Advertisement

Alpha-1 Antitrypsin Deficiency

  • Charlie Strange
  • Sabina Janciauskiene
Chapter
Part of the Respiratory Medicine book series (RM)

Abstract

Alpha-1 antitrypsin (AAT), also referred to as α1-proteinase inhibitor or SERPINA1, is the most abundant serine proteinase inhibitor in human plasma. Genetically determined deficiency of AAT is associated with early-onset emphysema, particularly in individuals who smoke or are exposed to other inhaled environmental toxins. In addition, cirrhosis occurs in some infants, young children, and older adults due to accumulated AAT in hepatocytes. This chapter will review the clinical phenotype of AAT deficiency, the genetics and inheritance of the condition, and the biochemistry of AAT that leads to the common as well as the unusual clinical manifestations of AAT deficiency (AATD).

Keywords

antiprotease protein misfolding ER stress unfolded protein response 

References

  1. 1.
    Hutchison DC. Natural history of alpha-1-protease inhibitor deficiency. Am J Med 1988; 84(6A): 3–12.PubMedGoogle Scholar
  2. 2.
    Carrell RW, Jeppsson JO, Laurell CB, et al. Structure and variation of human alpha 1-antitrypsin. Nature 1982; 298(5872): 329–34.CrossRefPubMedGoogle Scholar
  3. 3.
    Carlson JA, Rogers BB, Sifers RN, et al. Multiple tissues express alpha 1-antitrypsin in transgenic mice and man. J Clin Invest 1988; 82(1): 26–36.CrossRefPubMedGoogle Scholar
  4. 4.
    Mornex JF, Chytil-Weir A, Martinet Y, et al. Expression of the alpha-1-antitrypsin gene in mononuclear phagocytes of normal and alpha-1-antitrypsin-deficient individuals. J Clin Invest 1986; 77(6): 1952–61.CrossRefPubMedGoogle Scholar
  5. 5.
    Kalsheker N, Morley S, Morgan K. Gene regulation of the serine proteinase inhibitors alpha1-antitrypsin and alpha1-antichymotrypsin. Biochem Soc Trans 2002; 30(2): 93–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Chowanadisai W, Lonnerdal B. Alpha(1)-antitrypsin and antichymotrypsin in human milk: origin, concentrations, and stability. Am J Clin Nutr 2002; 76(4): 828–33.PubMedGoogle Scholar
  7. 7.
    Berman MB, Barber JC, Talamo RC, et al. Corneal ulceration and the serum antiproteases. I. Alpha 1-antitrypsin. Invest Ophthalmol 1973; 12(10): 759–70.PubMedGoogle Scholar
  8. 8.
    Boskovic G, Twining SS. Local control of alpha1-proteinase inhibitor levels: regulation of alpha1-proteinase inhibitor in the human cornea by growth factors and cytokines. Biochim Biophys Acta 1998; 1403(1): 37–46.CrossRefPubMedGoogle Scholar
  9. 9.
    Auger R, Robin P, Camier B, et al. Relationship between phosphatidic acid level and regulation of protein transit in colonic epithelial cell line HT29-cl19A. J Biol Chem 1999; 274(40): 28652–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Sallenave JM, Tremblay GM, Gauldie J, et al. Oncostatin M, but not interleukin-6 or leukemia inhibitory factor, stimulates expression of alpha1-proteinase inhibitor in A549 human alveolar epithelial cells. J Interferon Cytokine Res 1997; 17(6): 337–46.CrossRefPubMedGoogle Scholar
  11. 11.
    Ray MB, Desmet VJ, Gepts W. alpha-1-Antitrypsin immunoreactivity in islet cells of adult human pancreas. Cell Tissue Res 1977; 185(1): 63–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Perlmutter DH, Kay RM, Cole FS, et al. The cellular defect in alpha 1-proteinase inhibitor (alpha 1-PI) deficiency is expressed in human monocytes and in Xenopus oocytes injected with human liver mRNA. Proc Natl Acad Sci USA 1985; 82(20): 6918–21.CrossRefPubMedGoogle Scholar
  13. 13.
    Geboes K, Ray MB, Rutgeerts P, et al. Morphological identification of alpha-I-antitrypsin in the human small intestine. Histopathology 1982; 6(1): 55–60.CrossRefPubMedGoogle Scholar
  14. 14.
    Huang CM. Comparative proteomic analysis of human whole saliva. Arch Oral Biol 2004; 49(12): 951–62.CrossRefPubMedGoogle Scholar
  15. 15.
    Edwards JJ, Tollaksen SL, Anderson NG. Proteins of human semen. I. Two-dimensional mapping of human seminal fluid. Clin Chem 1981; 27(8): 1335–40.PubMedGoogle Scholar
  16. 16.
    Candiano G, Musante L, Bruschi M, et al. Repetitive fragmentation products of albumin and alpha1-antitrypsin in glomerular diseases associated with nephrotic syndrome. J Am Soc Nephrol 2006; 17(11): 3139–48.CrossRefPubMedGoogle Scholar
  17. 17.
    Janciauskiene S, Toth E, Sahlin S, et al. Immunochemical and functional properties of biliary alpha-1-antitrypsin. Scand J Clin Lab Invest 1996; 56(7): 597–608.CrossRefPubMedGoogle Scholar
  18. 18.
    Morrison HM, Kramps JA, Burnett D, et al. Lung lavage fluid from patients with alpha-1-proteinase inhibitor deficiency or chronic obstructive bronchitis: Anti-elastase function and cell profile. Clin Sci (Lond) 1987; 72(3): 373–81.Google Scholar
  19. 19.
    Soy D, de la Roza C, Lara B, et al. . Alpha-1-antitrypsin deficiency: Optimal therapeutic regimen based on population pharmacokinetics. Thorax 2006; 61(12): 1059–64.CrossRefPubMedGoogle Scholar
  20. 20.
    Perlmutter DH, Punsal PI. Distinct and additive effects of elastase and endotoxin on expression of alpha 1 proteinase inhibitor in mononuclear phagocytes. J Biol Chem 1988; 263(31): 16499–503.PubMedGoogle Scholar
  21. 21.
    Lisowska-Myjak B, Pachecka J. Antigenic and functional levels of alpha-1-antitrypsin in serum during normal and diabetic pregnancy. Eur J Obstet Gynecol Reprod Biol 2003; 106(1): 31–5.CrossRefPubMedGoogle Scholar
  22. 22.
    Knoell DL, Ralston DR, Coulter KR, et al. Alpha 1-antitrypsin and protease complexation is induced by lipopolysaccharide, interleukin-1beta, and tumor necrosis factor-alpha in monocytes. Am J Respir Crit Care Med 1998; 157(1): 246–55.PubMedGoogle Scholar
  23. 23.
    Bosco D, Meda P, Morel P, et al. Expression and secretion of alpha1-proteinase inhibitor are regulated by proinflammatory cytokines in human pancreatic islet cells. Diabetologia 2005; 48(8): 1523–33.CrossRefPubMedGoogle Scholar
  24. 24.
    Faust D, Hormann S, Friedrich-Sander M, et al. Butyrate and the cytokine-induced alpha1-proteinase inhibitor release in intestinal epithelial cells. Eur J Clin Invest 2001; 31(12): 1060–3.CrossRefPubMedGoogle Scholar
  25. 25.
    Boskovic G, Twining SS. Retinol and retinaldehyde specifically increase alpha1-proteinase inhibitor in the human cornea. Biochem J 1997; 322(Pt 3): 751–6.PubMedGoogle Scholar
  26. 26.
    Perlmutter DH, Travis J, Punsal PI. Elastase regulates the synthesis of its inhibitor, alpha 1-proteinase inhibitor, and exaggerates the defect in homozygous PiZZ alpha 1 PI deficiency. J Clin Invest 1988; 81(6): 1774–80.CrossRefPubMedGoogle Scholar
  27. 27.
    Carrell RW, Jeppsson JO, Vaughan L, et al. Human alpha 1-antitrypsin: carbohydrate attachment and sequence homology. FEBS Lett 1981; 135(2): 301–3.CrossRefPubMedGoogle Scholar
  28. 28.
    Wright HT, Scarsdale JN. Structural basis for serpin inhibitor activity. Proteins 1995; 22(3): 210–25.CrossRefPubMedGoogle Scholar
  29. 29.
    Gils A, Knockaert I, Declerck PJ. Substrate behavior of plasminogen activator inhibitor-1 is not associated with a lack of insertion of the reactive site loop. Biochemistry 1996; 35(23): 7474–81.CrossRefPubMedGoogle Scholar
  30. 30.
    Aertgeerts K, De Bondt HL, De Ranter CJ, et al. Mechanisms contributing to the conformational and functional flexibility of plasminogen activator inhibitor-1. Nat Struct Biol 1995; 2(10): 891–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Petrache I, Fijalkowska I, Zhen L, et al. A novel antiapoptotic role for alpha1-antitrypsin in the prevention of pulmonary emphysema. Am J Respir Crit Care Med 2006; 173(11): 1222–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Petrache I, Fijalkowska I, Medler TR, et al. . Alpha-1 antitrypsin inhibits caspase-3 activity, preventing lung endothelial cell apoptosis. Am J Pathol 2006; 169(4): 1155–66.CrossRefPubMedGoogle Scholar
  33. 33.
    Johnson DA, Barrett AJ, Mason RW. Cathepsin L inactivates alpha 1-proteinase inhibitor by cleavage in the reactive site region. J Biol Chem 1986; 261(31): 14748–51.PubMedGoogle Scholar
  34. 34.
    Winyard PG, Zhang Z, Chidwick K, et al. Proteolytic inactivation of human alpha 1 antitrypsin by human stromelysin. FEBS Lett 1991; 279(1): 91–4.CrossRefPubMedGoogle Scholar
  35. 35.
    Michaelis J, Vissers MC, Winterbourn CC. Cleavage of alpha 1-antitrypsin by human neutrophil collagenase. Matrix Suppl 1992; 1: 80–1.PubMedGoogle Scholar
  36. 36.
    American Thoracic Society/European Respiratory Society statement: standards for the diagnosis and management of individuals with alpha-1 antitrypsin deficiency. Am J Respir Crit Care Med 2003; 168(7): 818–900.CrossRefGoogle Scholar
  37. 37.
    Brantly M. Efficient and accurate approaches to the laboratory diagnosis of alpha1-antitrypsin deficiency: The promise of early diagnosis and intervention. Clin Chem 2006; 52(12): 2180–1.CrossRefPubMedGoogle Scholar
  38. 38.
    Owen MC, Brennan SO, Lewis JH, et al. Mutation of antitrypsin to antithrombin. alpha 1-antitrypsin Pittsburgh (358 Met leads to Arg), a fatal bleeding disorder. N Engl J Med 1983; 309(12): 694–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Okayama H, Brantly M, Holmes M, et al. Characterization of the molecular basis of the alpha 1-antitrypsin F allele. Am J Hum Genet 1991; 48(6): 1154–8.PubMedGoogle Scholar
  40. 40.
    Hutchinson DC. Alpha-1 antitrypsin deficiency in Europe: Geographical distribution of Pi types S and Z. Respir Med 1998; 92: 367–77.CrossRefGoogle Scholar
  41. 41.
    de Serres FJ. Worldwide racial and ethnic distribution of alpha1-antitrypsin deficiency: summary of an analysis of published genetic epidemiologic surveys. Chest 2002; 122(5): 1818–29.CrossRefPubMedGoogle Scholar
  42. 42.
    Strange C, Stoller JK, Sandhaus RA, et al. Results of a survey of patients with alpha-1 antitrypsin deficiency. Respiration 2006; 73(2): 185–90.PubMedGoogle Scholar
  43. 43.
    Laurell CB, Thulin E. Complexes in plasma between light chain kappa immunoglobulins and alpha 1-antitrypsin respectively prealbumin. Immunochemistry 1974; 11(11): 703–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Murakami T, Komiyama Y, Masuda M, et al. Evaluation of factor XIa-alpha 1-antitrypsin in plasma, a contact phase-activated coagulation factor-inhibitor complex, in patients with coronary artery disease. Arterioscler Thromb Vasc Biol 1995; 15(8): 1107–13.PubMedGoogle Scholar
  45. 45.
    Austin GE, Mullins RH, Morin LG. Non-enzymic glycation of individual plasma proteins in normoglycemic and hyperglycemic patients. Clin Chem 1987; 33(12): 2220–4.PubMedGoogle Scholar
  46. 46.
    Finotti P, Pagetta A. A heat shock protein70 fusion protein with alpha1-antitrypsin in plasma of type 1 diabetic subjects. Biochem Biophys Res Commun 2004; 315(2):297–305.CrossRefPubMedGoogle Scholar
  47. 47.
    Scott LJ, Evans EL, Dawes PT, et al. Comparison of IgA-alpha1-antitrypsin levels in rheumatoid arthritis and seronegative oligoarthritis: Complex formation is not associated with inflammation per se. Br J Rheumatol 1998; 37(4): 398–404.CrossRefPubMedGoogle Scholar
  48. 48.
    Zhang WM, Finne P, Leinonen J, et al. Characterization and determination of the complex between prostate-specific antigen and alpha 1-protease inhibitor in benign and malignant prostatic diseases. Scand J Clin Lab Invest Suppl 2000; 233: 51–8.CrossRefPubMedGoogle Scholar
  49. 49.
    Luo LY, Jiang W. Inhibition profiles of human tissue kallikreins by serine protease inhibitors. Biol Chem 2006; 387(6): 813–6.CrossRefPubMedGoogle Scholar
  50. 50.
    Ueda M, Mashiba S, Uchida K. Evaluation of oxidized alpha-1-antitrypsin in blood as an oxidative stress marker using anti-oxidative alpha1-AT monoclonal antibody. Clin Chim Acta 2002; 317(1–2): 125–31.CrossRefPubMedGoogle Scholar
  51. 51.
    Griffiths SW, Cooney CL. Relationship between protein structure and methionine oxidation in recombinant human alpha 1-antitrypsin. Biochemistry 2002; 41(20): 6245–52.CrossRefPubMedGoogle Scholar
  52. 52.
    Maier KL, Leuschel L, Costabel U. Increased oxidized methionine residues in BAL fluid proteins in acute or chronic bronchitis. Eur Respir J 1992; 5(6): 651–8.PubMedGoogle Scholar
  53. 53.
    Zhang Z, Farrell AJ, Blake DR, et al. Inactivation of synovial fluid alpha 1-antitrypsin by exercise of the inflamed rheumatoid joint. FEBS Lett 1993; 321(2–3): 274–8.CrossRefPubMedGoogle Scholar
  54. 54.
    Wallaert B, Gressier B, Aerts C, et al. Oxidative inactivation of alpha 1-proteinase inhibitor by alveolar macrophages from healthy smokers requires the presence of myeloperoxidase. Am J Respir Cell Mol Biol 1991; 5(5): 437–44.PubMedGoogle Scholar
  55. 55.
    Hubbard RC, Ogushi F, Fells GA, et al. Oxidants spontaneously released by alveolar macrophages of cigarette smokers can inactivate the active site of alpha 1-antitrypsin, rendering it ineffective as an inhibitor of neutrophil elastase. J Clin Invest 1987; 80(5): 1289–95.CrossRefPubMedGoogle Scholar
  56. 56.
    Scott LJ, Russell GI, Nixon NB, et al. Oxidation of alpha1-proteinase inhibitor by the myeloperoxidase–hydrogen peroxidase system promotes binding to immunoglobulin A. Biochem Biophys Res Commun 1999; 255(3): 562–7.CrossRefPubMedGoogle Scholar
  57. 57.
    Miyamoto Y, Akaike T, Alam MS, et al. Novel functions of human alpha(1)-protease inhibitor after S-nitrosylation: inhibition of cysteine protease and antibacterial activity. Biochem Biophys Res Commun 2000; 267(3): 918–23.CrossRefPubMedGoogle Scholar
  58. 58.
    Ikebe N, Akaike T, Miyamoto Y, et al. Protective effect of S-nitrosylated alpha(1)-protease inhibitor on hepatic ischemia–reperfusion injury. J Pharmacol Exp Ther 2000; 295(3):904–11.PubMedGoogle Scholar
  59. 59.
    Banda MJ, Rice AG, Griffin GL, et al. Alpha 1-proteinase inhibitor is a neutrophil chemoattractant after proteolytic inactivation by macrophage elastase. J Biol Chem 1988; 263(9): 4481–4.PubMedGoogle Scholar
  60. 60.
    Pei D, Majmudar G, Weiss SJ. Hydrolytic inactivation of a breast carcinoma cell-derived serpin by human stromelysin-3. J Biol Chem 1994; 269(41): 25849–55.PubMedGoogle Scholar
  61. 61.
    Sponer M, Nick HP, Schnebli HP. Different susceptibility of elastase inhibitors to inactivation by proteinases from Staphylococcus aureus and Pseudomonas aeruginosa. Biol Chem Hoppe Seyler 1991; 372(11): 963–70.PubMedGoogle Scholar
  62. 62.
    Johansson J, Grondal S, Sjovall J, et al. Identification of hydrophobic fragments of alpha 1-antitrypsin and C1 protease inhibitor in human bile, plasma and spleen. FEBS Lett 1992; 299(2): 146–8.CrossRefPubMedGoogle Scholar
  63. 63.
    Dichtl W, Moraga F, Ares MP, et al. The carboxyl-terminal fragment of alpha1-antitrypsin is present in atherosclerotic plaques and regulates inflammatory transcription factors in primary human monocytes. Mol Cell Biol Res Commun 2000; 4(1): 50–61.CrossRefPubMedGoogle Scholar
  64. 64.
    Subramaniyam D, Glader P, von Wachenfeldt K, et al. . C-36 peptide, a degradation product of alpha1-antitrypsin, modulates human monocyte activation through LPS signaling pathways. Int J Biochem Cell Biol 2006; 38(4): 563–75.CrossRefPubMedGoogle Scholar
  65. 65.
    Gerbod-Giannone MC, Del Castillo-Olivares A, Janciauskiene S, et al. Suppression of cholesterol 7alpha-hydroxylase transcription and bile acid synthesis by an alpha1-antitrypsin peptide via interaction with alpha1-fetoprotein transcription factor. J Biol Chem 2002; 277(45): 42973–80.CrossRefPubMedGoogle Scholar
  66. 66.
    Janciauskiene S, Zelvyte I, Jansson L, et al. Divergent effects of alpha1-antitrypsin on neutrophil activation, in vitro. Biochem Biophys Res Commun 2004; 315(2): 288–96.CrossRefPubMedGoogle Scholar
  67. 67.
    Munch J, Standker L, Adermann K, et al. Discovery and optimization of a natural HIV-1 entry inhibitor targeting the gp41 fusion peptide. Cell 2007; 129(2): 263–75.CrossRefPubMedGoogle Scholar
  68. 68.
    Poveda E. Discovery of VIRIP – a natural HIV entry inhibitor. AIDS Rev 2007; 9(2): 126.PubMedGoogle Scholar
  69. 69.
    Congote LF, Temmel N, Sadvakassova G, et al. Comparison of the effects of serpin A1, a recombinant serpin A1-IGF chimera and serpin A1 C-terminal peptide on wound healing. Peptides 2008; 29(1): 39–46.CrossRefPubMedGoogle Scholar
  70. 70.
    Dunstone MA, Dai W, Whisstock JC, et al. Cleaved antitrypsin polymers at atomic resolution. Protein Sci 2000; 9(2): 417–20.CrossRefPubMedGoogle Scholar
  71. 71.
    Dafforn TR, Mahadeva R, Elliott PR, et al. A kinetic mechanism for the polymerization of alpha1-antitrypsin. J Biol Chem 1999; 274(14): 9548–55.CrossRefPubMedGoogle Scholar
  72. 72.
    Zhou A, Carrell RW. Dimers initiate and propagate serine protease inhibitor polymerisation. J Mol Biol 2008; 375(1): 36–42.CrossRefPubMedGoogle Scholar
  73. 73.
    Persson C, Subramaniyam D, Stevens T, et al. Do native and polymeric alpha1-antitrypsin activate human neutrophils in vitro?. Chest 2006; 129(6): 1683–92.CrossRefPubMedGoogle Scholar
  74. 74.
    Aldonyte R, Eriksson S, Piitulainen E, et al. Analysis of systemic biomarkers in COPD patients. Copd 2004; 1(2): 155–64.CrossRefPubMedGoogle Scholar
  75. 75.
    Mahadeva R, Atkinson C, Li Z, et al. Polymers of Z alpha1-antitrypsin co-localize with neutrophils in emphysematous alveoli and are chemotactic in vivo. Am J Pathol 2005; 166(2): 377–86.PubMedGoogle Scholar
  76. 76.
    Mulgrew AT, Taggart CC, Lawless MW, et al. Z alpha1-antitrypsin polymerizes in the lung and acts as a neutrophil chemoattractant. Chest 2004; 125(5): 1952–7.CrossRefPubMedGoogle Scholar
  77. 77.
    Laurell CB, Erickson S. The electrophoretic alpha-1-globulin pattern of serum in alpha-1-antitrypsin deficiency. Scand J Clin Lab Invest 1963; 15: 132–40.Google Scholar
  78. 78.
    McElvaney NG, Stoller JK, Buist AS, et al. Baseline characteristics of enrollees in the National Heart, Lung and Blood Institute Registry of alpha 1-antitrypsin deficiency. Alpha 1-Antitrypsin Deficiency Registry Study Group. Chest 1997; 111(2): 394–403.CrossRefPubMedGoogle Scholar
  79. 79.
    Parr DG, Guest PG, Reynolds JH, et al. Prevalence and impact of bronchiectasis in alpha1-antitrypsin deficiency. Am J Respir Crit Care Med 2007; 176(12): 1215–21.CrossRefPubMedGoogle Scholar
  80. 80.
    Bernspang E, Sveger T, Piitulainen E. Respiratory symptoms and lung function in 30-year-old individuals with alpha-1-antitrypsin deficiency. Respir Med 2007; 101(9): 1971–6.CrossRefPubMedGoogle Scholar
  81. 81.
    Eden E, Holbrook JT, Brantly ML, et al. Prevalence of alpha-1 antitrypsin deficiency in poorly controlled asthma – results from the ALA-ACRC low-dose theophylline trial. J Asthma 2007; 44(8): 605–8.CrossRefPubMedGoogle Scholar
  82. 82.
    Eden E, Strange C, Holladay B, et al. Asthma and allergy in alpha-1 antitrypsin deficiency. Respir Med 2006 100: 1384–91.CrossRefPubMedGoogle Scholar
  83. 83.
    Chan ED, Kaminska AM, Gill W, et al. . Alpha-1-antitrypsin (AAT) anomalies are associated with lung disease due to rapidly growing mycobacteria and AAT inhibits Mycobacterium abscessus infection of macrophages. Scand J Infect Dis 2007; 39(8): 690–6.CrossRefPubMedGoogle Scholar
  84. 84.
    Hersh CP, Dahl M, Ly NP, et al. Chronic obstructive pulmonary disease in alpha1-antitrypsin PI MZ heterozygotes: A meta-analysis. Thorax 2004; 59(10): 843–9.CrossRefPubMedGoogle Scholar
  85. 85.
    Sandford AJ, Chagani T, Weir TD, et al. Susceptibility genes for rapid decline of lung function in the lung health study. Am J Respir Crit Care Med 2001; 163(2): 469–73.PubMedGoogle Scholar
  86. 86.
    Survival and FEV1 decline in individuals with severe deficiency of alpha1-antitrypsin. The Alpha-1-Antitrypsin Deficiency Registry Study Group. Am J Respir Crit Care Med 1998; 158(1): 49–59.Google Scholar
  87. 87.
    Seersholm N, Wencker M, Banik N, et al. Does alpha1-antitrypsin augmentation therapy slow the annual decline in FEV1 in patients with severe hereditary alpha1-antitrypsin deficiency? Wissenschaftliche Arbeitsgemeinschaft zur Therapie von Lungenerkrankungen (WATL) alpha1-AT study group. Eur Respir J 1997; 10(10): 2260–3.CrossRefPubMedGoogle Scholar
  88. 88.
    Dirksen A, Dijkman JH, Madsen F, et al. A randomized clinical trial of alpha(1)-antitrypsin augmentation therapy. Am J Respir Crit Care Med 1999; 160(5 Pt 1): 1468–72.PubMedGoogle Scholar
  89. 89.
    Wewers MD, Casolaro MA, Sellers SE, et al. Replacement therapy for alpha 1-antitrypsin deficiency associated with emphysema. N Engl J Med 1987; 316(17): 1055–62.CrossRefPubMedGoogle Scholar
  90. 90.
    Hubbard RC, Sellers S, Czerski D, et al. Biochemical efficacy and safety of monthly augmentation therapy for alpha 1-antitrypsin deficiency. JAMA 1988; 260(9): 1259–64.CrossRefPubMedGoogle Scholar
  91. 91.
    Pemberton PA, Kobayashi D, Wilk BJ, et al. Inhaled recombinant alpha 1-antitrypsin ameliorates cigarette smoke-induced emphysema in the mouse. COPD 2006; 3(2): 101–8.CrossRefPubMedGoogle Scholar
  92. 92.
    Vogelmeier C, Kirlath I, Warrington S, et al. The intrapulmonary half-life and safety of aerosolized alpha1-protease inhibitor in normal volunteers. Am J Respir Crit Care Med 1997; 155(2): 536–41.PubMedGoogle Scholar
  93. 93.
    Griese M, Latzin P, Kappler M, et al. . alpha1-Antitrypsin inhalation reduces airway inflammation in cystic fibrosis patients. Eur Respir J 2007; 29(2): 240–50.CrossRefPubMedGoogle Scholar
  94. 94.
    Sharp HL, Bridges RA, Krivit W, et al. Cirrhosis associated with alpha1-antitrypsin deficiency: A previously unrecognized inherited disorder. J Lab Clin Med 1969; 73: 934–9.PubMedGoogle Scholar
  95. 95.
    Eriksson S. Alpha 1-antitrypsin deficiency and liver cirrhosis in adults. An analysis of 35 Swedish autopsied cases. Acta Med Scand 1987; 221(5): 461–7.CrossRefPubMedGoogle Scholar
  96. 96.
    Bowlus CL, Willner I, Zern MA, et al. Factors associated with advanced liver disease in adults with alpha1-antitrypsin deficiency. Clin Gastroenterol Hepatol 2005; 3(4): 390–6.CrossRefPubMedGoogle Scholar
  97. 97.
    O’Riordan K, Blei A, Rao MS, et al. alpha 1-antitrypsin deficiency-associated panniculitis: Resolution with intravenous alpha 1-antitrypsin administration and liver transplantation. Transplantation 1997; 63(3): 480–2.CrossRefPubMedGoogle Scholar
  98. 98.
    O’Donoghue DJ, Guickian M, Blundell G, et al. . Alpha-1-proteinase inhibitor and pulmonary haemorrhage in systemic vasculitis. Adv Exp Med Biol 1993; 336: 331–5.PubMedGoogle Scholar
  99. 99.
    Callea F, Gregorini G, Sinico A, et al. alpha 1-Antitrypsin (AAT) deficiency and ANCA-positive systemic vasculitis: Genetic and clinical implications. Eur J Clin Invest 1997; 27(8): 696–702.CrossRefPubMedGoogle Scholar
  100. 100.
    Brantly M. Alpha 1-antitrypsin genotypes and phenotypes. In: Crystal RD, Ed. Alpha 1-Antitrypsin. New York: Marcel Dekker, Inc.; 1996, 45–60.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Charlie Strange
    • 1
  • Sabina Janciauskiene
    • 2
  1. 1.Department of MedicineMedical University of South CarolinaCharlestonUSA
  2. 2.Department of Clinical SciencesUniversity HospitalMalmoSweden

Personalised recommendations