Skip to main content

MRI and Articular Cartilage

Evaluating Lesions and Postrepair Tissue

  • Chapter

Abstract

The ability of noninvasive magnetic resonance imaging (MRI) to obtain reproducible, accurate images of cartilage has enabled early detection of cartilage lesions and provides clinically relevant information when planning cartilage repair. With appropriate pulse sequencing, MRI depicts not only the integrity of the surface cartilage, which would be seen at arthroscopy, but also that of the subchondral bone, which would not be visualized at arthroscopic inspection. This information is vital when planning for complex, sometimes multistage, techniques that require careful size delineation of the cartilage lesion and evaluation of the surrounding subchondral bone. In addition to aiding in preoperative planning, these techniques offer an important objective evaluation of cartilage repair to be correlated with the more subjective clinical outcome instruments and provide insight into the biology of the repair process. Finally, newer matrix assessment techniques will disclose information about the ultrastructure of these individual cartilage repair procedures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hayes CW, Conway WF. Evaluation of articular cartilage: radiographic and cross-sectional imaging techniques. Radiographics 1992;12:409–428.

    PubMed  CAS  Google Scholar 

  2. Hayes CW, Sawyer RW, Conway WF. Patellar cartilage lesions: in vitro detection and staging with MR imaging and pathologic correlation. Radiology 1990; 176:479–483.

    PubMed  CAS  Google Scholar 

  3. Recht MP, Piraino DW, Paletta GA, Schils JP, Belhobek GH. Accuracy of fat-suppressed threedimensional spoiled gradient-echo FLASH MR imaging in the detection of patellofemoral articular cartilage abnormalities. Radiology 1996; 198:209–212.

    PubMed  CAS  Google Scholar 

  4. Disler DG, McCauley TR, Wirth CR, Fuchs MD. Detection of knee hyaline cartilage defects using fat-suppressed three-dimensional spoiled gradient-echo MR imaging: Comparison with standard MR imaging and correlation with arthroscopy. Am J Roentgenol 1995; 165:377–382.

    CAS  Google Scholar 

  5. Eckstein F, Westhoff J, Sittek H, et al. In vivo reproducibility of three-dimensional cartilage volume and thickness measurements with MR imaging. Am J Roentgenol 1998;170:593–597.

    CAS  Google Scholar 

  6. Eckstein F, Schnier M, Haubner M, et al. Accuracy of cartilage volume and thickness measurements with magnetic resonance imaging. Clin Orthop Rel Res 1998;352:137–148.

    Google Scholar 

  7. Potter HG, Linklater JM, Allen AA, Hannafin JA, Haas SB. Magnetic resonance imaging of articular cartilage in the knee. An evaluation with use of fast spin echo imaging. J Bone Joint Surg 1998;80A: 1276–1284.

    Google Scholar 

  8. Bredella MA, Tirman PFJ, Peterfy CG, et al. Accuracy of T2-weighted fast spin-echo MR imaging with fat saturation in detecting cartilage defects in the knee: comparison with arthroscopy in 130 patients. Am J Roentgenol 1999;172:1073–1080.

    CAS  Google Scholar 

  9. Hargreaves BA, Gold GE, Lang PK, et al. MR imaging of articular cartilage using driven equilibrium. Magn Reson Med 1999;42:695–703.

    Article  PubMed  CAS  Google Scholar 

  10. Yoshioka H, Stevens K, Hargreaves BA, et al. Magnetic resonance imaging of articular cartilage of the knee: comparison between fat-suppressed three-dimensional SPGR imaging, fat-suppressed FSE imaging and fat-suppressed three-dimensional DEFT imaging, and correlation with arthroscopy. J Magn Reson Imaging 2004;20:857–864.

    Article  PubMed  Google Scholar 

  11. Woertler K, Strothmann M, Tombach B, Reimer P. Detection of articular cartilage lesions: Experimental evaluation of low-and high-field-strength MR imaging at 0.18 and 1.0T. J Magn Reson Imaging 2000; 11:678–685.

    Article  PubMed  CAS  Google Scholar 

  12. Outerbridge RE, Dunlop JAY. The problem of chondromalacia patellae. Clin Orthop Rel Res 1975;110:177–195.

    Article  Google Scholar 

  13. Rubenstein JD, Li JG, Majumdar S, Henkelman RM. Image resolution and signal-to-noise ratio requirements for MR imaging of degenerative cartilage. Am J Roentgenol 1997;169:1089–1096.

    CAS  Google Scholar 

  14. Mankin HJ, Mow VC, Buckwalter JA, Iannotti JB, Ratcliffe A. Articular cartilage structure, composition and function. In: Buckwalter JA, Einhorn TA, Simon SR, eds. Orthopaedic Basic Science: Biology and Biomechanics of the Musculoskeletal System. Rosemont, IL: American Academy of Orthopaedic Surgeons; 1999:440–470.

    Google Scholar 

  15. Mow VC, Proctor CS, Kelly MA. Biomechanics of articular cartilage. In: Nordin M, Frankel VH, eds. Basic Biomechanics of the Musculoskeletal System. Philadelphia: Lea and Febiger; 1989:31–57.

    Google Scholar 

  16. Shapiro EM, Borthakur A, Gougoutas A. Reddy. 23Na MRI accurately measures fixed charge density in articular cartilage. Magn Reson Med 2002;47:284–291.

    Article  PubMed  Google Scholar 

  17. Gold GE, McCauley TR, Gray ML, Disler DG. What’s new in cartilage? Radiographics 2003;23: 1227–1242.

    Article  PubMed  Google Scholar 

  18. Bashir A, Gray ML, Burstein D. Gd-DTPA2-as a measure of cartilage degradation. Magn Reson Med 1996;36:665–673.

    Article  PubMed  CAS  Google Scholar 

  19. Gillis A, Bashir A, McKeon B, Scheller A, Gray ML, Burstein D. Magnetic resonance imaging of relative glycosaminoglycan distribution in patients with autologous chondrocyte transplants. Invest Radiol 2001;36:743–748.

    Article  PubMed  CAS  Google Scholar 

  20. Wheaton AJ, Casey FL, Gougoutas AJ, et al. Correlation of T with fixed charge density in cartilage. J Magn Reson Imaging 2004;20:519–525.

    Article  PubMed  Google Scholar 

  21. Nieminen MT, Rieppo J, Töyräs J, et al. T2 relaxation reveals spatial collagen architecture in articular cartilage: A comparative quantitative MRI and polarized light microscopic study. Magn Reson Med 2001;46:487–493.

    Article  PubMed  CAS  Google Scholar 

  22. Xia Y, Moody JB, Burton-Wurster N, Lust G. Quantitative in situ correlation between microscopic MRI and polarized light microscopy studies of articular cartilage. Osteoarthritis Cartilage 2001;9:393–406.

    Article  PubMed  CAS  Google Scholar 

  23. Xia Y, Moody JB, Alhadlaq H. Orientational dependence of T2 relaxation in articular cartilage: microscopic MRI (μMRI) study. Magn Reson Med 2002;48:460–469.

    Article  PubMed  Google Scholar 

  24. Mosher TJ, Smith H, Dardzinski BJ, Schmithorst VJ, Smith MB. MR imaging and T2 mapping of femoral cartilage: In vivo determination of the magic angle effect. Am J Roentgenol 2001; 177:665–669.

    CAS  Google Scholar 

  25. Goodwin DW, Wadghiri Z, Zhu H, Vinton CJ, Smith ED, Dunn JF. Macroscopic structure of articular cartilage of the tibial plateau: influence of a characteristic matrix architecture on MRI appearance. Am J Roentgenol 2004;182:311–318.

    Google Scholar 

  26. Maier CF, Tan SG, Hariharan H, Potter HG. T2 quantitation of articular cartilage at 1.5T. J Magn Reson Imaging 2003; 17:358–364.

    Article  PubMed  Google Scholar 

  27. Brown WE, Potter HG, Marx RG, Wickiewicz TL, Warren RF. Magnetic resonance imaging appearance of cartilage repair in the knee. Clin Orthop Rel Res 2004;422:214–223.

    Article  Google Scholar 

  28. Alparslan L, Minas T, Winalski CS. Magnetic resonance imaging of autologous chondrocyte implantation. Semin Ultrasound CT MRI 2001;22:341–351.

    Article  CAS  Google Scholar 

  29. Verstraete KL, Almqvist F, Verdonk P, et al. Magnetic resonance imaging of cartilage and cartilage repair. Clin Radiol 2004;59:674–689.

    Article  PubMed  CAS  Google Scholar 

  30. Alparslan L, Winalski CS, Boutin RD, Minas T. Postoperative magnetic resonance imaging of articular cartilage repair. Semin Musculoskelet Radiol 2001; 5:345–363.

    Article  PubMed  CAS  Google Scholar 

  31. Mithoefer K, Williams RJ, Warren RF, et al. Prospective evaluation of the microfracture technique for treatment of articular cartilage defects in the knee. J Bone Joint Surg 2005.

    Google Scholar 

  32. Glenn E, McCarty E, Potter HG, Juliao SF, Gordon J, Spindler K. Comparison of fresh osteochondral autografts and allografts: a canine model. Am J sports med 2006, 34(7): 1084–1093. Orthopaedic Society for Sports Medicine; July 20–23, 2003; San Diego, CA.

    Article  PubMed  Google Scholar 

  33. Brinker MR, Miller MD. Fundamentals of Orthopaedics. Philadelphia: Saunders, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Potter, H.G., Foo, L.F., Pearle, A.D. (2007). MRI and Articular Cartilage. In: Williams, R.J. (eds) Cartilage Repair Strategies. Humana Press. https://doi.org/10.1007/978-1-59745-343-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-343-1_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-629-0

  • Online ISBN: 978-1-59745-343-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics