Autoimmune Pulmonary Alveolar Proteinosis

  • Bruce C. Trapnell
  • Koh Nakata
  • Yoshikazu Inoue
Part of the Respiratory Medicine book series (RM)


Pulmonary alveolar proteinosis (PAP) is a rare syndrome characterized by accumulation of surfactant lipids and proteins in pulmonary alveoli that can result in progressive impairment in gas exchange and respiratory insufficiency. The serendipitous discovery of PAP in GM-CSF-deficient mice and subsequent identification that neutralizing GM-CSF autoantibodies are strongly associated with PAP in humans led to our current concepts of the pathogenesis of PAP and the central role GM-CSF and alveolar macrophages play in surfactant homeostasis in health and disease. PAP comprises part of a spectrum of disorders of surfactant homeostasis that includes disorders of surfactant clearance and disorders of surfactant production. The former are caused by disruption of GM-CSF signaling (primary PAP) or by an underlying disease that impairs alveolar macrophage functions including surfactant catabolism (secondary PAP). Disorders of surfactant production are caused by inborn errors of surfactant metabolism (surfactant metabolic dysfunction disorders), e.g., mutations in the SFTPB, SFTPC, or ABCA3 genes. Important differences in clinical presentation, natural history, pathogenesis, and surfactant function suggest that these latter diseases should be considered separately from PAP rather than as a form of the same syndrome. The overall prevalence of PAP is approximately 6–8 per million. Ninety percent of cases are specifically associated with high levels of GM-CSF autoantibodies, which has diagnostic importance and has led to common use of the term autoimmune PAP to replace other terms including idiopathic PAP. Autoimmune PAP typically presents as dyspnea of insidious onset; however, up to one third of individuals may be asymptomatic. Whole lung lavage remains the most effective therapy but GM-CSF inhalation therapy is a promising alternative currently in clinical evaluation. Progress in understanding PAP pathogenesis and the role of GM-CSF in surfactant homeostasis and in inflammatory and autoimmune diseases are important benefits derived from integration of basic science, clinical medicine, and translational research. Future studies will focus on pathogenesis, development of improved therapies for PAP and the role of GM-CSF in health and disease.


surfactant lipoproteinosis autoimmunity immunodeficiency macrophage activation GM-CSF 



This publication was made possible by Grant Number U54RR019498 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH). Its contents are solely the responsibility of the authors and do not necessarily represent the official view of NCRR or NIH.


  1. 1.
    McCormack FX, Whitsett JA. The pulmonary collectins, SP-A and SP-D, orchestrate innate immunity in the lung. J Clin Invest 2002;109:707–12.PubMedGoogle Scholar
  2. 2.
    Whitsett JA, Weaver TE. Hydrophobic surfactant proteins in lung function and disease. N Engl J Med 2002;347:2141–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Trapnell BC, Whitsett JA. Gm-csf regulates pulmonary surfactant homeostasis and alveolar macrophage-mediated innate host defense. Annu Rev Physiol 2002;64:775–802.PubMedCrossRefGoogle Scholar
  4. 4.
    Ikegami M, Jobe AH, Huffman Reed JA, Whitsett JA. Surfactant metabolic consequences of overexpression of gm-csf in the epithelium of gm-csf-deficient mice. Am J Physiol 1997;273:L709–14.PubMedGoogle Scholar
  5. 5.
    Ikegami M, Ueda T, Hull W, Whitsett JA, Mulligan RC, Dranoff G, Jobe AH. Surfactant metabolism in transgenic mice after granulocyte macrophage-colony stimulating factor ablation. Am J Physiol 1996;270:L650–8.PubMedGoogle Scholar
  6. 6.
    Shibata Y, Berclaz PY, Chroneos ZC, Yoshida M, Whitsett JA, Trapnell BC. Gm-csf regulates alveolar macrophage differentiation and innate immunity in the lung through pu.1. Immunity 2001;15:557–67.PubMedCrossRefGoogle Scholar
  7. 7.
    Nogee LM, de Mello DE, Dehner LP, Colten HR. Brief report: deficiency of pulmonary surfactant protein b in congenital alveolar proteinosis. N Engl J Med 1993;328:406–10.Google Scholar
  8. 8.
    Nogee LM, Dunbar AE 3rd, Wert SE, Askin F, Hamvas A, Whitsett JA. A mutation in the surfactant protein c gene associated with familial interstitial lung disease. N Engl J Med 2001;344:573–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Nogee LM, Garnier G, Dietz HC, Singer L, Murphy AM, de Mello DE, Colten HR. A mutation in the surfactant protein b gene responsible for fatal neonatal respiratory disease in multiple kindreds. J Clin Invest 1994;93:1860–3.PubMedCrossRefGoogle Scholar
  10. 10.
    Dirksen U, Nishinakamura R, Groneck P, Hattenhorst U, Nogee L, Murray R, Burdach S. Human pulmonary alveolar proteinosis associated with a defect in gm- csf/il-3/il-5 receptor common beta chain expression. J Clin Invest 1997;100:2211–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Seymour JF, Presneill JJ. Pulmonary alveolar proteinosis: progress in the first 44 years. Am J Respir Crit Care Med 2002;166:215–35.PubMedCrossRefGoogle Scholar
  12. 12.
    Inoue Y, Trapnell BC, Tazawa R, Arai T, Takada T, Hizawa N, Kasahara Y, Tatsumi K, Hojo M, Ichiwata T, et al. Characteristics of a large cohort of autoimmune pulmonary alveolar proteinosis patients in Japan. Am J Respir Crit Care Med 2008;177:752–62.PubMedCrossRefGoogle Scholar
  13. 13.
    Ben-Dov I, Kishinevski Y, Roznman J, Soliman A, Bishara H, Zelligson E, Grief J, Mazar A, Perelman M, Vishnizer R, et al. Pulmonary alveolar proteinosis in Israel: ethnic clustering. Isr Med Assoc J 1999;1:75–8.PubMedGoogle Scholar
  14. 14.
    Wasserman K, Masson GR. Pulmonary alveolar proteinosis. In: Murray JF, Nadel JA, (eds) Textbook of Respiratory Medicine. Philadelphia: Saunders 1994; pp. 1933–46.Google Scholar
  15. 15.
    Presneill JJ, Nakata K, Inoue Y, Seymour JF. Pulmonary alveolar proteinosis. Clin Chest Med 2004;25:593–613.PubMedCrossRefGoogle Scholar
  16. 16.
    Suzuki T, Sakagami T, Rubin BK, Nogee LM, Wood RE, Zimmerman SL, Smolarek T, Dishop M, Wert SE, Whitsett JA, et al. Familial pulmonary alveolar proteinosis caused by mutations in CSF2RA. J Exp Med 2008;205:2703–10.Google Scholar
  17. 17.
    Bewig B, Wang XD, Kirsten D, Dalhoff K, Schafer H. Gm-csf and gm-csf beta c receptor in adult patients with pulmonary alveolar proteinosis. Eur Respir J 2000;15:350–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Stanley E, Lieschke GJ, Grail D, Metcalf D, Hodgson G, Gall JA, Maher DW, Cebon J, Sinickas V, Dunn AR. Granulocyte/macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proc Natl Acad Sci U S A 1994;91:5592–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Dranoff G, Crawford AD, Sadelain M, Ream B, Rashid A, Bronson RT, Dickersin GR, Bachurski CJ, Mark EL, Whitsett JA, et al. Involvement of granulocyte-macrophage colony-stimulating factor in pulmonary homeostasis. Science 1994;264:713–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Cordonnier C, Fleury-Feith J, Escudier E, Atassi K, Bernaudin JF. Secondary alveolar proteinosis is a reversible cause of respiratory failure in leukemic patients. Am J Respir Crit Care Med 1994;149:788–94.PubMedGoogle Scholar
  21. 21.
    Dirksen U, Hattenhorst U, Schneider P, Schroten H, Gobel U, Bocking A, Muller KM, Murray R, Burdach S. Defective expression of granulocyte-macrophage colony-stimulating factor/interleukin-3/interleukin-5 receptor common beta chain in children with acute myeloid leukemia associated with respiratory failure. Blood 1998;92:1097–103.PubMedGoogle Scholar
  22. 22.
    Ruben FL, Talamo TS. Secondary pulmonary alveolar proteinosis occurring in two patients with acquired immune deficiency syndrome. Am J Med 1986;80:1187–90.PubMedCrossRefGoogle Scholar
  23. 23.
    Buechner HA, Ansari A. Acute silico-proteinosis. A new pathologic variant of acute silicosis in sandblasters, characterized by histologic features resembling alveolar proteinosis. Dis Chest 1969;55:274–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Ceruti M, Rodi G, Stella GM, Adami A, Bolongaro A, Baritussio A, Pozzi E, Luisetti M. Successful whole lung lavage in pulmonary alveolar proteinosis secondary to lysinuric protein intolerance: a case report. Orphanet J Rare Dis 2007;2:14.Google Scholar
  25. 25.
    Borsani G, Bassi MT, Sperandeo MP, De Grandi A, Buoninconti A, Riboni M, Manzoni M, Incerti B, Pepe A, Andria G, et al . Slc7a7, encoding a putative permease-related protein, is mutated in patients with lysinuric protein intolerance. Nat Genet 1999;21:297–301.PubMedCrossRefGoogle Scholar
  26. 26.
    Parto K, Svedstrom E, Majurin ML, Harkonen R, Simell O. Pulmonary manifestations in lysinuric protein intolerance. Chest 1993;104:1176–82.PubMedCrossRefGoogle Scholar
  27. 27.
    Pedroso SL, Martins LS, Sousa S, Reis A, Dias L, Henriques AC, Sarmento AM, Cabrita A. Pulmonary alveolar proteinosis: a rare pulmonary toxicity of sirolimus. Transpl Int 2007;20:291–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Cole FS, Hamvas A, Rubinstein P, King E, Trusgnich M, Nogee LM, de Mello DE, Colten HR. Population-based estimates of surfactant protein b deficiency. Pediatrics 2000;105:538–41.PubMedCrossRefGoogle Scholar
  29. 29.
    Nogee LM, Wert SE, Proffit SA, Hull WM, Whitsett JA. Allelic heterogeneity in hereditary surfactant protein b (sp-b) deficiency. Am J Respir Crit Care Med 2000;161:973–81.PubMedGoogle Scholar
  30. 30.
    Nogee LM. Abnormal expression of surfactant protein c and lung disease. Am J Respir Cell Mol Biol 2002;26:641–4.PubMedGoogle Scholar
  31. 31.
    Nogee LM, Dunbar AE 3rd, Wert S, Askin F, Hamvas A, Whitsett JA. Mutations in the surfactant protein c gene associated with interstitial lung disease. Chest 2002;121:20S–1S.PubMedCrossRefGoogle Scholar
  32. 32.
    Li J, Ikegami M, Na CL, Hamvas A, Espinassous Q, Chaby R, Nogee LM, Weaver TE, Johansson J. N-terminally extended surfactant protein (sp) c isolated from sp-b-deficient children has reduced surface activity and inhibited lipopolysaccharide binding. Biochemistry 2004;43:3891–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Shulenin S, Nogee LM, Annilo T, Wert SE, Whitsett JA, Dean M. Abca3 gene mutations in newborns with fatal surfactant deficiency. N Engl J Med 2004;350:1296–303.PubMedCrossRefGoogle Scholar
  34. 34.
    Rosen SG, Castleman B, Liebow AA. Pulmonary alveolar proteinosis. N Engl J Med 1958;258:1123–42.PubMedCrossRefGoogle Scholar
  35. 35.
    Pattle RE, Thomas LC. Lipoprotein composition of the film lining the lung. Nature 1961;189:844.PubMedCrossRefGoogle Scholar
  36. 36.
    Golde DW, Territo M, Finley TN, Cline MJ. Defective lung macrophages in pulmonary alveolar proteinosis. Ann Intern Med 1976;85:304–9.PubMedGoogle Scholar
  37. 37.
    Harris JO. Pulmonary alveolar proteinosis: abnormal in vitro function of alveolar macrophages. Chest 1979;76:156–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Gonzalez-Rothi RJ, Harris JO. Pulmonary alveolar proteinosis. Further evaluation of abnormal alveolar macrophages. Chest 1986;90:656–61.PubMedCrossRefGoogle Scholar
  39. 39.
    Golde DW. Alveolar proteinosis and the overfed macrophage [editorial]. Chest 1979;76:119–20.PubMedCrossRefGoogle Scholar
  40. 40.
    Muller-Quernheim J, Schopf RE, Benes P, Schulz V, Ferlinz R. A macrophage-suppressing 40-kd protein in a case of pulmonary alveolar proteinosis. Klin Wochenschr 1987;65:893–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Nugent KM, Pesanti EL. Macrophage function in pulmonary alveolar proteinosis. Am Rev Respir Dis 1983;127:780–1.PubMedGoogle Scholar
  42. 42.
    Stratton JA, Sieger L, Wasserman K. The immunoinhibitory activities of the lung lavage materials and sera from patients with pulmonary alveolar proteinosis (pap). J Clin Lab Immunol 1981;5:81–6.PubMedGoogle Scholar
  43. 43.
    Costello JF, Moriarty DC, Branthwaite MA, Turner-Warwick M, Corrin B. Diagnosis and management of alveolar proteinosis: the role of electron microscopy. Thorax 1975;30:121–32.PubMedCrossRefGoogle Scholar
  44. 44.
    Davidson JM, Macleod WM. Pulmonary alveolar proteinosis. Br J Dis Chest 1969;63:13–28.PubMedCrossRefGoogle Scholar
  45. 45.
    Singh G, Katyal SL, Bedrossian CW, Rogers RM. Pulmonary alveolar proteinosis. Staining for surfactant apoprotein in alveolar proteinosis and in conditions simulating it. Chest 1983;83:82–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Honda Y, Takahashi H, Shijubo N, Kuroki Y, Akino T. Surfactant protein-a concentration in bronchoalveolar lavage fluids of patients with pulmonary alveolar proteinosis. Chest 1993;103:496–9.PubMedCrossRefGoogle Scholar
  47. 47.
    McClenahan JB. Pulmonary alveolar proteinosis. Arch Intern Med 1974;133:284–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Ramirez J, Harlan WR Jr. Pulmonary alveolar proteinosis. Nature and origin of alveolar lipid. Am J Med 1968;45:502–12.PubMedCrossRefGoogle Scholar
  49. 49.
    Burgess AW, Camakaris J, Metcalf D. Purification and properties of colony-stimulating factor from mouse lung-conditioned medium. J Biol Chem 1977;252:1998–2003.PubMedGoogle Scholar
  50. 50.
    Miyatake S, Otsuka T, Yokota T, Lee F, Arai K. Structure of the chromosomal gene for granulocyte-macrophage colony stimulating factor: comparison of the mouse and human genes. EMBO J 1985;4:2561–8.PubMedGoogle Scholar
  51. 51.
    Rasko JE. Granulocyte-Macrophage Colony Stimulating Factor. The Cytokine Handbook. Boston, MA: Academic Press Ltd., 2nd ed, 1994; pp. 343–69.Google Scholar
  52. 52.
    Yoshida M, Ikegami M, Reed JA, Chroneos ZC, Whitsett JA. Gm-csf regulates surfacant protein-a and lipid catabolism by alveolar macrophages. Am J Physiol Lung Cell Mol Physiol 2001;280:L379–86.PubMedGoogle Scholar
  53. 53.
    Huffman JA, Hull WM, Dranoff G, Mulligan RC, Whitsett JA. Pulmonary epithelial cell expression of gm-csf corrects the alveolar proteinosis in gm-csf-deficient mice. J Clin Invest 1996;97:649–55.PubMedCrossRefGoogle Scholar
  54. 54.
    Hayashida K, Kitamura T, Gorman DM, Arai K, Yokota T, Miyajima A. Molecular cloning of a second subunit of the receptor for human granulocyte-macrophage colony-stimulating factor (gm-csf): reconstitution of a high-affinity gm-csf receptor. Proc Natl Acad Sci USA 1990;87:9655–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Robb L, Drinkwater CC, Metcalf D, Li R, Kontgen F, Nicola NA, Begley CG. Hematopoietic and lung abnormalities in mice with a null mutation of the common beta subunit of the receptors for granulocyte-macrophage colony-stimulating factor and interleukins 3 and 5. Proc Natl Acad Sci U S A 1995;92:9565–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Nishinakamura R, Nakayama N, Hirabayashi Y, Inoue T, Aud D, McNeil T, Azuma S, Yoshida S, Toyoda Y, Arai K, et al. Mice deficient for the il-3/gm-csf/il-5 beta c receptor exhibit lung pathology and impaired immune response, while beta il3 receptor- deficient mice are normal. Immunity 1995;2:211–22.PubMedCrossRefGoogle Scholar
  57. 57.
    Seymour JF, Lieschke GJ, Grail D, Quilici C, Hodgson G, Dunn AR. Mice lacking both granulocyte colony-stimulating factor (csf) and granulocyte-macrophage csf have impaired reproductive capacity, perturbed neonatal granulopoiesis, lung disease, amyloidosis, and reduced long-term survival. Blood 1997;90:3037–49.PubMedGoogle Scholar
  58. 58.
    LeVine AM, Reed JA, Kurak KE, Cianciolo E, Whitsett JA. Gm-csf-deficient mice are susceptible to pulmonary group b streptococcal infection. J Clin Invest 1999;103: 563–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Paine R 3rd, Preston AM, Wilcoxen S, Jin H, Siu BB, Morris SB, Reed JA, Ross G, Whitsett JA, Beck JM. Granulocyte-macrophage colony-stimulating factor in the innate immune response to pneumocystis carinii pneumonia in mice. J Immunol 2000;164:2602–9.PubMedGoogle Scholar
  60. 60.
    Gonzalez-Juarrero M, Hattle JM, Izzo A, Junqueira-Kipnis AP, Shim TS, Trapnell BC, Cooper AM, Orme IM. Disruption of granulocyte macrophage-colony stimulating factor production in the lungs severely affects the ability of mice to control mycobacterium tuberculosis infection. J Leukoc Biol 2005;77:914–22.PubMedCrossRefGoogle Scholar
  61. 61.
    Berclaz PY, Zsengeller Z, Shibata Y, Otake K, Strasbaugh S, Whitsett JA, Trapnell BC. Endocytic internalization of adenovirus, nonspecific phagocytosis, and cytoskeletal organization are coordinately regulated in alveolar macrophages by gm-csf and pu.1. J Immunol 2002;169:6332–42.PubMedGoogle Scholar
  62. 62.
    Berclaz PY, Shibata Y, Whitsett JA, Trapnell BC. Gm-csf, via pu.1, regulates alveolar macrophage fcgamma r-mediated phagocytosis and the il-18/ifn-gamma -mediated molecular connection between innate and adaptive immunity in the lung. Blood 2002;100:4193–200.PubMedCrossRefGoogle Scholar
  63. 63.
    Paine R 3rd, Morris SB, Jin H, Wilcoxen SE, Phare SM, Moore BB, Coffey MJ, Toews GB. Impaired functional activity of alveolar macrophages from gm-csf- deficient mice. Am J Physiol Lung Cell Mol Physiol 2001;281:L1210–18.PubMedGoogle Scholar
  64. 64.
    Lloberas J, Soler C, Celada A. The key role of pu.1/spi-1 in b cells, myeloid cells and macrophages. Immunol Today 1999;20:184–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Zsengeller ZK, Reed JA, Bachurski CJ, LeVine AM, Forry-Schaudies S, Hirsch R, Whitsett JA. Adenovirus-mediated granulocyte-macrophage colony-stimulating factor improves lung pathology of pulmonary alveolar proteinosis in granulocyte-macrophage colony-stimulating factor-deficient mice. Hum Gene Ther 1998;9:2101–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Reed JA, Ikegami M, Cianciolo ER, Lu W, Cho PS, Hull W, Jobe AH, Whitsett JA. Aerosolized gm-csf ameliorates pulmonary alveolar proteinosis in gm-csf- deficient mice. Am J Physiol 1999;276:L556–63.PubMedGoogle Scholar
  67. 67.
    Carnovale R, Zornoza J, Goldman AM, Luna M. Pulmonary alveolar proteinosis: its association with hematologic malignancy and lymphoma. Radiology 1977;122:303–6.PubMedGoogle Scholar
  68. 68.
    Hildebrand FL Jr., Rosenow EC 3rd, Habermann TM, Tazelaar HD. Pulmonary complications of leukemia. Chest 1990;98:1233–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Ladeb S, Fleury-Feith J, Escudier E, Tran Vann Hieu J, Bernaudin JF, Cordonnier C. Secondary alveolar proteinosis in cancer patients. Support Care Cancer 1996;4:420–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Forbes A, Pickell M, Foroughian M, Yao LJ, Lewis J, Veldhuizen R. Alveolar macrophage depletion is associated with increased surfactant pool sizes in adult rats. J Appl Physiol 2007;103:637–45.PubMedCrossRefGoogle Scholar
  71. 71.
    Seymour JF, Dunn AR, Vincent JM, Presneill JJ, Pain MC. Efficacy of granulocyte-macrophage colony-stimulating factor in acquired alveolar proteinosis. N Engl J Med 1996;335:1924–5.PubMedCrossRefGoogle Scholar
  72. 72.
    Carraway MS, Ghio AJ, Carter JD, Piantadosi CA. Detection of granulocyte-macrophage colony-stimulating factor in patients with pulmonary alveolar proteinosis. Am J Respir Crit Care Med 2000;161:1294–9.PubMedGoogle Scholar
  73. 73.
    Uchida K, Nakata K, Trapnell BC, Terakawa T, Hamano E, Mikami A, Matsushita I, Seymour JF, Oh-Eda M, Ishige I, et al. High-affinity autoantibodies specifically eliminate granulocyte-macrophage colony-stimulating factor activity in the lungs of patients with idiopathic pulmonary alveolar proteinosis. Blood 2004;103:1089–98.PubMedCrossRefGoogle Scholar
  74. 73a.
    Sakagami T, Uchida K, Suzuki T, Carey BC, Wood RE, Wert SE, Whitsett JA, Trapnell BC, Luisetti M. Human GM-CSF autoantibodies and reproduction of pulmonary alveolar proteinosis. N Engl J Med 2009;361:2679–81.Google Scholar
  75. 74.
    Seymour JF, Begley CG, Dirksen U, Presneill JJ, Nicola NA, Moore PE, Schoch OD, van Asperen P, Roth B, Burdach S, et al. Attenuated hematopoietic response to granulocyte-macrophage colony-stimulating factor in patients with acquired pulmonary alveolar proteinosis. Blood 1998;92:2657–67.PubMedGoogle Scholar
  76. 75.
    Tanaka N, Watanabe J, Kitamura T, Yamada Y, Kanegasaki S, Nakata K. Lungs of patients with idiopathic pulmonary alveolar proteinosis express a factor which neutralizes granulocyte-macrophage colony stimulating factor. FEBS Lett 1999;442:246–50.PubMedCrossRefGoogle Scholar
  77. 76.
    Kitamura T, Tanaka N, Watanabe J, Uchida KS, Yamada Y, Nakata K. Idiopathic pulmonary alveolar proteinosis as an autoimmune disease with neutralizing antibody against granulocyte/macrophage colony-stimulating factor. J Exp Med 1999;190:875–80.PubMedCrossRefGoogle Scholar
  78. 77.
    Bonfield TL, Raychaudhuri B, Malur A, Abraham S, Trapnell BC, Kavuru MS, Thomassen MJ. Pu.1 regulation of human alveolar macrophage differentiation requires granulocyte-macrophage colony-stimulating factor. Am J Physiol Lung Cell Mol Physiol 2003;285:L1132–36.PubMedGoogle Scholar
  79. 78.
    Bonfield TL, Russell D, Burgess S, Malur A, Kavuru MS, Thomassen MJ. Autoantibodies against granulocyte macrophage colony-stimulating factor are diagnostic for pulmonary alveolar proteinosis. Am J Respir Cell Mol Biol 2002;27:481–6.PubMedGoogle Scholar
  80. 79.
    Shibata Y, Berclaz P-Y, Chroneos ZC, Yoshida M, Whitsett JA, Trapnell B. GM-CSF regulates alveolar macrophage differentiation in the lung through pu.1. Immunity 2001;15:557–67.Google Scholar
  81. 80.
    Iyonaga K, Suga M, Yamamoto T, Ichiyasu H, Miyakawa H, Ando M. Elevated bronchoalveolar concentrations of mcp-1 in patients with pulmonary alveolar proteinosis. Eur Respir J 1999;14:383–9.PubMedCrossRefGoogle Scholar
  82. 81.
    Uchida K, Beck DC, Yamamoto T, Berclaz PY, Abe S, Staudt MK, Carey BC, Filippi MD, Wert SE, Denson LA, et al. Gm-csf autoantibodies and neutrophil dysfunction in pulmonary alveolar proteinosis. N Engl J Med 2007;356:567–79.PubMedCrossRefGoogle Scholar
  83. 82.
    Bedrossian CW, Luna MA, Conklin RH, Miller WC. Alveolar proteinosis as a consequence of immunosuppression. A hypothesis based on clinical and pathologic observations. Hum Pathol 1980;11:527–35.PubMedGoogle Scholar
  84. 83.
    Prakash UB, Barham SS, Carpenter HA, Dines DE, Marsh HM. Pulmonary alveolar phospholipoproteinosis: experience with 34 cases and a review. Mayo Clin Proc 1987;62:499–518.PubMedGoogle Scholar
  85. 84.
    Andriole MT, Ballas M, Wilson GL. The association of nocardiosis and pulmonary alveolar proteinosis: a case study. Ann Intern Med 1963;60:266–75.Google Scholar
  86. 85.
    Supena R, Karlin D, Strate R, Cramer PG. Pulmonary alveolar proteinosis and nocardia brain abscess. Report of a case. Arch Neurol 1974;30:266–8.Google Scholar
  87. 86.
    Oerlemans WG, Jansen EN, Prevo RL, Eijsvogel MM. Primary cerebellar nocardiosis and alveolar proteinosis. Acta Neurol Scand 1998;97:138–41.PubMedCrossRefGoogle Scholar
  88. 87.
    Walker DA, McMahon SM. Pulmonary alveolar proteinosis complicated by cerebral abscess: Report of a case. J Am Osteopath Assoc 1986;86:447–50.Google Scholar
  89. 88.
    Wang BM, Stern EJ, Schmidt RA, Pierson DJ. Diagnosing pulmonary alveolar proteinosis. A review and an update. Chest 1997;111:460–6.PubMedCrossRefGoogle Scholar
  90. 89.
    Fraser RS, Muller NL, Colman N, Pare PD. Pulmonary Alveolar Proteinosis. Diagnosis of Diseases of the Chest. Philadelphia: Saunders 1999; pp. 2700–8.Google Scholar
  91. 90.
    Preger L. Pulmonary alveolar proteinosis. Radiology 1969;92:1291–5.PubMedGoogle Scholar
  92. 91.
    Lee KN, Levin DL, Webb WR, Chen D, Storto ML, Golden JA. Pulmonary alveolar proteinosis: High-resolution ct, chest radiographic, and functional correlations. Chest 1997;111:989–95.PubMedCrossRefGoogle Scholar
  93. 92.
    Johkoh T, Itoh H, Muller NL, Ichikado K, Nakamura H, Ikezoe J, Akira M, Nagareda T. Crazy-paving appearance at thin-section ct: spectrum of disease and pathologic findings. Radiology 1999;211:155–60.PubMedGoogle Scholar
  94. 93.
    De Sanctis PN. Pulmonary alveolar proteinosis: a review of the findings and theories to date with a digression on pneumocystis carinii pneumonia. BMQ 1962;13:19–35.Google Scholar
  95. 94.
    Fountain FF Jr. Lactate dehydrogenase isoenzymes in alveolar proteinosis. JAMA 1969;210:1283.PubMedCrossRefGoogle Scholar
  96. 95.
    Selecky PA, Wasserman K, Benfield JR, Lippmann M. The clinical and physiological effect of whole-lung lavage in pulmonary alveolar proteinosis: a ten-year experience. Ann Thorac Surg 1977;24:451–61.PubMedCrossRefGoogle Scholar
  97. 96.
    Asamoto H, Kitaichi M, Nishimura K, Itoh H, Izumi T. Primary pulmonary alveolar proteinosis – clinical observation of 68 patients in Japan. Nihon Kyobu Shikkan Gakkai Zasshi 1995;33:835–45.PubMedGoogle Scholar
  98. 97.
    Fraimow W, Cathcart RT, Taylor RC. Physiologic and clinical aspects of pulmonary alveolar proteinosis. Ann Intern Med 1960;52:1177.PubMedGoogle Scholar
  99. 98.
    Schoch OD, Schanz U, Koller M, Nakata K, Seymour JF, Russi EW, Boehler A. Bal findings in a patient with pulmonary alveolar proteinosis successfully treated with gm-csf. Thorax 2002;57:277–80.PubMedCrossRefGoogle Scholar
  100. 99.
    Kitamura T, Uchida K, Tanaka N, Tsuchiya T, Watanabe J, Yamada Y, Hanaoka K, Seymour JF, Schoch OD, Doyle I, et al. Serological diagnosis of idiopathic pulmonary alveolar proteinosis. Am J Respir Crit Care Med 2000;162:658–62.PubMedGoogle Scholar
  101. 100.
    Trapnell BC, Whitsett JA, Nakata K. Pulmonary alveolar proteinosis. N Engl J Med 2003;349:2527–39.PubMedCrossRefGoogle Scholar
  102. 101.
    Fujishima T, Honda Y, Shijubo N, Takahashi H, Abe S. Increased carcinoembryonic antigen concentrations in sera and bronchoalveolar lavage fluids of patients with pulmonary alveolar proteinosis. Respiration 1995;62:317–21.PubMedCrossRefGoogle Scholar
  103. 102.
    Minakata Y, Kida Y, Nakanishi H, Nishimoto T, Yukawa S. Change in cytokeratin 19 fragment level according to the severity of pulmonary alveolar proteinosis. Intern Med 2001;40:1024–7.PubMedCrossRefGoogle Scholar
  104. 103.
    Takahashi T, Munakata M, Suzuki I, Kawakami Y. Serum and bronchoalveolar fluid kl-6 levels in patients with pulmonary alveolar proteinosis. Am J Respir Crit Care Med 1998;158:1294–8.PubMedGoogle Scholar
  105. 104.
    Seymour JF, Presneill JJ, Schoch OD, Downie GH, Moore PE, Doyle IR, Vincent JM, Nakata K, Kitamura T, Langton D, et al. Therapeutic efficacy of granulocyte-macrophage colony-stimulating factor in patients with idiopathic acquired alveolar proteinosis. Am J Respir Crit Care Med 2001;163:524–31.PubMedGoogle Scholar
  106. 105.
    Kuroki Y, Takahashi H, Chiba H, Akino T. Surfactant proteins a and d: Disease markers. Biochim Biophys Acta 1998;1408:334–45.PubMedGoogle Scholar
  107. 106.
    Diaz JP, Manresa Presas F, Benasco C, Guardiola J, Munoz L, Clariana A. Response to surfactant activator (ambroxol) in alveolar proteinosis. Lancet 1984;1:1023.PubMedCrossRefGoogle Scholar
  108. 107.
    Ramirez-Rivera J, Schultz RB, Dutton RE. Pulmonary alveolar proteinosis: a new technique and rational for treatment. Arch Intern Med 1963;112:173–85.Google Scholar
  109. 108.
    Ramirez-Rivera J, Nyka W, McLaughlin J. Pulmonary alveolar proteinosis: diagnostic technics adn observations. N Engl J Med 1963;268:165–71.CrossRefGoogle Scholar
  110. 109.
    Du Bois RM, McAllister WA, Branthwaite MA. Alveolar proteinosis: diagnosis and treatment over a 10-year period. Thorax 1983;38:360–3.PubMedCrossRefGoogle Scholar
  111. 110.
    Kariman K, Kylstra JA, Spock A. Pulmonary alveolar proteinosis: prospective clinical experience in 23 patients for 15 years. Lung 1984;162:223–31.PubMedCrossRefGoogle Scholar
  112. 111.
    Hammon WE, McCaffree DR, Cucchiara AJ. A comparison of manual to mechanical chest percussion for clearance of alveolar material in patients with pulmonary alveolar proteinosis (phospholipidosis). Chest 1993;103:1409–12.PubMedCrossRefGoogle Scholar
  113. 112.
    Wasserman K, Blank N, Fletcher G. Lung lavage (alveolar washing) in alveolar proteinosis. Am J Med 1968;44:611–7.PubMedCrossRefGoogle Scholar
  114. 113.
    Ramirez J. Pulmonary alveolar proteinosis. Treatment by massive bronchopulmonary lavage. Arch Intern Med 1967;119:147–56.PubMedCrossRefGoogle Scholar
  115. 114.
    Kavuru MS, Popovich M. Therapeutic whole lung lavage: a stop-gap therapy for alveolar proteinosis. Chest 2002;122:1123–4.PubMedCrossRefGoogle Scholar
  116. 115.
    Cheng SL, Chang HT, Lau HP, Lee LN, Yang PC. Pulmonary alveolar proteinosis: treatment by bronchofiberscopic lobar lavage. Chest 2002;122:1480–5.PubMedCrossRefGoogle Scholar
  117. 116.
    Beccaria M, Luisetti M, Rodi G, Corsico A, Zoia MC, Colato S, Pochetti P, Braschi A, Pozzi E, Cerveri I. Long-term durable benefit after whole lung lavage in pulmonary alveolar proteinosis. Eur Respir J 2004;23:526–31.PubMedCrossRefGoogle Scholar
  118. 117.
    Ramirez J, Campbell GD. Pulmonary alveolar proteinosis. Endobronchial treatment. Ann Intern Med 1965;63:429–41.PubMedGoogle Scholar
  119. 118.
    Hoffman RM, Dauber JH, Rogers RM. Improvement in alveolar macrophage migration after therapeutic whole lung lavage in pulmonary alveolar proteinosis. Am Rev Respir Dis 1989;139:1030–2.PubMedGoogle Scholar
  120. 119.
    Bury T, Corhay JL, Saint-Remy P, Radermecker M. Alveolar proteinosis: restoration of the function of the alveolar macrophages after therapeutic lavage. Rev Mal Respir 1989;6:373–5.PubMedGoogle Scholar
  121. 120.
    Tsuchiyama T, Hayasaka S, Sasaki J, Nakagawa K, Fujino N, Yoshinaga T, Kiyama T, Kinuwaki E, Ohtsuka Y. pulmonary alveolar proteinosis with coincidental thoracic injury. Successful bronchoalveolar lavage with a modified fiber optic bronchoscope. Nihon Kyobu Shikkan Gakkai zasshi 1995;33:538–42.PubMedGoogle Scholar
  122. 121.
    Edis EC, Tabakoglu E, Caglar T, Hatipoglu ON, Cevirme L, Alagol A. Treatment of a primary pulmonary alveolar proteinosis case with severe hypoxaemia by using segmental lavage technique. Ann Acad Med, Singapore 2007;36:871–2.Google Scholar
  123. 122.
    Demello DE, Lin Z. Pulmonary alveolar proteinosis: a review. Pediatr Pathol Mol Med 2001;20:413–32.PubMedCrossRefGoogle Scholar
  124. 123.
    Hamvas A, Nogee LM, Mallory GB Jr., Spray TL, Huddleston CB, August A, Dehner LP, de Mello DE, Moxley M, Nelson R, et al. Lung transplantation for treatment of infants with surfactant protein b deficiency. J Pediatr 1997;130:231–9.PubMedCrossRefGoogle Scholar
  125. 124.
    Venkateshiah SB, Yan TD, Bonfield TL, Thomassen MJ, Meziane M, Czich C, Kavuru MS. An open-label trial of granulocyte macrophage colony stimulating factor therapy for moderate symptomatic pulmonary alveolar proteinosis. Chest 2006;130:227–37.PubMedCrossRefGoogle Scholar
  126. 125.
    Arai T, Hamano E, Inoue Y, Ryushi T, Nukiwa T, Sakatani M, Nakata K. Serum neutralizing capacity of gm-csf reflects disease severity in a patient with pulmonary alveolar proteinosis successfully treated with inhaled gm-csf. Respir Med 2004;98:1227–30.PubMedCrossRefGoogle Scholar
  127. 126.
    Kavuru MS, Bonfield TL, Thomassen MJ. Plasmapheresis, gm-csf, and alveolar proteinosis. Am J Respir Crit Care Med 2003;167:1036; author reply 1036–1037.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Bruce C. Trapnell
    • 1
  • Koh Nakata
    • 2
  • Yoshikazu Inoue
    • 3
  1. 1.Department of Pediatrics and Department of Internal MedicineUniversity of Cincinnati School of Medicine and Cincinnati Children’s Hospital Medical CenterCincinnatiUSA
  2. 2.Bioscience Medical Research CenterNiigata University Medical HospitalNiigataJapan
  3. 3.Department of Diffuse Lung Diseases and Respiratory FailureNational Hospital Organization Kinki-Chuo Chest Medical CenterOsakaJapan

Personalised recommendations