Skip to main content

Fluorescence Spectroscopy

  • Chapter
  • First Online:
Fundamental Concepts in Biophysics

Part of the book series: Handbook of Modern Biophysics ((HBBT))

  • 2100 Accesses

Fluorescence emission is the result of light having been absorbed and then reemitted at a longer wavelength. In concept, once a material system absorbs the incident light of some energy or wavelength, part of that energy is transferred to the system for various internal conversion needs, and a very short time later the other part is converted to light emission at a slightly lower energy (longer wavelength). The internal transfer part is very rapid and radiationless, but dephasing. So this process is considered a two-photon, three-step, phase-incoherent process.

In this chapter we will discuss (1) the fundamental process of fluorescence, including the factors that can alter fluorescence emission intensity or polarization, (2) the types of fluorescence microscopes used for detecting fluorescent events between molecules and within cells, (3) the types of fluorophores and how they are used, (4) the application of fluorescence features to characterize molecular structures in a biological system, and (5) the exploitation of temporal changes of fluorescence detection for furthering our understanding of structure and dynamics of biomolecular systems. Fluorescence has become a widely used concept in biophysical research. What we will discuss concentrates on specific topics of current interest to the authors. For a complete review, the reader is referred to other volumes, particularly the new edition of Joseph Lakowicz's excellent work [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lakowicz JR. 2006. Principles of fluorescence spectroscopy, 3rd ed. New York: Springer. 954.

    Google Scholar 

  2. Jackson JD. 1999. Classical electrodynamics, 3rd ed., New York: Wiley.

    MATH  Google Scholar 

  3. Loudon R. 2000. The quantum theory of light, 3rd ed. Oxford: Oxford UP.

    MATH  Google Scholar 

  4. Loudon R. 2000. The quantum theory of light, 3rd ed. New York: Oxford UP.

    MATH  Google Scholar 

  5. Cantor CR, Schimmel PR. 1980. Biophysical chemistry. San Francisco: W.H. Freeman.

    Google Scholar 

  6. Turro NJ. 1991. Modern molecular photochemistry. Mill Valley, CA: University Science Books.

    Google Scholar 

  7. Stokes GG. 1852. On the change of refrangibility of light. Phil Trans R Soc (London) 142:463–562.

    Article  Google Scholar 

  8. Pedrotti FL, Pedrotti LS, Pedrotti LM. 2007. Introduction to optics, 3rd ed. Upper Saddle River, NJ: Pearson Prentice-Hall.

    Google Scholar 

  9. So PTC, Dong CY, Masters BR, Berland KM. 2000. Two-photon excitation fluorescence microscopy. Ann Rev Biomed Eng 2:399–429.

    Article  Google Scholar 

  10. Yazdanfar S, Chen YY, So PTC, Laiho LH. 2007. Multifunctional imaging of endogenous contrast by simultaneous nonlinear and optical coherence microscopy of thick tissues. Microsc Res Tech 70(7):628–633.

    Article  Google Scholar 

  11. Niggli E, Egger M. 2004. Applications of multiphoton microscopy in cell physiology. Front Biosci 9:1598–1610.

    Article  Google Scholar 

  12. Prasad PN. 2003. Introduction to biophotonics. Hoboken: John Wiley & Sons.

    Book  Google Scholar 

  13. Denk W, Piston D, Webb W. 1995. Two-photon molecular excitation in laser scanning microscopy. In Handbook of biological confocal microscopy, 2nd ed., pp. 445–458. Ed. JB Pawley. New York: Plenum Press.

    Google Scholar 

  14. Axelrod D. 1989. total internal-reflection fluorescence microscopy. Methods Cell Biol 30:245–270.

    Article  Google Scholar 

  15. Evanescent Wave Imaging Systems Brochure, 2006. Nikon.

    Google Scholar 

  16. Burghardt TP, Ajtai K, Borejdo J. 2006. In situ single-molecule imaging with attoliter detection using objective total internal reflection confocal microscopy. Biochemistry 45(13):4058–4068.

    Article  Google Scholar 

  17. Ajtai K, Peyser YM, Park S, Burghardt TP, Muhlrad A. 1999. Trinitrophenylated reactive lysine residue in myosin detects lever arm movement during the consecutive steps of ATP hydrolysis. Biochemistry 38(20):6428–6440.

    Article  Google Scholar 

  18. Fitzgerald JT, Michalopoulou A, Pivetti CD, Raman RN, Troppmann C, Demos SG. 2005. Real-time assessment of in vivo renal ischemia using laser autofluorescence imaging. J Biomed Opt 10(4):44018.

    Article  Google Scholar 

  19. Clark AP, Longfellow DG, Seifried HE. 1993. Benzo[a]pyrene. In Handbook of analytical and spectral data for polycyclic aromatic hydrocarbons, Vol. 1: Benzo[a]pyrene and its metabolites, pp. 5–10. Ed DG Longfellow. Kansas City: Midwest Research Institute.

    Google Scholar 

  20. Cosman M, de los Santos C, Fiala R, Hingerty BE, Singh SB, Ibanez V, Margulis LA, Live D, Geacintov NE, Broyde S, Patel DJ. 1992. Solution conformation of the major adduct between the carcinogen (+)–antibenzo[a]pyrene diol epoxide and DNA. Proc Natl Acad Sci USA 89(5):1914–1918.

    Article  ADS  Google Scholar 

  21. Eggleston AK, Rahim NA, Kowalczykowski SC. 1996. A helicase assay based on the displacement of fluorescent, nucleic acid-binding ligands. Nucleic Acids Res 24(7):1179–1186.

    Article  Google Scholar 

  22. Tsien RY. 1998. The green fluorescent protein. Annu Rev Biochem 67:509–544.

    Article  Google Scholar 

  23. Niwa H, Inouye S, Hirano T, Matsuno T, Kojima S, Kubota M, Ohashi M, Tsuji FI. 1996. Chemical nature of the light emitter of the Aequorea green fluorescent protein. Proc Natl Acad Sci USA 93(24):13617–13622.

    Article  ADS  Google Scholar 

  24. Fischer AJ, Lagarias JC. 2004. Harnessing phytochrome's glowing potential. Proc Natl Acad Sci USA 101(50):17334–17339.

    Article  ADS  Google Scholar 

  25. Bianco PR, Brewer LR, Corzett M, Balhorn R, Yeh Y, Kowalczykowski SC, Baskin RJ. 2001. Processive translocation and DNA unwinding by individual RecBCD enzyme molecules. Nature 409(6818):374–378.

    Article  ADS  Google Scholar 

  26. Spies M, Bianco PR, Dillingham MS, Handa N, Baskin RJ, Kowalczykowski SC. 2003. A molecular throttle: the recombination hotspot chi controls DNA translocation by the RecBCD helicase. Cell 114(5):647–654.

    Article  Google Scholar 

  27. Sauer M. 2005. Reversible molecular photoswitches: a key technology for nanoscience and fluorescence imaging. Proc Natl Acad Sci USA 102(27):9433–9434.

    Article  ADS  Google Scholar 

  28. Heinlein T, Biebricher A, Schluter P, Roth CM, Herten DP, Wolfrum J, Heilemann M, Muller C, Tinnefeld P, Sauer M. 2005. High-resolution colocalization of single molecules within the resolution gap of far-field microscopy. Chemphyschem 6(5):949–955.

    Article  Google Scholar 

  29. Weber G. 1952. Polarization of the fluorescence of macromolecules, 2: fluorescent conjugates of ovalbumin and bovine serum albumin. Biochem J 51(2):155–168.

    Google Scholar 

  30. Weber G. 1952. Polarization of the fluorescence of macromolecules, 1: theory and experimental method. Biochem J 51(2):145–155.

    Google Scholar 

  31. Cherry RJ, Cogoli A, Oppliger M, Schneider G, Semenza G. 1976. A spectroscopic technique for measuring slow rotational diffusion of macromolecules, 1: preparation and properties of a triplet probe. Biochemistry 15(17):3653–3656.

    Article  Google Scholar 

  32. Axelrod D, Koppel DE, Schlessinger J, Elson E, Webb WW. 1976. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J 16(9):1055–1069.

    Article  Google Scholar 

  33. Förster T. 1948. Intermolecular energy migration and fluorescence. Ann Phys 2:55–75.

    Article  MATH  Google Scholar 

  34. Cantor CR, Schimmel PR. 1980. Biophysical chemistry: techniques for the study of biological structure and function, Vol. 2. San Francisco: W.H. Freeman.

    Google Scholar 

  35. Gordon GW, Berry G, Liang XH, Levine B, Herman B. 1998. Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys J 74(5):2702–2713.

    Article  Google Scholar 

  36. Berney C, Danuser G. 2003. FRET or no FRET: a quantitative comparison. Biophys J 84(6):3992–4010.

    Article  Google Scholar 

  37. Ha T, Enderle T, Ogletree DF, Chemla DS, Selvin PR, Weiss S. 1996. Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc Natl Acad Sci USA 93(13):6264–6268.

    Article  ADS  Google Scholar 

  38. Kapanidis AN, Lee NK, Laurence TA, Doose S, Margeat E, Weiss S. 2004. Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single molecules. Proc Natl Acad Sci USA 101(24):8936–8941.

    Article  ADS  Google Scholar 

  39. Lee NK, Kapanidis AN, Wang Y, Michalet X, Mukhopadhyay J, Ebright RH, Weiss S. 2005. Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. Biophys J 88(4):2939–2953.

    Article  Google Scholar 

  40. Kapanidis AN, Lee NK, Laurence TA, Doose S, Margeat E, Weiss S. 2004. Fluorescence-aided molecule sorting: Analysis of structure and interactions by alternating-laser excitation of single molecules. Proc Natl Acad Sci USA 101(24):8936–8941.

    Article  ADS  Google Scholar 

  41. Fore S, Yuen Y, Hesselink L, Huser T. 2007. Pulsed-interleaved excitation FRET measurements on single duplex DNA molecules inside C-shaped nanoapertures. Nanotechnol Lett 7(6):1749–1756.

    ADS  Google Scholar 

  42. Wolf DE. 1992. Theory of fluorescence recovery after photobleaching measurements on cylindrical surfaces. Biophys J 61(2):487–493.

    Article  Google Scholar 

  43. Magde D, Webb WW, Elson E. 1972. Thermodynamic fluctuations in a reacting system: measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29(11):705–707.

    Article  ADS  Google Scholar 

  44. Magde D, Elson EL, Webb WW. 1974. Fluorescence correlation spectroscopy, II: an experimental realization. Biopolymers 13(1):29–61.

    Article  Google Scholar 

  45. Elson EL, Webb WW. 1975. Concentration correlation spectroscopy: a new biophysical probe based on occupation number fluctuations. Annu Rev Biophys Bioeng 4:311–334.

    Article  Google Scholar 

  46. Maiti S, Haupts U, Webb WW. 1997. Fluorescence correlation spectroscopy: diagnostics for sparse molecules. Proc Natl Acad Sci USA 94(22):11753–11757.

    Article  ADS  Google Scholar 

  47. Hess ST, Webb WW. 2002. Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy. Biophys J 83(4):2300–2317.

    Article  Google Scholar 

  48. Enderlein J, Gregor I, Patra D, Dertinger T, Kaupp UB. 2005. Performance of fluorescence correlation spectroscopy for measuring diffusion and concentration. Chemphyschem 6(11):2324–2336.

    Article  Google Scholar 

  49. Malvezzi-Campeggi F, Jahnz M, Heinze KG, Dittrich P, Schwille P. 2001. Light-induced flickering of DsRed provides evidence for distinct and interconvertible fluorescent states. Biophys J 81(3):1776–1785.

    Article  Google Scholar 

  50. Hollars CW, Lane SM, Huser T. 2003. Controlled non-classical photon emission from single conjugated polymer molecules. Chem Phys Lett 370(3–4):393–398.

    Article  ADS  Google Scholar 

  51. Fore S, Laurence TA, Yeh Y, Balhorn R, Hollars CW, Cosman M, Huser T. 2005. Distribution analysis of the photon correlation spectroscopy of discrete numbers of dye molecules conjugated to DNA. IEEE J Sel Top Quantum Electron 11(4):873–880.

    Article  Google Scholar 

  52. Huang Z, Thompson NL. 1996. Imaging fluorescence correlation spectroscopy: nonuniform IgE distributions on planar membranes. Biophys J 70(4):2001–2007.

    Article  Google Scholar 

  53. Wiseman PW, Petersen NO. 1999. Image correlation spectroscopy, II: optimization for ultrasensitive detection of preexisting platelet-derived growth factor-beta receptor oligomers on intact cells. Biophys J 76(2):963–977.

    Article  Google Scholar 

  54. Hebert B, Costantino S, Wiseman PW. 2005. Spatiotemporal image correlation spectroscopy (STICS) theory, verification, and application to protein velocity mapping in living CHO cells. Biophys J 88(5):3601–3614.

    Article  Google Scholar 

  55. Kolin DL, Costantino S, Wiseman PW. 2006. Sampling effects, noise, and photobleaching in temporal image correlation spectroscopy. Biophys J 90(2):628–639.

    Article  Google Scholar 

  56. Simons K, Ikonen E. 1997. Functional rafts in cell membranes. Nature 387(6633):569–572.

    Article  ADS  Google Scholar 

  57. Levene MJ, Korlach J, Turner SW, Foquet M, Craighead HG, Webb WW. 2003. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299(5607):682–686.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press

About this chapter

Cite this chapter

Yeh, Y., Fore, S., Wu, H. (2009). Fluorescence Spectroscopy. In: Jue, T. (eds) Fundamental Concepts in Biophysics. Handbook of Modern Biophysics. Humana Press. https://doi.org/10.1007/978-1-59745-397-4_4

Download citation

Publish with us

Policies and ethics