Advertisement

Primary Ciliary Dyskinesia

  • Michael R. Knowles
  • Hilda Metjian
  • Margaret W. Leigh
  • Maimoona A. Zariwala
Chapter
Part of the Respiratory Medicine book series (RM)

Abstract

Primary ciliary dyskinesia (PCD) is a rare, genetically heterogeneous disorder of motile cilia. In PCD, genetic abnormalities of ciliary ultrastructure and function impair mucociliary clearance, which results in recurrent infection of the lung, as well as the middle ear and sinuses. The genetic defects in respiratory cilia are also frequently shared by specialized cilia (embryonic nodal cilia), which direct the asymmetry of thoracic and abdominal organs; thus, situs inversus and/or situs ambiguus occurs in ∼50% of PCD patients. Sperm tail (flagellar) structures are also affected, and most PCD males are infertile. There has been exciting progress in defining the molecular pathogenesis of PCD, and clinical genetic screening tests have been established for two genes (DNAI1 and DNAH5) that are common causes of PCD. Diagnostic testing now involves a combination of methods, including the measurement of nasal nitric oxide (nNO), which facilitates the identification of more PCD patients and expands our understanding of the PCD clinical phenotype. Early recognition and therapeutic intervention are likely to revolutionize clinical care and likely benefit long-term outcomes. Future efforts will continue to focus on further defining the molecular basis of PCD and exploring the interface/overlap of PCD with other genetic disorders involving “sensory” ciliopathies.

Keywords

primary ciliary dyskinesia (PCD) clinical manifestations genetic basis diagnosis treatment nasal nitric oxide DNAH5 DNAI1 situs inversus heterotaxy mouse model of PCD 

References

  1. 1.
    Knowles MR, Boucher RC. Mucus clearance as a primary innate defense mechanism for mammalian airways (“Perspective”). J Clin Invest 2002;109:571–7.PubMedGoogle Scholar
  2. 2.
    Wanner A, Salathe M, O’Riordan TG. Mucociliary clearance in the airways. Am J Respir Crit Care Med 1996;154:1868–902.PubMedGoogle Scholar
  3. 3.
    Zariwala MA, Knowles MR, Omran H. Genetic defects in ciliary structure and function. Annu Rev Physiol 2007;69:423–50.PubMedGoogle Scholar
  4. 4.
    Bush A, Chodhari R, Collins N, Copeland F, Hall P, Harcourt J, et al. Primary ciliary dyskinesia. Arch Dis Child 2007;92:1136–40.PubMedGoogle Scholar
  5. 5.
    Noone PG, Leigh MW, Sannuti A, Minnix SL, Carson JL, Hazucha M, et al. Primary ciliary dyskinesia: Diagnostic and phenotypic features. Am J Respir Crit Care Med 2004;169:459–67.PubMedGoogle Scholar
  6. 6.
    Bush A, Cole P, Hariri M, MacKay I, Phillips G, O’Callaghan C, et al. Primary ciliary dyskinesia: Diagnosis and standards of care. Eur Respir J 1998;12:982–8.PubMedGoogle Scholar
  7. 7.
    Leigh MW. Primary ciliary dyskinesia. Semin Respir Crit Care Med 2003;24:653–62.PubMedGoogle Scholar
  8. 8.
    Brueckner M. Cilia propel the embryo in the right direction. Am J Med Genet 2001;101:339–44.PubMedGoogle Scholar
  9. 9.
    Afzelius BA, Mossberg B, Bergstroem SE. Immotile-cilia syndrome (primary ciliary dyskinesia), including Kartagener syndrome. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds.) The Metabolic and Molecular Bases of Inherited Disease Online (Electronic Resource). New York: McGraw-Hill, Inc, 2002.Google Scholar
  10. 10.
    Kennedy MP, Omran H, Leigh MW, Dell S, Morgan L, Molina PL, et al. Congenital heart disease and other heterotaxic defects in a large cohort of patients with primary ciliary dyskinesia. Circulation 2007;115:2814–21.PubMedGoogle Scholar
  11. 11.
    Brueckner M. Heterotaxia, congenital heart disease, and primary ciliary dyskinesia. Circulation 2007;115:2793–5.PubMedGoogle Scholar
  12. 12.
    Afzelius BA. A human syndrome caused by immotile cilia. Science 1976;193:317–19.PubMedGoogle Scholar
  13. 13.
    Hornef N, Olbrich H, Horvath J, Zariwala MA, Fliegauf M, Loges NT, et al. DNAH5 mutations are a common cause of primary ciliary dyskinesia with outer dynein arm defects. Am J Respir Crit Care Med 2006;174:120–6.PubMedGoogle Scholar
  14. 14.
    Zariwala MA, Leigh MW, Ceppa F, Kennedy MP, Horvath J, Olbrich H, et al. Mutations of DNAI1 in primary ciliary dyskinesia: Evidence of founder effect in a common mutation. Am J Respir Crit Care Med 2006;174:858–66.PubMedGoogle Scholar
  15. 15.
    Bush A, Ferkol T. Movement: The emerging genetics of primary ciliary dyskinesia [Editorial]. Am J Respir Crit Care Med 2006;174:109–10.PubMedGoogle Scholar
  16. 16.
    Zariwala M, Knowles M, Leigh M. Primary Ciliary Dyskinesia. http://www.genetests.org
  17. 17.
    Torgersen J. Situs inversus, asymmetry, and twinning. Am J Hum Genet 1950;2:361–70.PubMedGoogle Scholar
  18. 18.
    Katsuhara K, Kawamoto S, Wakabayashi T, Belsky JL. Situs inversus totalis and Kartagener’s syndrome in a Japanese population. Chest 1972;61:56–61.PubMedGoogle Scholar
  19. 19.
    Lundberg JON, Weitzberg E, Nordvall SL, Kuylenstierna R, Lundberg JM, Alving K. Primarily nasal origin of exhaled nitric oxide and absence in Kartagener’s syndrome. Eur Respir J 1994;7:1501–4.PubMedGoogle Scholar
  20. 20.
    Karadag B, James AJ, Gultekin E, Wilson NM, Bush A. Nasal and lower airway level of nitric oxide in children with primary ciliary dyskinesia. Eur Respir J 1999;13:1402–5.PubMedGoogle Scholar
  21. 21.
    Narayan D, Krishnan SN, Upender M, Ravikumar TS, Mahoney MJ, Dolan TF Jr., et al. Unusual inheritance of primary ciliary dyskinesia (Kartagener’s syndrome). J Med Genet 1994;31:493–6.PubMedGoogle Scholar
  22. 22.
    Budny B, Chen W, Omran H, Fliegauf M, Tzschach A, Wisniewska M, et al. A novel X-linked recessive mental retardation syndrome comprising macrocephaly and ciliary dysfunction is allelic to oral–facial–digital type I syndrome. Hum Genet 2006;120:171–8.PubMedGoogle Scholar
  23. 23.
    Iannaccone A, Breuer DK, Wang XF, Kuo SF, Normando EM, Filippova E, et al. Clinical and immunohistochemical evidence for an X linked retinitis pigmentosa syndrome with recurrent infections and hearing loss in association with an RPGR mutation. J Med Genet 2003;40:e118 Electronic Letter.PubMedGoogle Scholar
  24. 24.
    Zito I, Downes SM, Patel RJ, Cheetham ME, Ebenezer ND, Jenkins SA, et al. RPGR mutation associated with retinitis pigmentosa, impaired hearing, and sinorespiratory infections. J Med Genet 2003;40:609–15.PubMedGoogle Scholar
  25. 25.
    Moore A, Escudier E, Roger G, Tamalet A, Pelosse B, Marlin S, et al. RPGR is mutated in patients with a complex X linked phenotype combining primary ciliary dyskinesia and retinitis pigmentosa. J Med Genet 2006;43:326–33.PubMedGoogle Scholar
  26. 26.
    Badano JL, Mitsuma N, Beales PL, Katsanis N. The ciliopathies: An emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 2006;7:125–48.PubMedGoogle Scholar
  27. 27.
    Beales PL, Bland E, Tobin JL, Bacchelli C, Tuysuz B, Hill J, et al. IFT80, which encodes a conserved intraflagellar transport protein, is mutated in Jeune asphyxiating thoracic dystrophy. Nat Genet 2007;39:727–9.PubMedGoogle Scholar
  28. 28.
    Pennarun G, Escudier E, Chapelin C, Bridoux AM, Cacheux V, Roger G, et al. Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. Am J Hum Genet 1999;65:1508–19.PubMedGoogle Scholar
  29. 29.
    Guichard C, Harricane MC, Lafitte JJ, Godard P, Zaegel M, Tack V, et al. Axonemal dynein intermediate-chain gene (DNAI1) mutations result in situs inversus and primary ciliary dyskinesia (Kartagener syndrome). Am J Hum Genet 2001;68:1030–5.PubMedGoogle Scholar
  30. 30.
    Zariwala M, Noone PG, Sannuti A, Minnix S, Zhou Z, Leigh MW, et al. Germline mutations in an intermediate chain dynein cause primary ciliary dyskinesia. Am J Respir Cell Mol Biol 2001;25:577–83.PubMedGoogle Scholar
  31. 31.
    Zariwala MA, Leigh MW, Ceppa F, Kennedy MP, Noone PG, Carson JL, et al. Mutations of DNAI1 in primary ciliary dyskinesia: Evidence of founder effect in a common mutation. Am J Respir Crit Care Med 2006;174:858–66.PubMedGoogle Scholar
  32. 32.
    Omran H, Haffner K, Volkel A, Kuehr J, Ketelsen UP, Ross UH, et al. Homozygosity mapping of a gene locus for primary ciliary dyskinesia on chromosome 5p and identification of the heavy dynein chain DNAH5 as a candidate gene. Am J Respir Cell Mol Biol 2000;23:696–702.PubMedGoogle Scholar
  33. 33.
    Olbrich H, Haffner K, Kispert A, Volkel A, Volz A, Sasmaz G, et al. Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left–right asymmetry. Nat Genet 2002;30:143–4.PubMedGoogle Scholar
  34. 34.
    Bush A, Ferkol T. Movement: The emerging genetics of primary ciliary dyskinesia. Am J Respir Crit Care Med 2006;174:109–10.PubMedGoogle Scholar
  35. 35.
    Fliegauf M, Olbrich H, Horvath J, Wildhaber JH, Zariwala MA, Kennedy M, et al. Mislocalization of DNAH5 and DNAH9 in respiratory cells from patients with primary ciliary dyskinesia. Am J Respir Crit Care Med 2005;171:1343–9.PubMedGoogle Scholar
  36. 36.
    Zariwala MA, Noone PG, Minnix SL, Dorkin HL, Knowles MR. Pseudo-dominant inheritance in primary ciliary dyskinesia. J Mol Diagn 2007;9(5):653 (Abstr.).Google Scholar
  37. 37.
    Bartoloni L, Blouin JL, Pan Y, Gehrig C, Maiti AK, Scamuffa N, et al. Mutations in the DNAH11 (axonemal heavy chain dynein type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia. Proc Natl Acad Sci USA 2002;99:10282–6.PubMedGoogle Scholar
  38. 38.
    Blouin JL, Meeks M, Radhakrishna U, Sainsbury A, Gehring C, Sail GD, et al. Primary ciliary dyskinesia: A genome-wide linkage analysis reveals extensive locus heterogeneity. Eur J Hum Genet 2000;8:109–18.PubMedGoogle Scholar
  39. 39.
    Schwabe GC, Hoffmann K, Loges NT, Birker D, Rossier C, De Santi MM, et al. Primary ciliary dyskinesia associated with normal axoneme ultrastructure is caused by DNAH11 mutations. Hum Mutat 2008;29:289–98.PubMedGoogle Scholar
  40. 40.
    Duriez B, Duquesnoy P, Escudier E, Bridoux AM, Escalier D, Rayet I, et al. A common variant in combination with a nonsense mutation in a member of the thioredoxin family causes primary ciliary dyskinesia. Proc Natl Acad Sci USA 2007;104:3336–41.PubMedGoogle Scholar
  41. 41.
    Moore A, Escudier E, Roger G, Tamalet A, Pelosse B, Marlin S, et al. RPGR is mutated in patients with a complex X-linked phenotype combining primary ciliary dyskinesia and retinitis pigmentosa. J Med Genet 2006;43:326–33.PubMedGoogle Scholar
  42. 42.
    Iannaccone A, Breuer DK, Wang XF, Kuo SF, Normando EM, Filippova E, et al. Clinical and immunohistochemical evidence for an X linked retinitis pigmentosa syndrome with recurrent infections and hearing loss in association with an RPGR mutation. J Med Genet 2003;40:e118 (Electronic Letter).PubMedGoogle Scholar
  43. 43.
    Blouin JL, Albrecht C, Gehrig C, Duriaux-Sail G, Strauss JF III, Bartoloni L, et al. Primary ciliary dyskinesia/Kartagener syndrome: Searching for genes in a highly heterogeneous disorder. Am J Human Genetic 2003;73(Suppl 5):(Abstr.).Google Scholar
  44. 44.
    Bartoloni L, Blouin JL, Maiti AK, Sainsbury A, Rossier C, Gehrig C, et al. Axonemal beta heavy chain dynein DNAH9: cDNA sequence, genomic structure, and investigation of its role in primary ciliary dyskinesia. Genomics 2001;72:21–33.PubMedGoogle Scholar
  45. 45.
    Bartoloni L, Mitchison H, Pazour GJ, Maiti AK, Meeks M, Chung E, et al. No deleterious mutations were found in three genes (HFH4, LC8, IC2) on human chromosome 17q in patients with primary ciliary dyskinesia. Eur J Hum Genet 2000;8:484 (Abstr.).Google Scholar
  46. 46.
    Pennarun G, Bridoux AM, Escudier E, Dastot-Le Moal F, Cacheux V, Amselem S, et al. Isolation and expression of the human hPF20 gene orthologous to Chlamydomonas PF20: Evaluation as a candidate for axonemal defects of respiratory cilia and sperm flagella. Am J Respir Cell Mol Biol 2002;26:362–70.PubMedGoogle Scholar
  47. 47.
    Horvath J, Fliegauf M, Olbrich H, Kispert A, King SM, Mitchison H, et al. Identification and analysis of axonemal dynein light chain 1 in primary ciliary dyskinesia patients. Am J Respir Cell Mol Biol 2005;33:41–7.PubMedGoogle Scholar
  48. 48.
    Gehrig C, Albrecht C, Duriaus Sail G, Rossier C, Scamuffa N, DeLozier-Blancet C, et al. Primary ciliary dyskinesia: Mutation analysis in dynein light chain genes mapping to chromosome 1 (HP28. and 22 (DNAL4)). Eur Human Genet Conf (Strasbourg, France) 2002;0305 (Abstr.).Google Scholar
  49. 49.
    Neesen J, Drenckhahn JD, Tiede S, Burfeind P, Grzmil M, Konietzko J, et al. Identification of the human ortholog of the t-complex-encoded protein TCTE3 and evaluation as a candidate gene for primary ciliary dyskinesia. Cytogenet Genome Res 2002;98:38–44.PubMedGoogle Scholar
  50. 50.
    Pennarun G, Bridoux AM, Escudier E, Amselem S, Duriez B. The human HP28 and HFH4 genes: Evaluation as candidate genes for primary ciliary dyskinesia. Am J Respir Crit Care Med 2001;163:A538 (Abstr.).Google Scholar
  51. 51.
    Kato-Minoura T, Uryu S, Hirono M, Kamiya R. Highly divergent actin expressed in a Chlamydomonas mutant lacking the conventional actin gene. Biochem Biophys Res Commun 1998;251:71–6.PubMedGoogle Scholar
  52. 52.
    Zariwala M, O’Neal WK, Noone PG, Leigh MW, Knowles MR, Ostrowski LE. Investigation of the possible role of a novel gene, DPCD, in primary ciliary dyskinesia. Am J Respir Cell Mol Biol 2004;30:428–34.PubMedGoogle Scholar
  53. 53.
    Zhang YJ, O’Neal WK, Randell SH, Blackburn K, Moyer MB, Boucher RC, et al. Identification of dynein heavy chain 7 as an inner arm component of human cilia that is synthesized but not assembled in a case of primary ciliary dyskinesia. J Biol Chem 2002;277:17906–15.PubMedGoogle Scholar
  54. 54.
    Zhang Z, Zariwala MA, Mahadevan MM, Caballero-Campo P, Shen X, Escudier E, et al. A heterozygous mutation disrupting the SPAG16 gene results in biochemical instability of central apparatus components of the human sperm axoneme. Biol Reprod 2007;77:864–871.PubMedGoogle Scholar
  55. 55.
    Maiti AK, Bartoloni L, Mitchison HM, Meeks M, Chung E, Spiden S, et al. No deleterious mutations in the FOXJ1 (alias HFH-4) gene in patients with primary ciliary dyskinesia (PCD). Cytogenet Cell Genet 2000;90:119–22.PubMedGoogle Scholar
  56. 56.
    Meeks M, Walne A, Spiden S, Simpson H, Mussaffi-Georgy H, Hamam HD, et al. A locus for primary ciliary dyskinesia maps to chromosome 19q. J Med Genet 2000;37:241–4.PubMedGoogle Scholar
  57. 57.
    Jeganathan D, Chodhari R, Meeks M, Faeroe O, Smyth D, Nielsen K, et al. Loci for primary ciliary dyskinesia map to chromosome 16p12. 1-12.2 and 15q13.1-15.1 in Faroe Islands and Israeli Druze genetic isolates. J Med Genet 2004;41:233–40.PubMedGoogle Scholar
  58. 58.
    De Scally M, Lobetti RG, Van Wilpe E. Primary ciliary dyskinesia in a Staffordshire bull terrier. J S Afr Vet Assoc 2004;75:150–2.PubMedGoogle Scholar
  59. 59.
    Neil JA, Canapp SO Jr., Cook CR, Lattimer JC. Kartagener’s syndrome in a Dachshund dog. J Am Anim Hosp Assoc 2002;38:45–9.PubMedGoogle Scholar
  60. 60.
    Reichler IM, Hoerauf A, Guscetti F, Gardelle O, Stoffel MH, Jentsch B, et al. Primary ciliary dyskinesia with situs inversus totalis, hydrocephalus internus and cardiac malformations in a dog. J Small Anim Pract 2001;42:345–8.PubMedGoogle Scholar
  61. 61.
    Watson PJ, Herrtage ME, Peacock MA, Sargan DR. Primary ciliary dyskinesia in Newfoundland dogs. Vet Rec 1999;144:718–25.PubMedGoogle Scholar
  62. 62.
    Edwards DF, Patton CS, Kennedy JR. Primary ciliary dyskinesia in the dog. Probl Vet Med 1992;4:291–319.PubMedGoogle Scholar
  63. 63.
    Roperto F, Galati P, Troncone A, Rossacco P, Campofreda M. Primary ciliary dyskinesia in pigs. J Submicrosc Cytol Pathol 1991;23:233–6.PubMedGoogle Scholar
  64. 64.
    Roperto F, Galati P, Maiolino P, Papparella S. Atypical basal bodies in the oviductal mucosa (ampulla) of gilts with primary ciliary dyskinesia (PCD). J Submicrosc Cytol Pathol 1990;22:587–9.PubMedGoogle Scholar
  65. 65.
    Torikata C, Kijimoto C, Koto M. Ultrastructure of respiratory cilia of WIC-Hyd male rats. An animal model for human immotile cilia syndrome. Am J Pathol 1991;138:341–7.PubMedGoogle Scholar
  66. 66.
    Ibanez-Tallon I, Gorokhova S, Heintz N. Loss of function of axonemal dynein Mdnah5 causes primary ciliary dyskinesia and hydrocephalus. Hum Mol Genet 2002;11:715–21.PubMedGoogle Scholar
  67. 67.
    Ibanez-Tallon I, Pagenstecher A, Fliegauf M, Olbrich H, Kispert A, Ketelsen UP, et al. Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation. Hum Mol Genet 2004;13:2133–41.PubMedGoogle Scholar
  68. 68.
    Greenstone MA, Jones RW, Dewar A, Neville BG, Cole PJ. Hydrocephalus and primary ciliary dyskinesia. Arch Dis Child 1984;59:481–2.PubMedGoogle Scholar
  69. 69.
    Jabourian Z, Lublin FD, Adler A, Gonzales C, Northrup B, Zwillenberg D. Hydrocephalus in Kartagener’s syndrome. Ear Nose Throat J 1986;65:468–72.PubMedGoogle Scholar
  70. 70.
    De Santi MM, Magni A, Valletta EA, Gardi C, Lungarella G. Hydrocephalus, bronchiectasis, and ciliary aplasia. Arch Dis Child 1990;65:543–4.PubMedGoogle Scholar
  71. 71.
    Zammarchi E, Calzolari C, Pignotti MS, Pezzati P, Lignana E, Cama A. Unusual presentation of the immotile cilia syndrome in two children. Acta Paediatr 1993;82:312–13.PubMedGoogle Scholar
  72. 72.
    Tan SY, Rosenthal J, Zhao X-Q, Francis RJ, Chatterjee B, Sabol SL, et al. Heterotaxy and complex structural heart defects in a mutant mouse model of primary ciliary dyskinesia. J Clin Invest 2007;117:3742–52.PubMedGoogle Scholar
  73. 73.
    Supp DM, Brueckner M, Kuehn MR, Witte DP, Lowe LA, McGrath J, et al. Targeted deletion of the ATP binding domain of left–right dynein confirms its role in specifying development of left–right asymmetries. Development 1999;126:5495–504.PubMedGoogle Scholar
  74. 74.
    Supp DM, Witte DP, Potter SS, Brueckner M. Mutation of an axonemal dynein affects left–right asymmetry in inversus viscerum mice. Nature 1997;389:963–6.PubMedGoogle Scholar
  75. 75.
    Singh G, Supp DM, Schreiner C, McNeish J, Merker HJ, Copeland NG, et al. Legless insertional mutation: Morphological, molecular, and genetic characterization. Genes Dev 1991;5:2245–55.PubMedGoogle Scholar
  76. 76.
    Kobayashi Y, Watanabe M, Okada Y, Sawa H, Takai H, Nakanishi M, et al. Hydrocephalus, situs inversus, chronic sinusitis, and male infertility in DNA polymerase lambda-deficient mice: Possible implication for the pathogenesis of immotile cilia syndrome. Mol Cell Biol 2002;22:2769–6.PubMedGoogle Scholar
  77. 77.
    Bertocci B, De Smet A, Berek C, Weill JC, Reynaud CA. Immunoglobulin kappa light chain gene rearrangement is impaired in mice deficient for DNA polymerase mu. Immunity 2003;19:203–11.PubMedGoogle Scholar
  78. 78.
    Ohgami RS, Campagna DR, Greer EL, Antiochos B, McDonald A, Chen J, et al. Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat Genet 2005;37:1264–9.PubMedGoogle Scholar
  79. 79.
    Ohgami RS, Campagna DR, Antiochos B, Wood EB, Sharp JJ, Barker JE, et al. nm1054: A spontaneous, recessive, hypochromic, microcytic anemia mutation in the mouse. Blood 2005;106:3625–31.PubMedGoogle Scholar
  80. 80.
    Lee L, Campagna DR, Pinkus JL, Mulhern H, Wyatt TA, Sisson JH, et al. Primary ciliary dyskinesia in mice lacking the novel ciliary protein Pcdp1. Mol Cell Biol 2008;28:949–57.PubMedGoogle Scholar
  81. 81.
    Gruneberg H. Two new mutant genes in the house mouse 132. J Genet 1943;45:22–8.Google Scholar
  82. 82.
    Davy BE, Robinson ML. Congenital hydrocephalus in hy3 mice is caused by a frameshift mutation in Hydin, a large novel gene. Hum Mol Genet 2003;12:1163–70.PubMedGoogle Scholar
  83. 83.
    Robinson ML, Allen CE, Davy BE, Durfee WJ, Elder FF, Elliott CS, et al. Genetic mapping of an insertional hydrocephalus-inducing mutation allelic to hy3. Mamm Genome 2002;13:625–32.PubMedGoogle Scholar
  84. 84.
    Lechtreck KF, Delmotte P, Robinson ML, Sanderson MJ, Witman GB. Mutations in Hydin impair ciliary motility in mice. J Cell Biol 2008;180:633–643.PubMedGoogle Scholar
  85. 85.
    Pazour GJ, Agrin N, Leszyk J, Witman GB. Proteomic analysis of a eukaryotic cilium. J Cell Biol 2005;170:103–13.PubMedGoogle Scholar
  86. 86.
    Broadhead R, Dawe HR, Farr H, Griffiths S, Hart SR, Portman N, et al. Flagellar motility is required for the viability of the bloodstream trypanosome. Nature 2006;440:224–7.PubMedGoogle Scholar
  87. 87.
    Lechtreck KF, Witman GB. Chlamydomonas reinhardtii hydin is a central pair protein required for flagellar motility. J Cell Biol 2007;176:473–82.PubMedGoogle Scholar
  88. 88.
    Doggett NA, Xie G, Meincke LJ, Sutherland RD, Mundt MO, Berbari NS, et al. A 360-kb interchromosomal duplication of the human HYDIN locus. Genomics 2006;88:762–71.PubMedGoogle Scholar
  89. 89.
    Larsson M, Norrander J, Graslund S, Brundell E, Linck R, Stahl S, et al. The spatial and temporal expression of Tekt1, a mouse Tektin C homologue, during spermatogenesis suggest that it is involved in the development of the sperm tail basal body and axoneme 1. Eur J Cell Biol 2000;79:718–25.PubMedGoogle Scholar
  90. 90.
    Norrander J, Larsson M, Stahl S, Hoog C, Linck R. Expression of ciliary tektins in brain and sensory development 2. J Neurosci 1998;18:8912–18.PubMedGoogle Scholar
  91. 91.
    Linck RW, Amos LA, Amos WB. Localization of tektin filaments in microtubules of sea urchin sperm flagella by immunoelectron microscopy 3. J Cell Biol 1985;100:126–35.PubMedGoogle Scholar
  92. 92.
    Steffen W, Linck RW. Evidence for tektins in centrioles and axonemal microtubules 1. Proc Natl Acad Sci USA 1988;85:2643–7.PubMedGoogle Scholar
  93. 93.
    Nojima D, Linck RW, Egelman EH. At least one of the protofilaments in flagellar microtubules is not composed of tubulin. Curr Biol 1995;5:158–67.PubMedGoogle Scholar
  94. 94.
    Norrander JM, Perrone CA, Amos LA, Linck RW. Structural comparison of tektins and evidence for their determination of complex spacings in flagellar microtubules. J Mol Biol 1996;257:385–97.PubMedGoogle Scholar
  95. 95.
    Pirner MA, Linck RW. Tektins are heterodimeric polymers in flagellar microtubules with axial periodicities matching the tubulin lattice 1. J Biol Chem 1994;269:31800–6.PubMedGoogle Scholar
  96. 96.
    Tanaka H, Iguchi N, Toyama Y, Kitamura K, Takahashi T, Kaseda K, et al. Mice deficient in the axonemal protein Tektin-t exhibit male infertility and immotile-cilium syndrome due to impaired inner arm dynein function. Mol Cell Biol 2004;24:7958–64.PubMedGoogle Scholar
  97. 97.
    Vernon GG, Neesen J, Woolley DM. Further studies on knockout mice lacking a functional dynein heavy chain (MDHC7). 1. Evidence for a structural deficit in the axoneme. Cell Motil Cytoskeleton 2005;61:65–73.PubMedGoogle Scholar
  98. 98.
    Neesen J, Kirschner R, Ochs M, Schmiedl A, Habermann B, Mueller C, et al. Disruption of an inner arm dynein heavy chain gene results in asthenozoospermia and reduced ciliary beat frequency. Hum Mol Genet 2001;10:1117–28.PubMedGoogle Scholar
  99. 99.
    Chen J, Knowles HJ, Hebert JL, Hackett BP. Mutation of the mouse hepatocyte nuclear factor/forkhead homologue 4 gene results in an absence of cilia and random left–right asymmetry. J Clin Invest 1998;102:1077–82.PubMedGoogle Scholar
  100. 100.
    Zhang Z, Sapiro R, Kapfhamer D, Bucan M, Bray J, Chennathukuzhi V, et al. A sperm-associated WD repeat protein orthologous to Chlamydomonas PF20 associates with Spag6, the mammalian orthologue of Chlamydomonas PF16. Mol Cell Biol 2002;22:7993–8004.PubMedGoogle Scholar
  101. 101.
    Zhang Z, Kostetskii I, Tang W, Haig-Ladewig L, Sapiro R, Wei Z, et al. Deficiency of SPAG16L causes male infertility associated with impaired sperm motility. Biol Reprod 2006;74:751–9.PubMedGoogle Scholar
  102. 102.
    Sapiro R, Kostetskii I, Olds-Clarke P, Gerton GL, Radice GL, Strauss JF III. Male infertility, impaired sperm motility, and hydrocephalus in mice deficient in sperm-associated antigen 6. Mol Cell Biol 2002;22:6298–305.PubMedGoogle Scholar
  103. 103.
    Zhang Z, Tang W, Zhou R, Shen X, Wei Z, Patel AM, et al. Accelerated mortality from hydrocephalus and pneumonia in mice with a combined deficiency of SPAG6 and SPAG16L reveals a functional interrelationship between the two central apparatus proteins. Cell Motil Cytoskeleton 2007;64:360–76.PubMedGoogle Scholar
  104. 104.
    Kartagener M, Stucki P. Bronchiectasis with situs inversus. Arch Pediatr 1962;79:193–207.PubMedGoogle Scholar
  105. 105.
    Nonaka S, Tanaka Y, Okada Y, Takeda S, Harada A, Kanai Y, et al. Randomization of left–right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 1998;95:829–37.PubMedGoogle Scholar
  106. 106.
    Ferkol T, Leigh M. Primary ciliary dyskinesia and newborn respiratory distress. Semin Perinatol 2006;30:335–40.PubMedGoogle Scholar
  107. 107.
    Coren ME, Meeks M, Morrison I, Buchdahl RM, Bush A. Primary ciliary dyskinesia: Age at diagnosis and symptom history. Acta Paediatr 2002;91:667–9.PubMedGoogle Scholar
  108. 108.
    Whitelaw A, Evans A, Corrin B. Immotile cilia syndrome: A new cause of neonatal respiratory distress. Arch Dis Child 1981;56:432–5.PubMedGoogle Scholar
  109. 109.
    Holzmann D, Felix H. Neonatal respiratory distress syndrome–a sign of primary ciliary dyskinesia? Eur J Pediatr 2000;159:857–60.PubMedGoogle Scholar
  110. 110.
    Hossain T, Kappelman MD, Perez-Atayde AR, Young GJ, Huttner KM, Christou H. Primary ciliary dyskinesia as a cause of neonatal respiratory distress: Implications for the neonatologist. J Perinatol 2003;23:684–7.PubMedGoogle Scholar
  111. 111.
    Noone PG, Bennett WD, Regnis JA, Zeman KL, Carson JL, King M, et al. Effect of aerosolized uridine-5’-triphosphate on airway clearance with cough in patients with primary ciliary dyskinesia. Am J Respir Crit Care Med 1999;160:144–9.PubMedGoogle Scholar
  112. 112.
    van’s Gravesande KS, Omran H. Primary ciliary dyskinesia: Clinical presentation, diagnosis and genetics. Ann Med 2005;37:439–49.Google Scholar
  113. 113.
    Kennedy MP, Noone PG, Leigh MW, Zariwala MA, Minnix SL, Knowles MR, et al. High-resolution CT of patients with primary ciliary dyskinesia. AJR Am J Roentgenol 2007;188:1232–8.PubMedGoogle Scholar
  114. 114.
    Jain K, Padley SP, Goldstraw EJ, Kidd SJ, Hogg C, Biggart E, et al. Primary ciliary dyskinesia in the paediatric population: Range and severity of radiological findings in a cohort of patients receiving tertiary care. Clin Radiol 2007;62:986–93.PubMedGoogle Scholar
  115. 115.
    Morillas HN, Noone PG, Kennedy MP, Goodrich J, Gilligan PH, Leigh MW, et al. Prevalence of nontuberculous mycobacterium in primary ciliary dyskinesia. Proc Am Thorac Soc 2007;175:A97 (Abstr.).Google Scholar
  116. 116.
    Fischer TJ, McAdams JA, Entis GN, Cotton R, Ghory JE, Ausdenmoore RW. Middle ear ciliary defect in Kartagener’s syndrome. Pediatrics 1978;62:443–5.PubMedGoogle Scholar
  117. 117.
    Sethi BR. Kartagener’s syndrome and its otological manifestations. J Laryngol Otol 1975;89:183–8.PubMedGoogle Scholar
  118. 118.
    van der Baan S. Primary ciliary dyskinesia and the middle ear. Laryngoscope 1991;101:751–4.PubMedGoogle Scholar
  119. 119.
    Majithia A, Fong J, Hariri M, Harcourt J. Hearing outcomes in children with primary ciliary dyskinesia–a longitudinal study. Int J Pediatr Otorhinolaryngol 2005;69:1061–4.PubMedGoogle Scholar
  120. 120.
    Halbert SA, Patton DL, Zarutskie PW, Soules MR. Function and structure of cilia in the fallopian tube of an infertile woman with Kartagener’s syndrome. Hum Reprod 1997;12:55–8.PubMedGoogle Scholar
  121. 121.
    Kennedy MP, Noone PG, Carson J, Molina PL, Ghio A, Zariwala MA, et al. Calcium stone lithoptysis in primary ciliary dyskinesia. Respir Med 2007;101:76–83.PubMedGoogle Scholar
  122. 122.
    Carlen B, Stenram U. Primary ciliary dyskinesia: A review. Ultrastruct Pathol 2005;29:217–20.PubMedGoogle Scholar
  123. 123.
    Escudier E, Couprie M, Duriez B, Roudot-Thoraval F, Millepied MC, Pruliere-Escabasse V, et al. Computer-assisted analysis helps detect inner dynein arm abnormalities. Am J Respir Crit Care Med 2002;166:1257–62.PubMedGoogle Scholar
  124. 124.
    Carda C, Armengot M, Escribano A, Peydro A. Ultrastructural patterns of primary ciliar dyskinesia syndrome. Ultrastruct Pathol 2005;29:3–8.PubMedGoogle Scholar
  125. 125.
    Chilvers MA, Rutman A, O’Callaghan C. Ciliary beat pattern is associated with specific ultrastructural defects in primary ciliary dyskinesia. J Allergy Clin Immunol 2003;112:518–24.PubMedGoogle Scholar
  126. 126.
    Jorissen M, Willems T, Van der SB, Verbeken E, De Boeck K. Ultrastructural expression of primary ciliary dyskinesia after ciliogenesis in culture. Acta Otorhinolaryngol Belg 2000;54:343–56.PubMedGoogle Scholar
  127. 127.
    Stannard W, Rutman A, Wallis C, O’Callaghan C. Central microtubular agenesis causing primary ciliary dyskinesia. Am J Respir Crit Care Med 2004;169:634–7.PubMedGoogle Scholar
  128. 128.
    Carson JL, Collier AM, Hu S-CS. Acquired ciliary defects in nasal epithelium of children with acute viral upper respiratory infections. N Engl J Med 1985;312:463–8.PubMedGoogle Scholar
  129. 129.
    ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide. Am J Respir Crit Care Med 2005; 171:912–30.Google Scholar
  130. 130.
    Ellerman A, Bisgaard H. Longitudinal study of lung function in a cohort of primary ciliary dyskinesia. Eur Respir J 1997;10:2376–9.PubMedGoogle Scholar
  131. 131.
    Fuchs HJ, Borowitz DS, Christiansen DH, Morris EM, Nash ML, Ramsey BW, et al. Effect of aerosolized recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis. The pulmozyme study group. N Engl J Med 1994;331:637–42.PubMedGoogle Scholar
  132. 132.
    Ramsey BW, Astley SJ, Aitken ML, Burke W, Colin AA, Dorkin HL, et al. Efficacy and safety of short-term administration of aerosolized recombinant human deoxyribonuclease in patients with cystic fibrosis. Am Rev Respir Dis 1993;148:145–51.PubMedGoogle Scholar
  133. 133.
    O’Donnell AE, Barker AF, Ilowite JS, Fick RB. Treatment of idiopathic bronchiectasis with aerosolized recombinant human DNase I. rhDNase study group. Chest 1998;113:1329–34.PubMedGoogle Scholar
  134. 134.
    Kudoh S, Uetake T, Hagiwara K, Hirayama M, Hus LH, Kimura H, et al. Clinical effects of low-dose long-term erythromycin chemotherapy on diffuse panbronchiolitis. Nihon Kyobu Shikkan Gakkai Zasshi 1987;25:632–42.PubMedGoogle Scholar
  135. 135.
    Wolter J, Seeney S, Bell S, Bowler S, Masel P, McCormack J. Effect of long term treatment with azithromycin on disease parameters in cystic fibrosis: A randomised trial. Thorax 2002;57:212–16.PubMedGoogle Scholar
  136. 136.
    Equi A, Balfour-Lynn IM, Bush A, Rosenthal M. Long term azithromycin in children with cystic fibrosis: A randomised, placebo-controlled crossover trial. Lancet 2002;360:978–84.PubMedGoogle Scholar
  137. 137.
    Saiman L, Marshall BC, Mayer-Hamblett N, Burns JL, Quittner AL, Cibene DA, et al. Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: A randomized controlled trial. JAMA 2003;290:1749–56.PubMedGoogle Scholar
  138. 138.
    Clement A, Tamalet A, Leroux E, Ravilly S, Fauroux B, Jais JP. Long term effects of azithromycin in patients with cystic fibrosis: A double blind, placebo controlled trial. Thorax 2006;61:895–902.PubMedGoogle Scholar
  139. 139.
    Macchiarini P, Chapelier A, Vouhe P, Cerrina J, Ladurie FL, Parquin F, et al. Double lung transplantation in situs inversus with Kartagener’s syndrome. Paris-Sud university lung transplant group. J Thorac Cardiovasc Surg 1994;108:86–91.PubMedGoogle Scholar
  140. 140.
    Hadfield PJ, Rowe-Jones JM, Bush A, Mackay IS. Treatment of otitis media with effusion in children with primary ciliary dyskinesia. Clin Otolaryngol Allied Sci 1997;22:302–6.PubMedGoogle Scholar
  141. 141.
    Brown DE, Pittman JE, Leigh MW, Fordham L, Davis SD. Early lung disease in young children with primary ciliary dyskinesia. Pediatr Pulmonol 2008;43:514–516.Google Scholar
  142. 142.
    Gibson RL, Burns JL, Ramsey BW. Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med 2003;168:918–51.PubMedGoogle Scholar
  143. 143.
    Elkins MR, Robinson M, Rose BR, Harbor C, Moriarty CP, Marks GB, et al. A controlled trial of long-term Inhaled hypertonic saline in patients with cystic fibrosis. N Engl J Med 2006;354:229–40.PubMedGoogle Scholar
  144. 144.
    Donaldson SH, Bennett WD, Zeman KL, Knowles MR, Tarran R, Boucher RC. Mucus clearance and lung function in cystic fibrosis with hypertonic saline. N Engl J Med 2006;354:241–50.PubMedGoogle Scholar
  145. 145.
    Wilschanski M, Yahav Y, Yaacov Y, Blau H, Bentur L, Rivlin J, et al. Gentamicin-induced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations. N Engl J Med 2003;349:1433–41.PubMedGoogle Scholar
  146. 146.
    Welch EM, Barton ER, Zhuo J, Tomizawa Y, Friesen WJ, Trifillis P, et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature 2007;447:87–91.PubMedGoogle Scholar
  147. 147.
    Du M, Liu X, Welch EM, Hirawat S, Peltz SW, Bedwell DM. PTC124 is an orally bioavailable compound that promotes suppression of the human CFTR-G542X nonsense allele in a CF mouse model. Proc Natl Acad Sci USA 2008;105:2064–9.PubMedGoogle Scholar
  148. 148.
    Driscoll JA, Bhalla S, Liapis H, Ibricevic A, Brody SL. Autosomal dominant polycystic kidney disease is associated with an increased prevalence of radiographic bronchiectasis. Chest 2008;133:1181–1188.Google Scholar
  149. 149.
    Fliegauf M, Benzing T, Omran H. When cilia go bad: Cilia defects and ciliopathies. Nat Rev Mol Cell Biol 2007;8:880–93.PubMedGoogle Scholar
  150. 150.
    Pazour GJ, Agrin N, Walker BL, Witman GB. Identification of predicted human outer dynein arm genes: Candidates for primary ciliary dyskinesia genes. J Med Genet 2006;43:62–73.PubMedGoogle Scholar
  151. 151.
    Porter ME, Sale WS. The 9 + 2 axoneme anchors multiple inner arm dyneins and a network of kinases and phosphatases that control motility. J Cell Biol 2000;151:F37–42.PubMedGoogle Scholar
  152. 152.
    Yang P, Diener DR, Yang C, Kohno T, Pazour GJ, Dienes JM, et al. Radial spoke proteins of Chlamydomonas flagella. J Cell Sci 2006;119:1165–74.PubMedGoogle Scholar
  153. 153.
    Yagi T, Minoura I, Fujiwara A, Saito R, Yasunaga T, Hirono M, et al. An axonemal dynein particularly important for flagellar movement at high viscosity. Implications from a new Chlamydomonas mutant deficient in the dynein heavy chain gene DHC9. J Biol Chem 2005;280:41412–20.PubMedGoogle Scholar
  154. 154.
    LeDizet M, Piperno G. ida4-1, ida4-2, and ida4-3 are intron splicing mutations affecting the locus encoding p28, a light chain of Chlamydomonas axonemal inner dynein arms. Mol Biol Cell 1995;6:713–23.PubMedGoogle Scholar
  155. 155.
    LeDizet M, Piperno G. The light chain p28 associates with a subset of inner dynein arm heavy chains in Chlamydomonas axonemes. Mol Biol Cell 1995;6:697–711.PubMedGoogle Scholar
  156. 156.
    Kato-Minoura T, Hirono M, Kamiya R. Chlamydomonas inner-arm dynein mutant, ida5, has a mutation in an actin-encoding gene. J Cell Biol 1997;137:649–56.PubMedGoogle Scholar
  157. 157.
    Habermacher G, Sale WS. Regulation of flagellar dynein by phosphorylation of a 138-kD inner arm dynein intermediate chain. J Cell Biol 1997;136:167–76.PubMedGoogle Scholar
  158. 158.
    Rupp G, Porter ME. A subunit of the dynein regulatory complex in Chlamydomonas is a homologue of a growth arrest-specific gene product. J Cell Biol 2003;162:47–57.PubMedGoogle Scholar
  159. 159.
    Rupp G, O’Toole E, Gardner LC, Mitchell BF, Porter ME. The sup-pf-2 mutations of Chlamydomonas alter the activity of the outer dynein arms by modification of the gamma-dynein heavy chain. J Cell Biol 1996;135:1853–65.PubMedGoogle Scholar
  160. 160.
    Koutoulis A, Pazour GJ, Wilkerson CG, Inaba K, Sheng H, Takada S, et al. The Chlamydomonas reinhardtii ODA3 gene encodes a protein of the outer dynein arm docking complex. J Cell Biol 1997;137:1069–80.PubMedGoogle Scholar
  161. 161.
    Horowitz E, Zhang Z, Jones BH, Moss SB, Ho C, Wood JR, et al. Patterns of expression of sperm flagellar genes: Early expression of genes encoding axonemal proteins during the spermatogenic cycle and shared features of promoters of genes encoding central apparatus proteins. Mol Hum Reprod 2005;11:307–17.PubMedGoogle Scholar
  162. 162.
    Ahmed NT, Mitchell DR. ODA16p, a Chlamydomonas flagellar protein needed for dynein assembly. Mol Biol Cell 2005;16:5004–12.PubMedGoogle Scholar
  163. 163.
    DiBella LM, Sakato M, Patel-King RS, Pazour GJ, King SM. The LC7 light chains of Chlamydomonas flagellar dyneins interact with components required for both motor assembly and regulation. Mol Biol Cell 2004;15:4633–46.PubMedGoogle Scholar
  164. 164.
    Benashski SE, Patel-King RS, King SM. Light chain 1 from the Chlamydomonas outer dynein arm is a leucine-rich repeat protein associated with the motor domain of the gamma heavy chain. Biochemistry 1999;38:7253–64.PubMedGoogle Scholar
  165. 165.
    Dymek EE, Lefebvre PA, Smith EF. PF15p is the Chlamydomonas homologue of the Katanin p80 subunit and is required for assembly of flagellar central microtubules. Eukaryot Cell 2004;3:870–9.PubMedGoogle Scholar
  166. 166.
    Sapiro R, Tarantino LM, Velazquez F, Kiriakidou M, Hecht NB, Bucan M, et al. Sperm antigen 6 is the murine homologue of the Chlamydomonas reinhardtii central apparatus protein encoded by the PF16 locus. Biol Reprod 2000;62:511–8.PubMedGoogle Scholar
  167. 167.
    Wargo MJ, Dymek EE, Smith EF. Calmodulin and PF6 are components of a complex that localizes to the C1 microtubule of the flagellar central apparatus. J Cell Sci 2005;118:4655–65.PubMedGoogle Scholar
  168. 168.
    Zhang H, Mitchell DR. Cpc1, a Chlamydomonas central pair protein with an adenylate kinase domain. J Cell Sci 2004;117:4179–88.PubMedGoogle Scholar
  169. 169.
    Sironen A, Thomsen B, Andersson M, Ahola V, Vilkki J. An intronic insertion in KPL2 results in aberrant splicing and causes the immotile short-tail sperm defect in the pig. Proc Natl Acad Sci USA 2006;103:5006–11.PubMedGoogle Scholar
  170. 170.
    Layton WM Jr. Random determination of a developmental process: Reversal of normal visceral asymmetry in the mouse. J Hered 1976;67:336–8.PubMedGoogle Scholar
  171. 171.
    McNeish JD, Thayer J, Walling K, Sulik KK, Potter SS, Scott WJ. Phenotypic characterization of the transgenic mouse insertional mutation, legless. J Exp Zool 1990;253:151–62.PubMedGoogle Scholar
  172. 172.
    Smith EF. Hydin seek: Finding a function in ciliary motility. J Cell Biol 2007;176:403–4.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Michael R. Knowles
    • 1
  • Hilda Metjian
    • 2
  • Margaret W. Leigh
    • 3
  • Maimoona A. Zariwala
    • 4
  1. 1.Department of MedicineUniversity of North CarolinaChapel HillUSA
  2. 2.Department of Internal MedicineUniversity of North CarolinaChapel HillUSA
  3. 3.Department of PediatricsUniversity of North CarolinaChapel HillUSA
  4. 4.Department of Pathology and Laboratory MedicineThe University of North CarolinaChapel HillUSA

Personalised recommendations