Google Scholar 

  27. Chung Y, Jue T. 1999. Regulation of respiration in myocardium in the transient and steady state. Am J Physiol 277(4 Pt 2):H1410–H1417.

    Google Scholar 

  28. Kreutzer U, Jue T. 2004. The role of myoglobin as a scavenger of cellular NO in myocardium. Am J Physiol 286:H985–H991.

    Google Scholar 

  29. Kreutzer U, Wang DS, Jue T. 1992. Observing the 1H NMR signal of the myoglobin Val-E11 in myocardium: an index of cellular oxygenation. Proc Natl Acad Sci USA 89:4731–4733.

    Article  ADS  Google Scholar 

  30. Kreutzer U, Chung Y, Butler D, Jue T. 1993. 1H-NMR characterization of the human myocardium myoglobin and erythrocyte hemoglobin signals. Biochim Biophys Acta 1161:33–37.

    Article  Google Scholar 

  31. Lin PC, Kreutzer U, Jue T. 2007. Myoglobin translational diffusion in myocardium and its implication on intracellular oxygen transport. J Physiol 578:595–603.

    Article  Google Scholar 

  32. Lin PC, Kreutzer U, Jue T. 2007. Anisotropy and temperature dependence of myoglobin translational diffusion in myocardium: implication on oxygen transport and cellular architecture. Biophy J 92:2608–2620.

    Article  Google Scholar 

  33. Wang D, Kreutzer U, Chung Y, Jue T. 1997. Myoglobin and hemoglobin rotational diffusion in the cell. Biophys J 73:2764–2770.

    Article  Google Scholar 

  34. Federspiel WJ. 1986. A model study of intracellular oxygen gradients in a myoglobin-containing skeletal muscle fiber. Biophys J 49:857–868.

    Article  Google Scholar 

  35. Papadopoulos S, Jurgens KD, Gros G. 1995. Diffusion of myoglobin in skeletal muscle cells: dependence on fibre type, contraction and temperature. Pflugers Arch Eur J Physiol 430:519–525.

    Article  Google Scholar 

  36. Jurgens KD, Peters T, Gros G. 1994. Diffusivity of myoglobin in intact skeletal muscle cells. Proc Natl Acad Sci USA 91:3829–3833.

    Article  ADS  Google Scholar 

  37. Iles RA, Stevens AN, Griffiths JR, Morris PG. 1985. Phosphorylation status of the liverby 31P NMR spectroscopy and its implications for metabolic control. Biochem J 229:141–151.

    Google Scholar 

  38. Gros G, Lavalette D, Moll W, Gros H, Amand B, Pochon F. 1984. Evidence for rotational contribution to protein-facilitated proton transport. Proc Natl Acad Sci USA 81(6):1710–1714.

    Article  ADS  Google Scholar 

  39. Wyman J. 1966. Facilitated diffusion and the possible role of myoglobin as a transport mechanism. J Biol Chem 241:115–121.

    Google Scholar 

  40. Bentley TB, Meng H, Pittman RN. 1993. Temperature-dependence of oxygen diffusion and consumption in mammalian striated-muscle. Am J Physiol 264(6):H1825–H1830.

    Google Scholar 

  41. Kreutzer U, Mekhamer Y, Tran TK, Jue T. 1998. Role of oxygen in limiting respiration in the in situ myocardium. J Mol Cell Cardiol 30:2651–2655.

    Article  Google Scholar 

  42. Kreutzer U, Mekhamer Y, Chung Y, Jue T. 2001. Oxygen supply and oxidative phosphorylation limitation in rat myocardium in situ. Am J Physiol Heart Circ Physiol 280:H2030–H2037.

    Google Scholar 

  43. Zhang J, Murakami Y, Zhang Y, Cho Y, Ye Y, Gong G, Bache RJ, Ugurbil K, From AH. 1999. Oxygen delivery does not limit cardiac performance during high work states. Am J Physiol 276(45):H50–H57.

    Google Scholar 

  44. Chung Y, Glabe A, Huang SJ. 2006. Impact of myoglobin inactivation on myocardial function. Am J Physiol 290:C1616–C1624.

    Article  Google Scholar 

  45. Glabe A, Chung Y, Xu D, Jue T. 1998. Carbon monoxide inhibition of regulatory pathways in myocardium. Am J Physiol 274:H2143–H2151.

    Google Scholar 

  46. Schenkman KA, Marble DR, Burns DH, Feigl EO. 1997. Myoglobin oxygen dissociation by multiwavelength spectroscopy. J Appl Physiol 82(1):86–92.

    Google Scholar 

  47. Mole PA, Chung Y, Tran TK, Sailasuta N, Hurd R, Jue T. 1999. Myoglobin desaturation with exercise intensity in human gastrocnemius muscle. Am J Physiol 277(1 Pt 2):R173–R180.

    Google Scholar 

  48. Chung Y, Mole PA, Sailasuta N, Tran TK, Hurd R, Jue T. 2005. Control of respiration and bioenergetics during muscle contraction. Am J Physiol Cell Physiol 288:C730–C738.

    Article  Google Scholar 

  49. Wang Z, Noyszewski EA, Leigh JS. 1990. In vivo MRS measurement of deoxymyoglobin in human forearms. Magn Reson Med 14:562–567.

    Article  Google Scholar 

  50. Mancini DM, Wilson JR, Bolinger L, Li H, Kendrick K, Chance B, Leigh JS. 1994. In vivo magnetic resonance spectroscopy measurement of deoxymyoglobin during exercise in patients with heart failure. Circulation 90:500–508.

    Google Scholar 

  51. Kindig CA, Howlett RA, Hogan MC. 2003. Effect of extracellular pO2 on the fall in intracellular pO2 in contracting single myocytes. J Appl Physiol 94:1964–1970.

    Google Scholar 

  52. Behnke BJ, Kindig CA, Musch TI, Koga S, Poole DC. 2000. Dynamics of microvascular oxygen pressure across the rest–exercise transition in rat skeletal muscle. Respir Physiol 126:53–63.

    Article  Google Scholar 

  53. Blei ML, Conley KE, Kushmerick MJ. 1993. Separate measures of ATP utilization and recovery in human skeletal muscle. J Physiol 465:203–222.

    Google Scholar 

  54. Sako T, Hamaoka T, Higuchi H, Kurodawa Y, Katsumura T. 2000. Validity of NIR spectroscopy for quantitatively measuring muscle oxidative metabolic rate in exercise. J Appl Physiol 90:338–344.

    Google Scholar 

  55. Tran TK, Sailasuta N, Kreutzer U, Hurd R, Chung Y, Mole P, Kuno S, Jue T. 1999. Comparative analysis of NMR and NIRS measurements of intracellular pO2 in human skeletal muscle. Am J Physiol 276:R1682–R1690.

    Google Scholar 

  56. Kindig CA, Kelley KM, Howlett RA, Stary CM, Hogan MC. 2002. Assessment of O2 uptake dynamics in isolated single skeletal myocytes. J Appl Physiol 94:353–357.

    Google Scholar 

  57. Swaminathan R, Hoang CP, Verkman AS. 1997. Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. Biophys J 72(4):1900–1907.

    Article  Google Scholar 

  58. Maughan DW, Godt RE. 1999. Parvalbumin concentration and diffusion coefficient in frog myoplasm. J Muscle Res Cell Motil 20(2):199–209.

    Article  Google Scholar 

  59. Lide DR, Frederikse HPR. 1990. CRC handbook of chemistry and physics, 71st ed. Boca Raton: CRC Press.

    Google Scholar 

  60. Mastro AM, Babich MA, Taylor WD, Keith AD. 1984. Diffusion of a small molecule in the cytoplasm of mammalian-cells. Proc Natl Acad Sci USA 81(11):3414–3418.

    Article  ADS  Google Scholar 

  61. Luby-Phelps K, Lanni F, Taylor DL. 1988. The submicroscopic properties of cytoplasm as a determinant of cellular function. Annu Rev Biophys Biophys Chem 17:369–396.

    Article  Google Scholar 

  62. Kataoka M, Nishii I, Fujisawa T, Ueki T, Tokunaga F, Goto Y. 1995. Structural characterization of the molten globule and native states of apomyoglobin by solution x-ray-scattering. J Mol Biol 249(1):215–228.

    Article  Google Scholar 

  63. de Graaf RA, van Kranenburg A, Nicolay K. 2000. In vivo 31P-NMR diffusion spectroscopy of ATP and phosphocreatine in rat skeletal muscle. Biophys J 78(4):1657–1664.

    Article  Google Scholar 

  64. van Gelderen P, DesPres D, van Zijl PC, Moonen CT. 1994. Evaluation of restricted diffusion in cylinders: phosphocreatine in rabbit leg muscle. J Magn Reson B 103(3):255–260.

    Article  Google Scholar 

  65. Arrio-Dupont M, Cribier S, Foucault G, Devaux PF, d'Albis A. 1996. Diffusion of fluorescently labeled macromolecules in cultured muscle cells. Biophy J 70:2327–2332.

    Article  Google Scholar 

  66. Kirkwood SP, Munn EA, Brooks GA. 1986. Mitochondrial reticulum in limb skeletal muscle. Am J Physiol 251(3 Pt 1):C395–C402.

    Google Scholar 

  67. Kao HP, Abney JR, Verkman AS. 1993. Determinants of the translational mobility of a small solute in cell cytoplasm. J Cell Biol 120(1):175–184.

    Article  Google Scholar 

  68. Seksek O, Biwersi J, Verkman AS. 1997. Translational diffusion of macromolecule-sized solutes in cytoplasm and nucleus. J Cell Biol 138(1):131–142.

    Article  Google Scholar 

  69. Swaminathan R, Bicknese S, Periasamy N, Verkman AS. 1996. Cytoplasmic viscosity near the cell plasma membrane: translational diffusion of a small fluorescent solute measured by total internal reflection-fluorescence photobleaching recovery. Biophys J 71(2):1140–1151.

    Article  Google Scholar 

  70. Fushimi K, Dix JA, Verkman AS. 1990. Cell membrane fluidity in the intact kidney proximal tubule measured by orientation-independent fluorescence anisotropy imaging. Biophys J 57(2):241–254.

    Article  Google Scholar 

  71. Goodsell DS. 1991. Inside a living cell. Trends Biochem Sci 16(6):203–206.

    Article  Google Scholar 

  72. Sumegi B, Sherry AD, Malloy CR, Evans C, Srere PA. 1991. Is there tight channelling in the tricarboxylic acid cycle metabolon? Biochem Soc Trans 19(4):1002–1005.

    Google Scholar 

  73. Welch GR, Marmillot PR. 1991. Metabolic “channeling” and cellular physiology. J Theor Biol 152(1):29–33.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press

About this chapter

Cite this chapter

Jue, T. (2009). NMR Measurement of Biomolecule Diffusion. In: Jue, T. (eds) Fundamental Concepts in Biophysics. Handbook of Modern Biophysics. Humana Press. https://doi.org/10.1007/978-1-59745-397-4_7

Download citation

Publish with us

Policies and ethics