Skip to main content

Deep Brain Stimulation Safety: MRI and Other Electromagnetic Interactions

  • Chapter
Deep Brain Stimulation in Neurological and Psychiatric Disorders

Part of the book series: Current Clinical Neurology ((CCNEU))

Abstract

The potential for interaction between medical implants and electromagnetic (EM) energy generated by devices in the patient’s environment has long been a safety concern for health care professionals. The magnitude and subsequent effect of such an interaction will depend on the strength of the EM field as well as the susceptibility and location of the device. For most implants, particularly those that are passive in nature (e.g., aneurysm clips, stents), newer materials and manufacturing techniques have led to dramatic improvements in the susceptibility of implants. The situation is more complex, however, for active implants like those used in cardiac or neurostimulation therapy, where the electronic, conductive, and typically elongated nature of the implant increases its overall susceptibility to EM fields. To date, reported interactions for patients with implanted deep brain stimulation (DBS) systems have ranged from inadvertent switching of the pulse generators between the on and off state to the induction of permanent, neurological deficit. While the total number of documented adverse events over the past decade is relatively small in comparison to the 30,000 plus patient implants performed to date, patients and physicians need to be aware of the potential sources and effects of EM interactions. This chapter presents an overview of those sources and their potential impact on the DBS hardware and subsequently the patient, with particular emphasis on the MRI environment and recent data on MRI-related heating.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fein RL (1967) Transurethral electrocautery procedures in patients with cardiac pacemakers. JAMA 202(1):101–103.

    Article  PubMed  CAS  Google Scholar 

  2. Wajszczuk WJ, Mowry FM, Dugan NL (1969) Deactivation of a demand pacemaker by transurethral electrocautery. N Engl J Med 280(1):34–35.

    Article  PubMed  CAS  Google Scholar 

  3. Smith RB, Wise WS (1971) Pacemaker malfunction from urethral electrocautery. JAMA 218(2):256.

    Article  PubMed  CAS  Google Scholar 

  4. Yamamoto T, Katayama Y, Fukaya C, Kurihara J, Oshima H, Kasai M (2000) Thalamotomy caused by cardioversion in a patient treated with deep brain stimulation. Stereotact Funct Neurosurg 74(2):73–82.

    Article  PubMed  CAS  Google Scholar 

  5. Titel JH, el-Etr AA (1968) Fibrillation resulting from pacemaker electrodes and electrocautery during surgery. Anesthesiology 29(4):845–846.

    Article  PubMed  CAS  Google Scholar 

  6. Lichter I, Borrie J, Miller WM (1965) Radio-frequency hazards with cardiac pacemakers. Br Med J 1965;1(5449):1513–1518.

    Article  CAS  Google Scholar 

  7. Furman S, Parker B, Krauthamer M, Escher DJ (1968) The influence of electromagnetic environment on the performance of artificial cardiac pacemakers. Ann Thorac Surg 6(1):90–95.

    Article  PubMed  CAS  Google Scholar 

  8. Carleton RA, Sessions RW, Graettinger JS (1964) Environmental Influence on Implantable Cardiac Pacemakers. JAMA 190:938–940.

    PubMed  CAS  Google Scholar 

  9. Bonney CH, Rustan PL Jr, Ford GE (1973) Evaluation of effects of the microwave oven (915 and 2450 MHz) and radar (2810 and 3050 MHz) electromagnetic radiation on noncompetitive cardiac pacemakers. IEEE Trans Biomed Eng 20(5):357–364.

    Article  PubMed  CAS  Google Scholar 

  10. Rustan PL, Hurt WD, Mitchell JC (1973) Microwave oven interference with cardiac pacemakers. Med Instrum 7(3):185–188.

    PubMed  CAS  Google Scholar 

  11. King GR, Hamburger AC, Parsa F, Heller SJ, Carleton RA (1970) Effect of microwave oven on implanted cardiac pacemaker. JAMA 212(7):1213.

    Article  PubMed  CAS  Google Scholar 

  12. (1973) Possible electromagnetic interference with cardiac pacemakers from dental induction casting machines and electrosurgical devices. Council on Dental Materials and Devices. J Am Dent Assoc 86(2):426.

    Google Scholar 

  13. Orland HJ, Jones D (1975) Cardiac pacemaker induced ventricular fibrillation during surgical diathermy. Anaesth Intensive Care 3(4):321–326.

    PubMed  CAS  Google Scholar 

  14. Blomstedt P, Hariz MI (2005) Hardware-related complications of deep brain stimulation: a ten year experience. Acta Neurochir (Wien) 147(10):1061–1064; discussion 1064.

    Article  CAS  Google Scholar 

  15. Henderson JM, Tkach J, Phillips M, Baker K, Shellock FG, Rezai AR (2005) Permanent neurological deficit related to magnetic resonance imaging in a patient with implanted deep brain stimulation electrodes for Parkinson's disease: case report. Neurosurgery 57(5):E1063; discussion E.

    Article  PubMed  Google Scholar 

  16. Medtronic (2006) Kinetra: Dual Program Neurostimulator for Deep Brain Stimulation—Technical Manual. Minneapolis: Medtronic, Inc.

    Google Scholar 

  17. Medtronic (2006) Soletra: Neurostimulator for Deep Brain Stimulation—Physician and Hospital Staff Manual. Minneapolis: Medtronic, Inc.

    Google Scholar 

  18. Medtronic (2006) DBS: Lead Kid for Deep Brain Stimulation—Implant Manual. Minneapolis: Medtronic, Inc.

    Google Scholar 

  19. Medtronic (2005) MRI and Activa Therapy Manual. Minneapolis: Medtronic, Inc.

    Google Scholar 

  20. Spiegel J, Fuss G, Backens M, et al (2003) Transient dystonia following magnetic resonance imaging in a patient with deep brain stimulation electrodes for the treatment of Parkinson disease. Case report. J Neurosurg 99(4):772–774.

    Article  PubMed  Google Scholar 

  21. Nutt JG, Anderson VC, Peacock JH, Hammerstad JP, Burchiel KJ (2001) DBS and diathermy interaction induces severe CNS damage. Neurology 56(10):1384–1386.

    PubMed  CAS  Google Scholar 

  22. MAUDE Database (2003) ID# 460649. U.S. Food and Drug Administration. Accessed Sept. 30, 2006, at www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfMAUDE/Detail.cfm?MDRFOI__ID=460649

  23. MAUDE Database (2001) ID# 315109. U.S. Food and Drug Administration. Accessed Sept. 30, 2006, at www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfMAUDE/Detail.CFM?MDRFOI__ID=315109

  24. MAUDE Database (2006) ID# 330144. U.S. Food and Drug Administration. Accessed Sept. 30, 2006, at www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfMAUDE/Detail.CFM?MDRFOI__ID=330144

  25. Shellock FG (2006) Reference Manual for Magnetic Resonance Safety, Implants, and Devices. Los Angeles: Biomedical Research Publishing Group.

    Google Scholar 

  26. Zaremba L (2001) FDA guidance for MR system safety and patient exposures: current status and future considerations. In: Shellock FG, ed. Magnetic Resonance Procedures: Health Effects and Safety. Boca Raton: CRC Press, pp. 183–196.

    Google Scholar 

  27. Shellock FG (2001) Magnetic Resonance: Health Effects and Safety. Boca Raton: CRC Press.

    Google Scholar 

  28. Hayes DL, Holmes DR Jr, Gray JE (1987) Effect of 1.5 tesla nuclear magnetic resonance imaging scanner on implanted permanent pacemakers. J Am Coll Cardiol 10(4):782–786.

    Article  PubMed  CAS  Google Scholar 

  29. Gangarosa RE, Minnis JE, Nobbe J, Praschan D, Genberg RW (1987) Operational safety issues in MRI. Magn Reson Imaging 5(4):287–292.

    Article  PubMed  CAS  Google Scholar 

  30. Sommer T, Vahlhaus C, Lauck G, et al (2000) MR imaging and cardiac pacemakers: in-vitro evaluation and in-vivo studies in 51 patients at 0.5 T. Radiology 215(3):869–879.

    PubMed  CAS  Google Scholar 

  31. Smith CD (2001) Health effects of induced electrical currents: Implications for implants. In: Shellock FG, ed. Magnetic Resonance: Health Effects and Safety. Boca Raton: CRC Press, pp. 393–413.

    Google Scholar 

  32. Shellock FG, Shellock VJ (1999) Metallic stents: evaluation of MR imaging safety. AJR 173(3):543–547.

    PubMed  CAS  Google Scholar 

  33. Shellock FG, Hatfield M, Simon BJ, et al (2000) Implantable spinal fusion stimulator: assessment of MR safety and artifacts. J Magn Reson Imaging 12(2):214–223.

    Article  PubMed  CAS  Google Scholar 

  34. Shellock FG, Fieno DS, Thomson LJ, Talavage TM, Berman DS (2006) Cardiac pacemaker: in vitro assessment at 1.5 T. Am Heart J 151(2):436–443.

    Article  PubMed  Google Scholar 

  35. Schueler BA, Parrish TB, Lin JC, et al (1999) MRI compatibility and visibility assessment of implantable medical devices. J Magn Reson Imaging 9(4):596–603.

    Article  PubMed  CAS  Google Scholar 

  36. Rezai AR, Lozano AM, Crawley AP, et al (1999) Thalamic stimulation and functional magnetic resonance imaging: localization of cortical and subcortical activation with implanted electrodes. Technical note. J Neurosurg 90(3):583–590.

    Article  PubMed  CAS  Google Scholar 

  37. Rezai AR, Finelli D, Rugieri P, Tkach J, Nyenhuis JA, Shellock FG (2001) Neurostimulators: potential for excessive heating of deep brain stimulation electrodes during magnetic resonance imaging. J Magn Reson Imaging 14(4):488–489.

    Article  PubMed  CAS  Google Scholar 

  38. Liem LA, van Dongen VC (1997) Magnetic resonance imaging and spinal cord stimulation systems. Pain 70(1):95–97.

    Article  PubMed  CAS  Google Scholar 

  39. Heller JW, Brackmann DE, Tucci DL, Nyenhuis JA, Chou CK (1996) Evaluation of MRI compatibility of the modified nucleus multichannel auditory brainstem and cochlear implants. Am J Otol 17(5):724–729.

    PubMed  CAS  Google Scholar 

  40. Gleason CA, Kaula NF, Hricak H, Schmidt RA, Tanagho EA (1992) The effect of magnetic resonance imagers on implanted neurostimulators. Pacing Clin Electrophysiol 15(1):81–94.

    Article  PubMed  CAS  Google Scholar 

  41. Finelli DA, Rezai AR, Ruggieri PM, et al (2002) MR imaging-related heating of deep brain stimulation electrodes: in vitro study. AJNR Am J Neuroradiol 23(10):1795–1802.

    PubMed  Google Scholar 

  42. Chou CK, McDougall JA, Chan KW (1997) RF heating of implanted spinal fusion stimulator during magnetic resonance imaging. IEEE Trans Biomed Eng 44(5):367–373.

    Article  PubMed  CAS  Google Scholar 

  43. Chou CK, McDougall JA, Can KW (1995) Absence of radiofrequency heating from auditory implants during magnetic resonance imaging. Bioelectromagnetics 16(5):307–316.

    Article  PubMed  CAS  Google Scholar 

  44. Schaefer DJ, Bourland JD, Nyenhuis JA (2000) Review of patient safety in time-varying gradient fields. J Magn Reson Imaging 12(1):20–29.

    Article  PubMed  CAS  Google Scholar 

  45. Shellock FG (2001) MR imaging and electronically activated devices. Radiology 219(1):294–295.

    PubMed  CAS  Google Scholar 

  46. Sawyer-Glover AM, Shellock FG (2000) Pre-MRI procedure screening: recommendations and safety considerations for biomedical implants and devices. J Magn Reson Imaging 12(3):510.

    Article  PubMed  Google Scholar 

  47. Nyenhuis JA, Kildishev AV, Foster KS, Graber G, Athey W (1999) Heating near implanted medical devices by the MRI RF-magnetic field. IEEE Trans Magn 35:4133–4135.

    Article  Google Scholar 

  48. New PF, Rosen BR, Brady TJ, et al (1983) Potential hazards and artifacts of ferromagnetic and nonferromagnetic surgical and dental materials and devices in nuclear magnetic resonance imaging. Radiology 147(1):139–148.

    PubMed  CAS  Google Scholar 

  49. Shellock FG (2001) Pocket guide to metallic implants and MR procedures: update 2001. New York: Lippincott-Raven Healthcare.

    Google Scholar 

  50. Shellock FG, Tkach JA, Ruggieri PM, Masaryk TJ (2003) Cardiac pacemakers, ICDs, and loop recorder: evaluation of translational attraction using conventional (舠long-bore舡) and 舠short-bore舡 1.5- and 3.0-Tesla MR systems. J Cardiovasc Magn Reson 5(2):387–397.

    Article  PubMed  Google Scholar 

  51. ASTM (2002) Standard test method for measurement of magnetically induced torque on passive implants in the magnetic resonance environment, standard F2213-02. In: ASfTaM, ed. Annual Book of ASTM Standards. West Conshohocken: ASTM, pp. 19,428–19,959.

    Google Scholar 

  52. ASTM (2002) Standard test method for measurement of magnetically induced displacement force on passive implants in the magnetic resonance environment. Designation: F 2052. In: ASfTaM, ed. Annual Book of ASTM Standards, Section 13, Medical Devices and Services, Volume 1301 Medical Devices; Emergency Medical Services. West Conshohocken: ASTM, pp. 1576–1580.

    Google Scholar 

  53. Baker KB, Nyenhuis JA, Hrdlicka G, Rezai AR, Tkach JA, Shellock FG (2005) Neurostimulation systems: assessment of magnetic field interactions associated with 1.5- and 3-Tesla MR systems. J Magn Reson Imaging 21(1):72–77.

    Article  PubMed  Google Scholar 

  54. Georgi JC, Stippich C, Tronnier VM, Heiland S (2004) Active deep brain stimulation during MRI: a feasibility study. Magn Reson Med 51(2):380–388.

    Article  PubMed  Google Scholar 

  55. Shellock FG (2005) In: Shellock FG, ed. Reference Manual for Magnetic Resonance Safety, Implants, and Devices, 2005 edition. Los Angeles: Biomedical Research Publishing Group, pp. 122–134.

    Google Scholar 

  56. Schenk J (2001) Health effects and safety of static magnetic fields. In: Shellock FG, ed. Magnetic Resonance Procedures: Health Effects and Safety. Boca Raton: CRC Press, pp. 1–29.

    Google Scholar 

  57. Nyenhuis JA (2001) Health effects and safety of intense MRI gradient fields. In: Shellock FG, ed. Magnetic Resonance Procedures: Health Effects and Safety. Boca Raton: CRC Press, pp. 31–54.

    Google Scholar 

  58. Geddes LA, Baker LE (1989) Principles of Applied Biomedical Instrumentation, third edition. Wiley and Sons.

    Google Scholar 

  59. IEC (2002) Medical electrical equipment, particular requirements for the safety of magnetic resonance equipment for medical diagnosis. International Standard IEC 60601–2–33.

    Google Scholar 

  60. Achenbach S, Moshage W, Diem B, Bieberle T, Schibgilla V, Bachmann K (1997) Effects of magnetic resonance imaging on cardiac pacemakers and electrodes. Am Heart J 134(3):467–473.

    Article  PubMed  CAS  Google Scholar 

  61. Brown TR, Goldstein B, Little J (1993) Severe burns resulting from magnetic resonance imaging with cardiopulmonary monitoring. Risks and relevant safety precautions. Am J Phys Med Rehab/Assoc Acad Physiatrists 72(3): 166–167.

    CAS  Google Scholar 

  62. Konings MK, Bartels LW, Smits HF, Bakker CJ (200) Heating around intravascular guidewires by resonating RF waves. J Magn Reson Imaging 12(1):79–85.

    Google Scholar 

  63. Ladd ME, Quick HH (2000) Reduction of resonant RF heating in intravascular catheters using coaxial chokes. Magn Reson Med 43(4):615–619.

    Article  PubMed  CAS  Google Scholar 

  64. Nitz WR, Oppelt A, Renz W, Manke C, Lenhart M, Link J (2001) On the heating of linear conductive structures as guide wires and catheters in interventional MRI. J Magn Reson Imaging 13(1):105–114.

    Article  PubMed  CAS  Google Scholar 

  65. Tronnier VM, Staubert A, Hahnel S, Sarem-Aslani A (1999) Magnetic resonance imaging with implanted neurostimulators: an in vitro and in vivo study. Neurosurgery 44(1):118–125; discussion 25–26.

    Article  PubMed  CAS  Google Scholar 

  66. Park SM, Nyenhuis JA, Smith CD, et al (2003) Gelled versus nongelled phantom material for measurement of MRI-induced temperature increases with bioimplants. IEEE Trans Magnet 39(5):3367–3371.

    Article  CAS  Google Scholar 

  67. Baker KB, Tkach J, Hall JD, Nyenhuis JA, Shellock FG, Rezai AR (2005) Reduction of magnetic resonance imaging-related heating in deep brain stimulation leads using a lead management device. Neurosurgery 57(4 Suppl):392–397; discussion 397.

    Article  PubMed  Google Scholar 

  68. Baker KB, Tkach JA, Nyenhuis JA, et al (2004) Evaluation of specific absorption rate as a dosimeter of MRI-related implant heating. J Magn Reson Imaging 20(2):315–320.

    Article  PubMed  Google Scholar 

  69. Baker KB, Tkach JA, Phillips MD, Rezai AR (2006) Variability in RF-induced heating of a deep brain stimulation implant across MR systems. J Magn Reson Imaging.

    Google Scholar 

  70. Medtronic (2001) Soletra neurostimulator for dep brain stimulation—model 7246 physician and hospital staff manual. Minneapolis: Medtronic, Inc.

    Google Scholar 

  71. Fetter J, Aram G, Holmes DR, Jr., Gray JE, Hayes DL (1984) The effects of nuclear magnetic resonance imagers on external and implantable pulse generators. Pacing Clin Electrophysiol 7(4):720–727.

    Article  PubMed  CAS  Google Scholar 

  72. Nyenhuis JA, Park SM, Kamondetdacha R, Amjad A, Shellock FG, Rezai A (2005) MRI and Implanted Medical Devices: Basic Interactions with an Emphasis on Heating. IEEE Trans Dev Mat Reliab 5(3):467–480.

    Article  Google Scholar 

  73. Alterman RL, Reiter GT, Shils J, et al (1999) Targeting for thalamic deep brain stimulator implantation without computer guidance: assessment of targeting accuracy. Stereotact Funct Neurosurg 72(2–4):150–153.

    Article  PubMed  CAS  Google Scholar 

  74. Lemaire JJ, Durif F, Boire J Y, Debilly B, Irthum B, Chazal J (1999) Direct stere-otactic MRI location in the globus pallidus for chronic stimulation in Parkinson's disease. Acta Neurochir (Wien) 141(7):759–765; discussion 766.

    Article  CAS  Google Scholar 

  75. Mobin F, De Salles AA, Behnke EJ, Frysinger R (1999) Correlation between MRI-based stereotactic thalamic deep brain stimulation electrode placement, mac-roelectrode stimulation and clinical response to tremor control. Stereotact Funct Neurosurg 72(2–4):225–232.

    Article  PubMed  CAS  Google Scholar 

  76. Suh JS, Jeong EK, Shin KH, et al (1998) Minimizing artifacts caused by metallic implants at MR imaging: experimental and clinical studies. Ajr 171(5):1207–1213.

    PubMed  CAS  Google Scholar 

  77. Pollo C, Villemure JG, Vingerhoets F, Ghika J, Maeder P, Meuli R (2004) Magnetic resonance artifact induced by the electrode Activa 3389: an in vitro and in vivo study. Acta Neurochir (Wien) 146(2):161–164.

    Article  CAS  Google Scholar 

  78. Petersilge CA, Lewin JS, Duerk JL, Yoo JU, Ghaneyem AJ (1996) Optimizing imaging parameters for MR evaluation of the spine with titanium pedicle screws. Ajr 166(5):1213–1218.

    PubMed  CAS  Google Scholar 

  79. Schrader B, Hamel W, Weinert D, Mehdorn HM (2002) Documentation of electrode localization. Mov Disord 17(Suppl 3):S167–S174.

    Article  PubMed  Google Scholar 

  80. Ryu SI, Romanelli P, Heit G (2004) Asymptomatic transient MRI signal changes after unilateral deep brain stimulation electrode implantation for movement disorder. Stereotact Funct Neurosurg 82(2–3):65–69.

    Article  PubMed  Google Scholar 

  81. Hariz MI, Krack P, Melvill R, et al (2003) A quick and universal method for stere-otactic visualization of the subthalamic nucleus before and after implantation of deep brain stimulation electrodes. Stereotact Funct Neurosurg 80(1–4):96–101.

    Article  PubMed  Google Scholar 

  82. Greatbatch W, Miller V, Shellock FG (2002) Magnetic resonance safety testing of a newly-developed fiber-optic cardiac pacing lead. J Magn Reson Imaging 16(1):97–103.

    Article  PubMed  Google Scholar 

  83. Gray RW, Bibens WT, Shellock FG (2005) Simple design changes to wires to substantially reduce MRI-induced heating at 1.5 T: implications for implanted leads. Magn Reson Imaging 23(8):887–891.

    Article  PubMed  Google Scholar 

  84. Butrous GS, Bexton RS, Barton DG, Male JC, Camm AJ (1983) Interference with the pacemakers of two workers at electricity substations. Brit J Ind Med 40(4):462–465.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Baker, K.B., Phillips, M.D. (2008). Deep Brain Stimulation Safety: MRI and Other Electromagnetic Interactions . In: Tarsy, D., Vitek, J.L., Starr, P.A., Okun, M.S. (eds) Deep Brain Stimulation in Neurological and Psychiatric Disorders. Current Clinical Neurology. Humana Press. https://doi.org/10.1007/978-1-59745-360-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-360-8_22

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-952-9

  • Online ISBN: 978-1-59745-360-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics