Advertisement

Cystic Fibrosis

  • André M. Cantin
Chapter
Part of the Respiratory Medicine book series (RM)

Abstract

Cystic fibrosis (CF) remains the most common lethal disease associated with a single gene defect in populations of European descent. The gene that prevents CF is the cystic fibrosis transmembrane conductance regulator (CFTR), an ATP-dependent anion channel expressed mostly at the apical surface of epithelia lined with mucus secretions. CF results from a deficiency in CFTR amount and/or function. Fortunately, the clinical situation is rapidly improving for CF patients and their families. The mean age of survival has markedly increased in recent years. These improvements are attributable to the high quality of care that has evolved in the multidisciplinary treatment of secondary defects such as lung infections and malabsorption. Furthermore, the hope of finding a cure or control for individuals with CF is buoyed up by novel pharmacological approaches that directly address the primary defect in CFTR function. This review will examine various aspects of CF including its epidemiology, genetic basis and molecular pathogenesis, animal models, clinical presentation, diagnostic approaches, conventional treatments, and future therapeutic avenues to correct dysfunctional CFTR.

Keywords

bronchiectasis airway infection inflammation mucus hereditary lung disease CFTR epithelium pancreatic insufficiency 

References

  1. 1.
    Welsh MJ, Ramsey BW, Accurso FJ, Cutting GR. Cystic Fibrosis. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds.) The Metabolic and Molecular Bases of Inherited Disease. New York: McGraw-Hill, 2001; 5121–88.Google Scholar
  2. 2.
    Tizzano EF, Buchwald M. CFTR expression and organ damage in cystic fibrosis. Ann Intern Med 1995;123:305–8.PubMedGoogle Scholar
  3. 3.
    Tizzano EF, Silver MM, Chitayat D, Benichou JC, Buchwald M. Differential cellular expression of cystic fibrosis transmembrane regulator in human reproductive tissues. Clues for the infertility in patients with cystic fibrosis. Am J Pathol 1994;144:906–14.PubMedGoogle Scholar
  4. 4.
    Flume PA, O’Sullivan BP, Robinson KA, Goss CH, Mogayzel PJ Jr., Willey-Courand DB, Bujan J, Finder J, Lester M, Quittell L, et al. Cystic fibrosis pulmonary guidelines: Chronic medications for maintenance of lung health. Am J Respir Crit Care Med 2007;176:957–69.PubMedGoogle Scholar
  5. 5.
    Riordan JR. CFTR function and prospects for therapy. Annu Rev Biochem 2008;77:701–26.PubMedGoogle Scholar
  6. 6.
    Scriver CR. Human genetics: Lessons from Quebec populations. Annu Rev Genomics Hum Genet 2001;2:69–101.PubMedGoogle Scholar
  7. 7.
    Schwartz M, Sorensen N, Brandt NJ, Hogdall E, Holm T. High incidence of cystic fibrosis on the Faroe islands: A molecular and genealogical study. Hum Genet 1995;95:703–6.PubMedGoogle Scholar
  8. 8.
    Lerer I, Cohen S, Chemke M, Sanilevich A, Rivlin J, Golan A, Yahav J, Friedman A, Abeliovich D. The frequency of the delta F508 mutation on cystic fibrosis chromosomes in Israeli families: Correlation to CF haplotypes in Jewish communities and Arabs. Hum Genet 1990;85:416–17.PubMedGoogle Scholar
  9. 9.
    Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, Buchwald M, Tsui LC. Identification of the cystic fibrosis gene: Genetic analysis. Science 1989;245:1073–80.PubMedGoogle Scholar
  10. 10.
    Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL, et al. Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA [published erratum appears in Science 1989 Sep 29;245(4925):1437]. Science 1989;245:1066–73.PubMedGoogle Scholar
  11. 11.
    Joo NS, Irokawa T, Robbins RC, Wine JJ. Hyposecretion, not hyperabsorption, is the basic defect of cystic fibrosis airway glands. J Biol Chem 2006;281:7392–8.PubMedGoogle Scholar
  12. 12.
    Matsui H, Grubb BR, Tarran R, Randell SH, Gatzy JT, Davis CW, Boucher RC. Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell 1998;95:1005–15.PubMedGoogle Scholar
  13. 13.
    Quinton PM, Reddy MM. Control of CFTR chloride conductance by ATP levels through non-hydrolytic binding. Nature 1992;360:79–81.PubMedGoogle Scholar
  14. 14.
    Kunzelmann K, Kathofer S, Greger R. Na+ and Cl– conductances in airway epithelial cells: Increased Na+ conductance in cystic fibrosis. Pflugers Arch 1995;431:1–9.PubMedGoogle Scholar
  15. 15.
    Mall M, Bleich M, Greger R, Schreiber R, Kunzelmann K. The amiloride-inhibitable Na+ conductance is reduced by the cystic fibrosis transmembrane conductance regulator in normal but not in cystic fibrosis airways. J Clin Invest 1998;102:15–21.PubMedGoogle Scholar
  16. 16.
    Mall M, Grubb BR, Harkema JR, O’Neal WK, Boucher RC. Increased airway epithelial Na(+) absorption produces cystic fibrosis-like lung disease in mice. Nat Med 2004;10:487–93.PubMedGoogle Scholar
  17. 17.
    Quinton PM. The neglected ion: HCO3. Nat Med 2001;7:292–3.PubMedGoogle Scholar
  18. 18.
    Kopelman H, Corey M, Gaskin K, Durie P, Weizman Z, Forstner G. Impaired chloride secretion, as well as bicarbonate secretion, underlies the fluid secretory defect in the cystic fibrosis pancreas. Gastroenterology 1988;95:349–55.PubMedGoogle Scholar
  19. 19.
    Poulsen JH, Machen TE. HCO3-dependent pHi regulation in tracheal epithelial cells. Pflugers Arch 1996;432:546–54.PubMedGoogle Scholar
  20. 20.
    Poulsen JH, Fischer H, Illek B, Machen TE. Bicarbonate conductance and pH regulatory capability of cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci USA 1994;91:5340–4.PubMedGoogle Scholar
  21. 21.
    Welsh MJ, Smith AE. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 1993;73:1251–4.PubMedGoogle Scholar
  22. 22.
    Wilschanski M, Durie PR. Patterns of GI disease in adulthood associated with mutations in the CFTR gene. Gut 2007;56:1153–63.PubMedGoogle Scholar
  23. 23.
    Wilschanski M, Zielenski J, Markiewicz D, Tsui LC, Corey M, Levison H, Durie PR. Correlation of sweat chloride concentration with classes of the cystic fibrosis transmembrane conductance regulator gene mutations. J Pediatr 1995;127:705–10.PubMedGoogle Scholar
  24. 24.
    Ramalho AS, Beck S, Meyer M, Penque D, Cutting GR, Amaral MD. Five percent of normal cystic fibrosis transmembrane conductance regulator mRNA ameliorates the severity of pulmonary disease in cystic fibrosis. Am J Respir Cell Mol Biol 2002;27:619–27.PubMedGoogle Scholar
  25. 25.
    Haardt M, Benharouga M, Lechardeur D, Kartner N, Lukacs GL. C-terminal truncations destabilize the cystic fibrosis transmembrane conductance regulator without impairing its biogenesis. A novel class of mutation. J Biol Chem 1999;274:21873–7.PubMedGoogle Scholar
  26. 26.
    Zielenski J. Genotype and phenotype in cystic fibrosis. Respiration 2000;67:117–33.PubMedGoogle Scholar
  27. 27.
    Kosorok MR, Zeng L, West SE, Rock MJ, Splaingard ML, Laxova A, Green CG, Collins J, Farrell PM. Acceleration of lung disease in children with cystic fibrosis after Pseudomonas aeruginosa acquisition. Pediatr Pulmonol 2001;32:277–87.PubMedGoogle Scholar
  28. 28.
    Dorfman R, Sandford A, Taylor C, Huang B, Frangolias D, Wang Y, Sang R, Pereira L, Sun L, Berthiaume Y, et al. Complex two-gene modulation of lung disease severity in children with cystic fibrosis. J Clin Invest 2008;118:1040–9.PubMedGoogle Scholar
  29. 29.
    Armstrong DS, Grimwood K, Carlin JB, Carzino R, Gutierrez JP, Hull J, Olinsky A, Phelan EM, Robertson CF, Phelan PD. Lower airway inflammation in infants and young children with cystic fibrosis. Am J Respir Crit Care Med 1997;156:1197–204.PubMedGoogle Scholar
  30. 30.
    Khan TZ, Wagener JS, Bost T, Martinez J, Accurso FJ, Riches DW. Early pulmonary inflammation in infants with cystic fibrosis [see comments]. Am J Respir Crit Care Med 1995;151:1075–82.PubMedGoogle Scholar
  31. 31.
    Armstrong DS, Hook SM, Jamsen KM, Nixon GM, Carzino R, Carlin JB, Robertson CF, Grimwood K. Lower airway inflammation in infants with cystic fibrosis detected by newborn screening. Pediatr Pulmonol 2005;40:500–10.PubMedGoogle Scholar
  32. 32.
    Muhlebach MS, Stewart PW, Leigh MW, Noah TL. Quantitation of inflammatory responses to bacteria in young cystic fibrosis and control patients. Am J Respir Crit Care Med 1999;160:186–91.PubMedGoogle Scholar
  33. 33.
    McMorran BJ, Patat SA, Carlin JB, Grimwood K, Jones A, Armstrong DS, Galati JC, Cooper PJ, Byrnes CA, Francis PW, et al. Novel neutrophil-derived proteins in bronchoalveolar lavage fluid indicate an exaggerated inflammatory response in pediatric cystic fibrosis patients. Clin Chem 2007;53:1782–91.PubMedGoogle Scholar
  34. 34.
    DiMango E, Ratner AJ, Bryan R, Tabibi S, Prince A. Activation of NF-kappaB by adherent Pseudomonas aeruginosa in normal and cystic fibrosis respiratory epithelial cells. J Clin Invest 1998;101:2598–605.PubMedGoogle Scholar
  35. 35.
    Venkatakrishnan A, Stecenko AA, King G, Blackwell TR, Brigham KL, Christman JW, Blackwell TS. Exaggerated activation of nuclear factor-kappaB and altered IkappaB-beta processing in cystic fibrosis bronchial epithelial cells. Am J Respir Cell Mol Biol 2000;23:396–403.PubMedGoogle Scholar
  36. 36.
    Weber AJ, Soong G, Bryan R, Saba S, Prince A. Activation of NF-kappaB in airway epithelial cells is dependent on CFTR trafficking and Cl- channel function. Am J Physiol Lung Cell Mol Physiol 2001;281:L71–L8.PubMedGoogle Scholar
  37. 37.
    Becker MN, Sauer MS, Muhlebach MS, Hirsh AJ, Wu Q, Verghese MW, Randell SH. Cytokine secretion by cystic fibrosis airway epithelial cells. Am J Respir Crit Care Med 2004;169:645–53.PubMedGoogle Scholar
  38. 38.
    Perez A, Issler AC, Cotton CU, Kelley TJ, Verkman AS, Davis PB. CFTR inhibition mimics the cystic fibrosis inflammatory profile. Am J Physiol Lung Cell Mol Physiol 2007;292:L383–L95.PubMedGoogle Scholar
  39. 39.
    Zabner J, Smith JJ, Karp PH, Widdicombe JH, Welsh MJ. Loss of CFTR chloride channels alters salt absorption by cystic fibrosis airway epithelia in vitro. Mol Cell 1998;2:397–403.PubMedGoogle Scholar
  40. 40.
    Bals R, Weiner DJ, Wilson JM. The innate immune system in cystic fibrosis lung disease. J Clin Invest 1999;103:303–7.PubMedGoogle Scholar
  41. 41.
    Smith JJ, Travis SM, Greenberg EP, Welsh MJ. Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid [published erratum appears in Cell 1996 Oct 18;87(2):following 355]. Cell 1996;85:229–36.PubMedGoogle Scholar
  42. 42.
    Jayaraman S, Song Y, Vetrivel L, Shankar L, Verkman AS. Noninvasive in vivo fluorescence measurement of airway-surface liquid depth, salt concentration, and pH. J Clin Invest 2001;107:317–24.PubMedGoogle Scholar
  43. 43.
    Pier GB, Grout M, Zaidi TS, Olsen JC, Johnson LG, Yankaskas JR, Goldberg JB. Role of mutant CFTR in hypersusceptibility of cystic fibrosis patients to lung infections. Science 1996;271:64–7.PubMedGoogle Scholar
  44. 44.
    Kowalski MP, Dubouix-Bourandy A, Bajmoczi M, Golan DE, Zaidi T, Coutinho-Sledge YS, Gygi MP, Gygi SP, Wiemer EA, Pier GB. Host resistance to lung infection mediated by major vault protein in epithelial cells. Science 2007;317:130–2.PubMedGoogle Scholar
  45. 45.
    Chroneos ZC, Wert SE, Livingston JL, Hassett DJ, Whitsett JA. Role of cystic fibrosis transmembrane conductance regulator in pulmonary clearance of Pseudomonas aeruginosa in vivo. J Immunol 2000;165:3941–50.PubMedGoogle Scholar
  46. 46.
    Cowley EA, Linsdell P. Oxidant stress stimulates anion secretion from the human airway epithelial cell line Calu-3: Implications for cystic fibrosis lung disease. J Physiol 2002;543:201–9.PubMedGoogle Scholar
  47. 47.
    Gabriel SE, Brigman KN, Koller BH, Boucher RC, Stutts MJ. Cystic fibrosis heterozygote resistance to cholera toxin in the cystic fibrosis mouse model. Science 1994;266:107–9.PubMedGoogle Scholar
  48. 48.
    Worlitzsch D, Tarran R, Ulrich M, Schwab U, Cekici A, Meyer KC, Birrer P, Bellon G, Berger J, Weiss T, et al. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 2002;109:317–25.PubMedGoogle Scholar
  49. 49.
    Choi JY, Muallem D, Kiselyov K, Lee MG, Thomas PJ, Muallem S. Aberrant CFTR-dependent HCO3- transport in mutations associated with cystic fibrosis. Nature 2001;410:94–7.PubMedGoogle Scholar
  50. 50.
    Thornton DJ, Rousseau K, McGuckin MA. Structure and Function of the Polymeric Mucins in Airways Mucus. Annu Rev Physiol 2008;70:459–86.PubMedGoogle Scholar
  51. 51.
    Voynow JA, Gendler SJ, Rose MC. Regulation of mucin genes in chronic inflammatory airway diseases. Am J Respir Cell Mol Biol 2006;34:661–5.PubMedGoogle Scholar
  52. 52.
    Shao MX, Nakanaga T, Nadel JA. Cigarette Smoke Induces MUC5AC Mucin Overproduction via Tumor Necrosis Factor-{alpha} Converting Enzyme in Human Airway Epithelial (NCI-H292) Cells. Am J Physiol Lung Cell Mol Physiol 2004;287(2):L420–L27.PubMedGoogle Scholar
  53. 53.
    Takeyama K, Dabbagh K, Jeong Shim J, Dao-Pick T, Ueki IF, Nadel JA. Oxidative stress causes mucin synthesis via transactivation of epidermal growth factor receptor: Role of neutrophils. J Immunol 2000;164:1546–52.PubMedGoogle Scholar
  54. 54.
    Saetta M, Turato G, Baraldo S, Zanin A, Braccioni F, Mapp CE, Maestrelli P, Cavallesco G, Papi A, Fabbri LM. Goblet cell hyperplasia and epithelial inflammation in peripheral airways of smokers with both symptoms of chronic bronchitis and chronic airflow limitation. Am J Respir Crit Care Med 2000;161:1016–21.PubMedGoogle Scholar
  55. 55.
    Zheng S, Byrd AS, Fischer BM, Grover AR, Ghio AJ, Voynow JA. Regulation of MUC5AC expression by NAD(P)H:quinone oxidoreductase 1. Free Radic Biol Med 2007;42:1398–408.PubMedGoogle Scholar
  56. 56.
    Voynow JA, Fischer BM, Malarkey DE, Burch LH, Wong T, Longphre M, Ho SB, Foster WM. Neutrophil elastase induces mucus cell metaplasia in mouse lung. Am J Physiol Lung Cell Mol Physiol 2004;287:L1293–L302.PubMedGoogle Scholar
  57. 57.
    Voynow JA, Young LR, Wang Y, Horger T, Rose MC, Fischer BM. Neutrophil elastase increases MUC5AC mRNA and protein expression in respiratory epithelial cells. Am J Physiol 1999;276:L835–L43.PubMedGoogle Scholar
  58. 58.
    Cantin AM. Potential for antioxidant therapy of cystic fibrosis. Curr Opin Pulm Med 2004;10:531–6.PubMedGoogle Scholar
  59. 59.
    Henke MO, Renner A, Huber RM, Seeds MC, Rubin BK. MUC5AC and MUC5B mucins are decreased in cystic fibrosis airway secretions. Am J Respir Cell Mol Biol 2004;31:86–91.PubMedGoogle Scholar
  60. 60.
    Thornton DJ, Sheehan JK, Lindgren H, Carlstedt I. Mucus glycoproteins from cystic fibrotic sputum. Macromolecular properties and structural ‘architecture’. Biochem J 1991;276(Pt 3):667–75.PubMedGoogle Scholar
  61. 61.
    Matsui H, Verghese MW, Kesimer M, Schwab UE, Randell SH, Sheehan JK, Grubb BR, Boucher RC. Reduced three-dimensional motility in dehydrated airway mucus prevents neutrophil capture and killing bacteria on airway epithelial surfaces. J Immunol 2005;175:1090–9.PubMedGoogle Scholar
  62. 62.
    Vishwanath S, Ramphal R, Guay CM, DesJardins D, Pier GB. Respiratory-mucin inhibition of the opsonophagocytic killing of Pseudomonas aeruginosa. Infect Immun 1988;56:2218–22.PubMedGoogle Scholar
  63. 63.
    Cantin AM, Fournier A, Leduc R. Human leukocyte elastase and cystic fibrosis. In: Lendeckel U, Hooper NM (eds.) Proteases in Tissue Remodelling of Lung and Heart. New York: Kluwer Academic/Plenum Publishers, 2003; 1–33.Google Scholar
  64. 64.
    McElvaney NG, Hubbard RC, Birrer P, Chernick MS, Caplan DB, Frank MM, Crystal RG. Aerosol alpha 1-antitrypsin treatment for cystic fibrosis. Lancet 1991;337:392–4.PubMedGoogle Scholar
  65. 65.
    McElvaney NG, Nakamura H, Birrer P, Hebert CA, Wong WL, Alphonso M, Baker JB, Catalano MA, Crystal RG. Modulation of airway inflammation in cystic fibrosis. In vivo suppression of interleukin-8 levels on the respiratory epithelial surface by aerosolization of recombinant secretory leukoprotease inhibitor. J Clin Invest 1992;90:1296–301.PubMedGoogle Scholar
  66. 66.
    Cooley J, McDonald B, Accurso FJ, Crouch EC, Remold-O’Donnell E. Patterns of neutrophil serine protease-dependent cleavage of surfactant protein D in inflammatory lung disease. J Leukoc Biol 2008;83:946–55.PubMedGoogle Scholar
  67. 67.
    Hirche TO, Crouch EC, Espinola M, Brokelman TJ, Mecham RP, DeSilva N, Cooley J, Remold-O’Donnell E, Belaaouaj A. Neutrophil serine proteinases inactivate surfactant protein D by cleaving within a conserved subregion of the carbohydrate recognition domain. J Biol Chem 2004;279:27688–98.PubMedGoogle Scholar
  68. 68.
    Berger M, Sorensen RU, Tosi MF, Dearborn DG, Doring G. Complement receptor expression on neutrophils at an inflammatory site, the Pseudomonas-infected lung in cystic fibrosis. J Clin Invest 1989;84:1302–13.PubMedGoogle Scholar
  69. 69.
    Tosi MF, Zakem H, Berger M. Neutrophil elastase cleaves C3bi on opsonized pseudomonas as well as CR1 on neutrophils to create a functionally important opsonin receptor mismatch. J Clin Invest 1990;86:300–8.PubMedGoogle Scholar
  70. 70.
    Suter S, Schaad UB, Tegner H, Ohlsson K, Desgrandchamps D, Waldvogel FA. Levels of free granulocyte elastase in bronchial secretions from patients with cystic fibrosis: Effect of antimicrobial treatment against Pseudomonas aeruginosa. J Infect Dis 1986;153:902–9.PubMedGoogle Scholar
  71. 71.
    Freedman SD, Blanco PG, Zaman MM, Shea JC, Ollero M, Hopper IK, Weed DA, Gelrud A, Regan MM, Laposata M, et al. Association of cystic fibrosis with abnormalities in fatty acid metabolism. N Engl J Med 2004;350:560–9.PubMedGoogle Scholar
  72. 72.
    Beharry S, Ackerley C, Corey M, Kent G, Heng YM, Christensen H, Luk C, Yantiss RK, Nasser IA, Zaman M, et al. Long-term docosahexaenoic acid therapy in a congenic murine model of cystic fibrosis. Am J Physiol Gastrointest Liver Physiol 2007;292:G839–G48.PubMedGoogle Scholar
  73. 73.
    Guilbault C, De Sanctis JB, Wojewodka G, Saeed Z, Lachance C, Skinner TA, Vilela RM, Kubow S, Lands LC, Hajduch M, et al. Fenretinide corrects newly found ceramide deficiency in cystic fibrosis. Am J Respir Cell Mol Biol 2008;38:47–56.PubMedGoogle Scholar
  74. 74.
    Grassme H, Jendrossek V, Riehle A, von Kurthy G, Berger J, Schwarz H, Weller M, Kolesnick R, Gulbins E. Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nat Med 2003;9:322–30.PubMedGoogle Scholar
  75. 75.
    Saeed Z, Guilbault C, De Sanctis JB, Henri J, Marion D, St-Arnaud R, Radzioch D. Fenretinide prevents the development of osteoporosis in Cftr-KO mice. J Cyst Fibros 2008;7:222–30.PubMedGoogle Scholar
  76. 76.
    Koller BH, Kim HS, Latour AM, Brigman K, Boucher RC Jr., Scambler P, Wainwright B, Smithies O. Toward an animal model of cystic fibrosis: Targeted interruption of exon 10 of the cystic fibrosis transmembrane regulator gene in embryonic stem cells. Proc Natl Acad Sci USA 1991;88:10730–4.PubMedGoogle Scholar
  77. 77.
    Guilbault C, Saeed Z, Downey GP, Radzioch D. Cystic fibrosis mouse models. Am J Respir Cell Mol Biol 2007;36:1–7.PubMedGoogle Scholar
  78. 78.
    Zhou L, Dey CR, Wert SE, DuVall MD, Frizzell RA, Whitsett JA. Correction of lethal intestinal defect in a mouse model of cystic fibrosis by human CFTR. Science 1994;266:1705–8.PubMedGoogle Scholar
  79. 79.
    Rogers CS, Hao Y, Rokhlina T, Samuel M, Stoltz DA, Li Y, Petroff E, Vermeer DW, Kabel AC, Yan Z, et al. Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer. J Clin Invest 2008;118:1571–7.PubMedGoogle Scholar
  80. 80.
    Andersen DH. Cystic fibrosis of the pancreas and its relation to celiac disease. Clinical and pathologic study. Am J Dis Child 1938;56:344–99.Google Scholar
  81. 81.
    Di Sant’Agnese PA, Darling RC, Perera GA, Shea E. Abnormal electrolyte composition of sweat in cystic fibrosis of the pancreas; clinical significance and relationship to the disease. Pediatrics 1953;12:549–63.PubMedGoogle Scholar
  82. 82.
    Rosenstein BJ, Cutting GR. The diagnosis of cystic fibrosis: A consensus statement. Cystic Fibrosis Foundation Consensus Panel. J Pediatr 1998;132:589–95.PubMedGoogle Scholar
  83. 83.
    Gibson LE, Cooke RE. A test for concentration of electrolytes in sweat in cystic fibrosis of the pancreas utilizing pilocarpine by iontophoresis. Pediatrics 1959;23:545–9.PubMedGoogle Scholar
  84. 84.
    Davis PB. Cystic fibrosis since 1938. Am J Respir Crit Care Med 2006;173:475–82.PubMedGoogle Scholar
  85. 85.
    Comeau AM, Accurso FJ, White TB, Campbell PW 3rd, Hoffman G, Parad RB, Wilfond BS, Rosenfeld M, Sontag MK, Massie J, et al. Guidelines for implementation of cystic fibrosis newborn screening programs: Cystic fibrosis foundation workshop report. Pediatrics 2007;119:e495–e518.PubMedGoogle Scholar
  86. 86.
    Flume PA, Yankaskas JR, Ebeling M, Hulsey T, Clark LL. Massive hemoptysis in cystic fibrosis. Chest 2005;128:729–38.PubMedGoogle Scholar
  87. 87.
    Lamb D, Reid L. The tracheobronchial submucosal glands in cystic fibrosis: A qualitative and quantitative histochemical study. Br J Dis Chest 1972;66:239–47.PubMedGoogle Scholar
  88. 88.
    Mayer-Hamblett N, Rosenfeld M, Emerson J, Goss CH, Aitken ML. Developing cystic fibrosis lung transplant referral criteria using predictors of 2-year mortality. Am J Respir Crit Care Med 2002;166:1550–5.PubMedGoogle Scholar
  89. 89.
    Flume PA, Strange C, Ye X, Ebeling M, Hulsey T, Clark LL. Pneumothorax in cystic fibrosis. Chest 2005;128:720–8.PubMedGoogle Scholar
  90. 90.
    Schuster SR, McLaughlin FJ, Matthews WJ Jr., Strieder DJ, Khaw KT, Shwachman H. Management of pneumothorax in cystic fibrosis. J Pediatr Surg 1983;18:492–7.PubMedGoogle Scholar
  91. 91.
    Goss CH, Burns JL. Exacerbations in cystic fibrosis. 1: Epidemiology and pathogenesis. Thorax 2007;62:360–7.PubMedGoogle Scholar
  92. 92.
    Isles A, Maclusky I, Corey M, Gold R, Prober C, Fleming P, Levison H. Pseudomonas cepacia infection in cystic fibrosis: An emerging problem. J Pediatr 1984;104:206–10.PubMedGoogle Scholar
  93. 93.
    Thomassen MJ, Demko CA, Doershuk CF, Stern RC, Klinger JD. Pseudomonas cepacia: Decrease in colonization in patients with cystic fibrosis. Am Rev Respir Dis 1986;134:669–71.PubMedGoogle Scholar
  94. 94.
    LiPuma JJ, Dasen SE, Nielson DW, Stern RC, Stull TL. Person-to-person transmission of Pseudomonas cepacia between patients with cystic fibrosis. Lancet 1990;336:1094–6.PubMedGoogle Scholar
  95. 95.
    Govan JR, Hughes JE, Vandamme P. Burkholderia cepacia: Medical, taxonomic and ecological issues. J Med Microbiol 1996;45:395–407.PubMedGoogle Scholar
  96. 96.
    Zahariadis G, Levy MH, Burns JL. Cepacia-like syndrome caused by Burkholderia multivorans. Can J Infect Dis 2003;14:123–5.PubMedGoogle Scholar
  97. 97.
    Burns JL, Emerson J, Stapp JR, Yim DL, Krzewinski J, Louden L, Ramsey BW, Clausen CR. Microbiology of sputum from patients at cystic fibrosis centers in the United States. Clin Infect Dis 1998;27:158–63.PubMedGoogle Scholar
  98. 98.
    Stevens DA, Moss RB, Kurup VP, Knutsen AP, Greenberger P, Judson MA, Denning DW, Crameri R, Brody AS, Light M, et al. Allergic bronchopulmonary aspergillosis in cystic fibrosis–state of the art: Cystic fibrosis foundation consensus conference. Clin Infect Dis 2003;37(Suppl 3):S225–S64.PubMedGoogle Scholar
  99. 99.
    Mitchell TA, Hamilos DL, Lynch DA, Newell JD. Distribution and severity of bronchiectasis in allergic bronchopulmonary aspergillosis (ABPA). J Asthma 2000;37:65–72.PubMedGoogle Scholar
  100. 100.
    Saiman L, Siegel J. Infection control in cystic fibrosis. Clin Microbiol Rev 2004;17:57–71.PubMedGoogle Scholar
  101. 101.
    Vidal V, Therasse E, Berthiaume Y, Bommart S, Giroux MF, Oliva VL, Abrahamowicz M, du Berger R, Jeanneret A,, Soulez G. Bronchial artery embolization in adults with cystic fibrosis: Impact on the clinical course and survival. J Vasc Interv Radiol 2006;17:953–8.PubMedGoogle Scholar
  102. 102.
    Gysin C, Alothman GA, Papsin BC. Sinonasal disease in cystic fibrosis: Clinical characteristics, diagnosis, and management. Pediatr Pulmonol 2000;30:481–9.PubMedGoogle Scholar
  103. 103.
    Woodworth BA, Ahn C, Flume PA, Schlosser RJ. The delta F508 mutation in cystic fibrosis and impact on sinus development. Am J Rhinol 2007;21:122–7.PubMedGoogle Scholar
  104. 104.
    Dorlochter L, Roksund O, Helgheim V, Rosendahl K, Fluge G. Resting energy expenditure and lung disease in cystic fibrosis. J Cyst Fibros 2002;1:131–6.PubMedGoogle Scholar
  105. 105.
    Cerami A, Ikeda Y, Le Trang N, Hotez PJ, Beutler B. Weight loss associated with an endotoxin-induced mediator from peritoneal macrophages: The role of cachectin (tumor necrosis factor. Immunol Lett 1985;11:173–7.PubMedGoogle Scholar
  106. 106.
    Cantin AM, White TB, Cross CE, Forman HJ, Sokol RJ, Borowitz D. Antioxidants in cystic fibrosis. Free Radic Biol Med 2007;42:15–31.PubMedGoogle Scholar
  107. 107.
    Ledson MJ, Tran J, Walshaw MJ. Prevalence and mechanisms of gastro-oesophageal reflux in adult cystic fibrosis patients. J R Soc Med 1998;91:7–9.PubMedGoogle Scholar
  108. 108.
    D’Ovidio F, Singer LG, Hadjiliadis D, Pierre A, Waddell TK, de Perrot M, Hutcheon M, Miller L, Darling G, Keshavjee S. Prevalence of gastroesophageal reflux in end-stage lung disease candidates for lung transplant. Ann Thorac Surg 2005;80:1254–60.PubMedGoogle Scholar
  109. 109.
    D’Ovidio F, Mura M, Tsang M, Waddell TK, Hutcheon MA, Singer LG, Hadjiliadis D, Chaparro C, Gutierrez C, Pierre A, et al. Bile acid aspiration and the development of bronchiolitis obliterans after lung transplantation. J Thorac Cardiovasc Surg 2005;129:1144–52.PubMedGoogle Scholar
  110. 110.
    Cantu E 3rd, Appel JZ 3rd, Hartwig MG, Woreta H, Green C, Messier R, Palmer SM, Davis RD Jr. J. Maxwell Chamberlain Memorial Paper. Early fundoplication prevents chronic allograft dysfunction in patients with gastroesophageal reflux disease. Ann Thorac Surg 2004;78:1142–51 (discussion 1142–51).PubMedGoogle Scholar
  111. 111.
    Bishop MD, Freedman SD, Zielenski J, Ahmed N, Dupuis A, Martin S, Ellis L, Shea J, Hopper I, Corey M, et al. The cystic fibrosis transmembrane conductance regulator gene and ion channel function in patients with idiopathic pancreatitis. Hum Genet 2005;118:372–81.PubMedGoogle Scholar
  112. 112.
    Costa M, Potvin S, Berthiaume Y, Gauthier L, Jeanneret A, Lavoie A, Levesque R, Chiasson J, Rabasa-Lhoret R. Diabetes: A major co-morbidity of cystic fibrosis. Diabetes Metab 2005;31:221–32.PubMedGoogle Scholar
  113. 113.
    Costa M, Potvin S, Hammana I, Malet A, Berthiaume Y, Jeanneret A, Lavoie A, Levesque R, Perrier J, Poisson D, et al. Increased glucose excursion in cystic fibrosis and its association with a worse clinical status. J Cyst Fibros 2007;6:376–83.PubMedGoogle Scholar
  114. 114.
    Bismuth E, Laborde K, Taupin P, Velho G, Ribault V, Jennane F, Grasset E, Sermet I, de Blic J, Lenoir G, et al. Glucose tolerance and insulin secretion, morbidity, and death in patients with cystic fibrosis. J Pediatr 2008;152(540–545):545, e541.Google Scholar
  115. 115.
    Moran A, Hardin D, Rodman D, Allen HF, Beall RJ, Borowitz D, Brunzell C, Campbell PW 3rd, Chesrown SE, Duchow C, et al. Diagnosis, screening and management of cystic fibrosis related diabetes mellitus: A consensus conference report. Diabetes Res Clin Pract 1999;45:61–73.PubMedGoogle Scholar
  116. 116.
    Milla CE, Billings J, Moran A. Diabetes is associated with dramatically decreased survival in female but not male subjects with cystic fibrosis. Diabetes Care 2005;28:2141–4.PubMedGoogle Scholar
  117. 117.
    Sokol RJ, Durie PR. Recommendations for management of liver and biliary tract disease in cystic fibrosis. Cystic fibrosis foundation hepatobiliary disease consensus group. J Pediatr Gastroenterol Nutr 1999;28(Suppl 1):S1–S13.PubMedGoogle Scholar
  118. 118.
    Borowitz D, Durie PR, Clarke LL, Werlin SL, Taylor CJ, Semler J, De Lisle RC, Lewindon P, Lichtman SM, Sinaasappel M, et al. Gastrointestinal outcomes and confounders in cystic fibrosis. J Pediatr Gastroenterol Nutr 2005;41:273–85.PubMedGoogle Scholar
  119. 119.
    Dray X, Bienvenu T, Desmazes-Dufeu N, Dusser D, Marteau P, Hubert D. Distal intestinal obstruction syndrome in adults with cystic fibrosis. Clin Gastroenterol Hepatol 2004;2:498–503.PubMedGoogle Scholar
  120. 120.
    Smyth RL, van Velzen D, Smyth AR, Lloyd DA, Heaf DP. Strictures of ascending colon in cystic fibrosis and high-strength pancreatic enzymes. Lancet 1994;343:85–6.PubMedGoogle Scholar
  121. 121.
    Maisonneuve P, FitzSimmons SC, Neglia JP, Campbell PW 3rd, Lowenfels AB. Cancer risk in nontransplanted and transplanted cystic fibrosis patients: A 10-year study. J Natl Cancer Inst 2003;95:381–7.PubMedGoogle Scholar
  122. 122.
    Neglia JP, FitzSimmons SC, Maisonneuve P, Schoni MH, Schoni-Affolter F, Corey M, Lowenfels AB. The risk of cancer among patients with cystic fibrosis. Cystic fibrosis and cancer study group. N Engl J Med 1995;332:494–9.PubMedGoogle Scholar
  123. 123.
    Anguiano A, Oates RD, Amos JA, Dean M, Gerrard B, Stewart C, Maher TA, White MB, Milunsky A. Congenital bilateral absence of the vas deferens. A primarily genital form of cystic fibrosis. JAMA 1992;267:1794–7.PubMedGoogle Scholar
  124. 124.
    Dahl M, Tybjaerg-Hansen A, Wittrup HH, Lange P, Nordestgaard BG. Cystic fibrosis Delta F508 heterozygotes, smoking, and reproduction: Studies of 9141 individuals from a general population sample. Genomics 1998;50:89–96.PubMedGoogle Scholar
  125. 125.
    Gibbens DT, Gilsanz V, Boechat MI, Dufer D, Carlson ME, Wang CI. Osteoporosis in cystic fibrosis. J Pediatr 1988;113:295–300.PubMedGoogle Scholar
  126. 126.
    Haston CK, Li W, Li A, Lafleur M, Henderson JE. Persistent osteopenia in adult cystic fibrosis transmembrane conductance regulator-deficient mice. Am J Respir Crit Care Med 2008;177:309–15.PubMedGoogle Scholar
  127. 127.
    Cantin AM, Hanrahan JW, Bilodeau G, Ellis L, Dupuis A, Liao J, Zielenski J, Durie P. Cystic fibrosis transmembrane conductance regulator function is suppressed in cigarette smokers. Am J Respir Crit Care Med 2006;173:1139–44.PubMedGoogle Scholar
  128. 128.
    Farrell PM, Kosorok MR, Rock MJ, Laxova A, Zeng L, Lai HC, Hoffman G, Laessig RH, Splaingard ML. Early diagnosis of cystic fibrosis through neonatal screening prevents severe malnutrition and improves long-term growth. Wisconsin cystic fibrosis neonatal screening study group. Pediatrics 2001;107:1–13.PubMedGoogle Scholar
  129. 129.
    Rock MJ. Newborn screening for cystic fibrosis. Clin Chest Med 2007;28:297–305.PubMedGoogle Scholar
  130. 130.
    Britton LJ, Thrasher S, Gutierrez H. Creating a culture of improvement: Experience of a pediatric cystic fibrosis center. J Nurs Care Qual 2008;23:115–20.PubMedGoogle Scholar
  131. 131.
    Gibson RL, Burns JL, Ramsey BW. Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med 2003;168:918–51.PubMedGoogle Scholar
  132. 132.
    Bradley JM, Moran FM, Elborn JS. Evidence for physical therapies (airway clearance and physical training) in cystic fibrosis: An overview of five Cochrane systematic reviews. Respir Med 2006;100:191–201.PubMedGoogle Scholar
  133. 133.
    Taccetti G, Campana S, Festini F, Mascherini M, Doring G. Early eradication therapy against Pseudomonas aeruginosa in cystic fibrosis patients. Eur Respir J 2005;26:458–61.PubMedGoogle Scholar
  134. 134.
    Ramsey BW, Pepe MS, Quan JM, Otto KL, Montgomery AB, Williams-Warren J, Vasiljev KM, Borowitz D, Bowman CM, Marshall BC, et al. Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. Cystic fibrosis inhaled tobramycin study group. N Engl J Med 1999;340:23–30.PubMedGoogle Scholar
  135. 135.
    Fuchs HJ, Borowitz DS, Christiansen DH, Morris EM, Nash ML, Ramsey BW, Rosenstein BJ, Smith AL, Wohl ME. Effect of aerosolized recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis. The pulmozyme study group [see comments]. N Engl J Med 1994;331:637–42.PubMedGoogle Scholar
  136. 136.
    Elkins MR, Robinson M, Rose BR, Harbour C, Moriarty CP, Marks GB, Belousova EG, Xuan W, Bye PT. A controlled trial of long-term inhaled hypertonic saline in patients with cystic fibrosis. N Engl J Med 2006;354:229–40.PubMedGoogle Scholar
  137. 137.
    Ziaian T, Sawyer MG, Reynolds KE, Carbone JA, Clark JJ, Baghurst PA, Couper JJ, Kennedy D, Martin AJ, Staugas RE, et al. Treatment burden and health-related quality of life of children with diabetes, cystic fibrosis and asthma. J Paediatr Child Health 2006;42:596–600.PubMedGoogle Scholar
  138. 138.
    Hordvik NL, Sammut PH, Judy CG, Colombo JL. Effectiveness and tolerability of high-dose salmeterol in cystic fibrosis. Pediatr Pulmonol 2002;34:287–96.PubMedGoogle Scholar
  139. 139.
    Halfhide C, Evans HJ, Couriel J. Inhaled bronchodilators for cystic fibrosis. Cochrane Database Syst Rev 2005; CD003428.Google Scholar
  140. 140.
    Balfour-Lynn IM, Lees B, Hall P, Phillips G, Khan M, Flather M, Elborn JS. Multicenter randomized controlled trial of withdrawal of inhaled corticosteroids in cystic fibrosis. Am J Respir Crit Care Med 2006;173:1356–62.PubMedGoogle Scholar
  141. 141.
    Konstan MW, Byard PJ, Hoppel CL, Davis PB. Effect of high-dose ibuprofen in patients with cystic fibrosis. N Engl J Med 1995;332:848–54.PubMedGoogle Scholar
  142. 142.
    Nagai H, Shishido H, Yoneda R, Yamaguchi E, Tamura A, Kurashima A. Long-term low-dose administration of erythromycin to patients with diffuse panbronchiolitis. Respiration 1991;58:145–9.PubMedGoogle Scholar
  143. 143.
    Saiman L, Marshall BC, Mayer-Hamblett N, Burns JL, Quittner AL, Cibene DA, Coquillette S, Fieberg AY, Accurso FJ, Campbell PW 3rd. Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: A randomized controlled trial. JAMA 2003;290:1749–56.PubMedGoogle Scholar
  144. 144.
    Mascarenhas MR. Treatment of Gastrointestinal Problems in Cystic Fibrosis. Curr Treat Options Gastroenterol 2003;6:427–41.PubMedGoogle Scholar
  145. 145.
    Rovner AJ, Stallings VA, Schall JI, Leonard MB, Zemel BS. Vitamin D insufficiency in children, adolescents, and young adults with cystic fibrosis despite routine oral supplementation. Am J Clin Nutr 2007;86:1694–9.PubMedGoogle Scholar
  146. 146.
    Moss RB, Milla C, Colombo J, Accurso F, Zeitlin PL, Clancy JP, Spencer LT, Pilewski J, Waltz DA, Dorkin HL, et al. Repeated aerosolized AAV-CFTR for treatment of cystic fibrosis: A randomized placebo-controlled phase 2B trial. Hum Gene Ther 2007;18:726–32.PubMedGoogle Scholar
  147. 147.
    Deterding RR, Lavange LM, Engels JM, Mathews DW, Coquillette SJ, Brody AS, Millard SP, Ramsey BW. Phase 2 randomized safety and efficacy trial of nebulized denufosol tetrasodium in cystic fibrosis. Am J Respir Crit Care Med 2007;176:362–9.PubMedGoogle Scholar
  148. 148.
    Grasemann H, Stehling F, Brunar H, Widmann R, Laliberte TW, Molina L, Doring G, Ratjen F. Inhalation of Moli1901 in patients with cystic fibrosis. Chest 2007;131:1461–6.PubMedGoogle Scholar
  149. 149.
    Donaldson SH, Bennett WD, Zeman KL, Knowles MR, Tarran R, Boucher RC. Mucus clearance and lung function in cystic fibrosis with hypertonic saline. N Engl J Med 2006;354:241–50.PubMedGoogle Scholar
  150. 150.
    Welch EM, Barton ER, Zhuo J, Tomizawa Y, Friesen WJ, Trifillis P, Paushkin S, Patel M, Trotta CR, Hwang S, et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature 2007;447:87–91.PubMedGoogle Scholar
  151. 151.
    Du M, Liu X, Welch EM, Hirawat S, Peltz SW, Bedwell DM. PTC124 is an orally bioavailable compound that promotes suppression of the human CFTR-G542X nonsense allele in a CF mouse model. Proc Natl Acad Sci USA 2008;105:2064–9.PubMedGoogle Scholar
  152. 152.
    MacDonald KD, McKenzie KR, Zeitlin PL. Cystic fibrosis transmembrane regulator protein mutations: ‘class’ opportunity for novel drug innovation. Paediatr Drugs 2007;9:1–10.PubMedGoogle Scholar
  153. 153.
    Ratjen F. New pulmonary therapies for cystic fibrosis. Curr Opin Pulm Med 2007;13:541–6.PubMedGoogle Scholar
  154. 154.
    Rubenstein RC, Egan ME, Zeitlin PL. In vitro pharmacologic restoration of CFTR-mediated chloride transport with sodium 4-phenylbutyrate in cystic fibrosis epithelial cells containing delta F508-CFTR. J Clin Invest 1997;100:2457–65.PubMedGoogle Scholar
  155. 155.
    Zeitlin PL, Diener-West M, Rubenstein RC, Boyle MP, Lee CK, Brass-Ernst L. Evidence of CFTR function in cystic fibrosis after systemic administration of 4-phenylbutyrate. Mol Ther 2002;6:119–26.PubMedGoogle Scholar
  156. 156.
    Clarke LL. Phosphodiesterase 5 inhibitors and cystic fibrosis: Correcting chloride channel dysfunction. Am J Respir Crit Care Med 2008;177:469–70.PubMedGoogle Scholar
  157. 157.
    Dormer RL, Harris CM, Clark Z, Pereira MM, Doull IJ, Norez C, Becq F, McPherson MA. Sildenafil (Viagra) corrects DeltaF508-CFTR location in nasal epithelial cells from patients with cystic fibrosis. Thorax 2005;60:55–9.PubMedGoogle Scholar
  158. 158.
    Robert R, Carlile GW, Pavel C, Liu N, Anjos SM, Liao J, Luo Y, Zhang D, Thomas DY, Hanrahan JW. Structural analog of sildenafil identified as a novel corrector of the F508del-CFTR trafficking defect. Mol Pharmacol 2008;73:478–89.PubMedGoogle Scholar
  159. 159.
    Loo TW, Bartlett MC, Clarke DM. Rescue of DeltaF508 and other misprocessed CFTR mutants by a novel quinazoline compound. Mol Pharm 2005;2:407–13.PubMedGoogle Scholar
  160. 160.
    Wang Y, Loo TW, Bartlett MC, Clarke DM. Correctors promote maturation of cystic fibrosis transmembrane conductance regulator (CFTR)-processing mutants by binding to the protein. J Biol Chem 2007;282:33247–51.PubMedGoogle Scholar
  161. 161.
    Pedemonte N, Lukacs GL, Du K, Caci E, Zegarra-Moran O, Galietta LJ, Verkman AS. Small-molecule correctors of defective DeltaF508-CFTR cellular processing identified by high-throughput screening. J Clin Invest 2005;115:2564–71.PubMedGoogle Scholar
  162. 162.
    Galietta LJ, Springsteel MF, Eda M, Niedzinski EJ, By K, Haddadin MJ, Kurth MJ, Nantz MH, Verkman AS. Novel CFTR chloride channel activators identified by screening of combinatorial libraries based on flavone and benzoquinolizinium lead compounds. J Biol Chem 2001;276:19723–8.PubMedGoogle Scholar
  163. 163.
    Choo-Kang LR, Zeitlin PL. Type I, II, III, IV, and V cystic fibrosis transmembrane conductance regulator defects and opportunities for therapy. Curr Opin Pulm Med 2000;6:521–9.PubMedGoogle Scholar
  164. 164.
    Noel S, Wilke M, Bot A, De Jonge H, Becq F. Parallel improvement of sodium and chloride transport defects by miglustat in cystic fibrosis epithelial cells. J Pharmacol Exp Ther 2008;325(3):1016–23.PubMedGoogle Scholar
  165. 165.
    Norez C, Bilan F, Kitzis A, Mettey Y, Becq F. Proteasome-dependent pharmacological rescue of cystic fibrosis transmembrane conductance regulator revealed by mutation of glycine 622. J Pharmacol Exp Ther 2008;325:89–99.PubMedGoogle Scholar
  166. 166.
    Norez C, Noel S, Wilke M, Bijvelds M, Jorna H, Melin P, DeJonge H, Becq F. Rescue of functional delF508-CFTR channels in cystic fibrosis epithelial cells by the alpha-glucosidase inhibitor miglustat. FEBS Lett 2006;580:2081–6.PubMedGoogle Scholar
  167. 167.
    Lubamba B, Lecourt H, Lebacq J, Lebecque P, De Jonge H, Wallemacq P, Leal T. Preclinical evidence that sildenafil and vardenafil activate chloride transport in cystic fibrosis. Am J Respir Crit Care Med 2008;177:506–15.PubMedGoogle Scholar
  168. 168.
    Chappe V, Mettey Y, Vierfond JM, Hanrahan JW, Gola M, Verrier B, Becq F. Structural basis for specificity and potency of xanthine derivatives as activators of the CFTR chloride channel. Br J Pharmacol 1998;123:683–93.PubMedGoogle Scholar
  169. 169.
    Springsteel MF, Galietta LJ, Ma T, By K, Berger GO, Yang H, Dicus CW, Choung W, Quan C, Shelat AA, et al. Benzoflavone activators of the cystic fibrosis transmembrane conductance regulator: Towards a pharmacophore model for the nucleotide-binding domain. Bioorg Med Chem 2003;11:4113–20.PubMedGoogle Scholar
  170. 170.
    Yang H, Shelat AA, Guy RK, Gopinath VS, Ma T, Du K, Lukacs GL, Taddei A, Folli C, Pedemonte N, et al. Nanomolar affinity small molecule correctors of defective Delta F508-CFTR chloride channel gating. J Biol Chem 2003;278:35079–85.PubMedGoogle Scholar
  171. 171.
    Pedemonte N, Sonawane ND, Taddei A, Hu J, Zegarra-Moran O, Suen YF, Robins LI, Dicus CW, Willenbring D, Nantz MH, et al. Phenylglycine and sulfonamide correctors of defective delta F508 and G551D cystic fibrosis transmembrane conductance regulator chloride-channel gating. Mol Pharmacol 2005;67:1797–807.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • André M. Cantin
    • 1
  1. 1.Department of MedicineUniversity of SherbrookeSherbrookeCanada

Personalised recommendations