Skip to main content

Magnetic Resonance Probes for Tumor Imaging

  • Chapter
Book cover In Vivo Imaging of Cancer Therapy

Abstract

Magnetic resonance imaging (MRI) is a noninvasive, high spatial resolution, multiplanar imaging modality that offers exquisite soft tissue contrast. Recent advances in MRI equipment (higher field strengths, optimized pulse sequences, and better coil design) have made this imaging modality a procedure of choice for evaluating many cancers. Coupled with the use of small molecule paramagnetic agents and magnetic nanoparticles, different tumor processes can now be probed. Imaging of angiogenesis, apoptosis, and specific targeting are all within the realm of experimental clinical imaging. This chapter summarizes different types of magnetic probes and their application in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weinmann H, et al. Tissue-specific MR contrast agents. Eur J Radiol 2003;46(1):33–44.

    Article  PubMed  Google Scholar 

  2. Aime S, et al. Insights into the use of paramagnetic Gd(III) complexes in MR-molecular imaging investigations. J Magn Reson Imaging 2002;16(4):394–406.

    Article  PubMed  Google Scholar 

  3. Saeed M, et al. Demarcation of myocardial ischemia: Magnetic susceptibility effect of contrast medium in MR imaging. Radiology 1989;173(3):763–767.

    PubMed  CAS  Google Scholar 

  4. Zhong J, et al. Measurements of transient contrast enhancement by localized water NMR spectroscopy. J Magn Reson B 1994;104(2):111–118.

    Article  PubMed  CAS  Google Scholar 

  5. Artemov D. Molecular magnetic resonance imaging with targeted contrast agents. J Cell Biochem 2003;90(3):518–524.

    Article  PubMed  CAS  Google Scholar 

  6. Bulte JW, Kraitchman DL. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 2004;17(7):484–499.

    Article  PubMed  CAS  Google Scholar 

  7. Weissleder, R, et al. Ultrasmall superparamagnetic iron oxide: Characterization of a new class of contrast agents for MR imaging. Radiology 1990;175:489–493.

    PubMed  CAS  Google Scholar 

  8. Weissleder R. Target-specific superparamagnetic MR contrast agents. Magn Reson Med 1991;22(2):209–212; discussion 213–215.

    Article  PubMed  CAS  Google Scholar 

  9. Reimer P, et al. Asialoglycoprotein receptor function in benign liver disease: Evaluation with MR imaging. Radiology 1991;178(3):769–774.

    PubMed  CAS  Google Scholar 

  10. Weissleder R, et al. Antimyosin-labeled monocrystalline iron oxide allows detection of myocardial infarct: MR antibody imaging. Radiology 1992;182(2):381–385.

    PubMed  CAS  Google Scholar 

  11. Kelly KA, et al. Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circ Res 2005;96(3):327–336.

    Article  PubMed  CAS  Google Scholar 

  12. Mulder WJ, et al. A liposomal system for contrast-enhanced magnetic resonance imaging of molecular targets. Bioconjug Chem 2004;15(4):799–806.

    Article  PubMed  CAS  Google Scholar 

  13. Barber PA, et al. MR molecular imaging of early endothelial activation in focal ischemia. Ann Neurol 2004;56(1):116–120.

    Article  PubMed  CAS  Google Scholar 

  14. Bogdanov A Jr, et al. Oligomerization of paramagnetic substrates result in signal amplification and can be used for MR imaging of molecular targets. Mol Imaging 2002;1(1):16–23.

    Article  PubMed  CAS  Google Scholar 

  15. Kang HW, et al. Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture. Bioconjug Chem 2002;13(1):122–127.

    Article  PubMed  CAS  Google Scholar 

  16. Kang HW, Weissleder R, Bogdanov A Jr. Targeting of MPEG-protected polyamino acid carrier to human E-selectin in vitro. Amino Acids 2002;23(1–3):301–308.

    Article  PubMed  CAS  Google Scholar 

  17. Konda SD, et al. Specific targeting of folate-dendrimer MRI contrast agents to the high affinity folate receptor expressed in ovarian tumor xenografts. Magma 2001;12(2–3):104–113.

    Article  PubMed  CAS  Google Scholar 

  18. Flacke S, et al. Novel MRI contrast agent for molecular imaging of fibrin: Implications for detecting vulnerable plaques. Circulation 2001;104(11):1280–1285.

    Article  PubMed  CAS  Google Scholar 

  19. Gohr-Rosenthal S, et al. The demonstration of human tumors on nude mice using gadoliniumlabelled monoclonal antibodies for magnetic resonance imaging. Invest Radiol 1993;28(9):789–795.

    Article  PubMed  CAS  Google Scholar 

  20. Bhujwalla ZM, et al. Vascular differences detected by MRI for metastatic versus nonmetastatic breast and prostate cancer xenografts. Neoplasia 2001;3(2):143–153.

    Article  PubMed  CAS  Google Scholar 

  21. Bhujwalla ZM, et al. Reduction of vascular and permeable regions in solid tumors detected by macromolecular contrast magnetic resonance imaging after treatment with antiangiogenic agent TNP-470. Clin Cancer Res 2003;9(1):355–362.

    PubMed  CAS  Google Scholar 

  22. Schmiedl U, et al. Albumin labeled with Gd-DTPA as an intravascular, blood pool-enhancing agent for MR imaging: Biodistribution and imaging studies. Radiology 1987;162(1 Pt 1):205–210.

    PubMed  CAS  Google Scholar 

  23. Goldenberg DM, et al. Radioimmunotherapy: Is avidin-biotin pretargeting the preferred choice among pretargeting methods? Eur J Nucl Med Mol Imaging 2003;30(5):777–780.

    Article  PubMed  Google Scholar 

  24. Artemov D, Bhujwalla ZM, Bulte JW. Magnetic resonance imaging of cell surface receptors using targeted contrast agents. Curr Pharm Biotechnol 2004;5(6):485–494.

    Article  PubMed  CAS  Google Scholar 

  25. Artemov D, et al. MR molecular imaging of the Her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles. Magn Reson Med 2003;49(3):403–408.

    Article  PubMed  CAS  Google Scholar 

  26. Artemov D, et al. Magnetic resonance molecular imaging of the HER-2/neu receptor. Cancer Res 2003;63(11):2723–2727.

    PubMed  CAS  Google Scholar 

  27. Bogdanov AA Jr, et al. A new macromolecule as a contrast agent for MR angiography: Preparation, properties, and animal studies. Radiology 1993;187(3):701–706.

    PubMed  CAS  Google Scholar 

  28. Kobayashi H, et al. Macromolecular MRI contrast agents with small dendrimers: Pharmacokinetic differences between sizes and cores. Bioconjug Chem 2003;14(2):388–394.

    Article  PubMed  CAS  Google Scholar 

  29. Bryant LH Jr, et al. Synthesis and relaxometry of high-generation (G = 5, 7, 9, and 10) PAMAM dendrimer-DOTA-gadolinium chelates. J Magn Reson Imaging 1999;9(2):348–352.

    Article  PubMed  Google Scholar 

  30. Kobayashi H, Brechbiel MW. Dendrimer-based nanosized MRI contrast agents. Curr Pharm Biotechnol 2004;5(6):539–549.

    Article  PubMed  CAS  Google Scholar 

  31. Kobayashi H, Brechbiel MW. Dendrimer-based macromolecular MRI contrast agents: Characteristics and application. Mol Imaging 2003;2(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  32. Matsumura A, et al. MRI contrast enhancement by Gd-DTPA-monoclonal antibody in 9L glioma rats. Acta Neurochir Suppl (Wien) 1994;60:356–358.

    CAS  Google Scholar 

  33. Shahbazi-Gahrouei D, et al. In vivo studies of Gd-DTPA-monoclonal antibody and Gd-porphyrins: Potential magnetic resonance imaging contrast agents for melanoma. J Magn Reson Imaging 2001;14(2):169–174.

    Article  PubMed  CAS  Google Scholar 

  34. Sipkins DA, et al. Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat Med 1998;4(5):623–626.

    Article  PubMed  CAS  Google Scholar 

  35. Louie AY, et al. In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol 2000;18(3):321–325.

    Article  PubMed  CAS  Google Scholar 

  36. Shen T, et al. Monocrystalline iron oxide nanocompounds (MION): Physicochemical properties. Magn Reson Med 1993;29(5):599–604.

    Article  PubMed  CAS  Google Scholar 

  37. Weissleder R, et al. Ultrasmall superparamagnetic iron oxide: An intravenous contrast agent for assessing lymph nodes with MR imaging. Radiology 1990;175(2):494–498.

    PubMed  CAS  Google Scholar 

  38. Weissleder R, et al. Ultrasmall superparamagnetic iron oxide: Characterization of a new class of contrast agents for MR imaging. Radiology 1990;175(2):489–493.

    PubMed  CAS  Google Scholar 

  39. Callender ST, Weatherall DJ. Iron chelation with oral desferrioxamine. Lancet 1980;2(8196):689.

    Article  PubMed  CAS  Google Scholar 

  40. Callender ST. Treatment of iron deficiency. Clin Haematol 1982;11(2):327–338.

    PubMed  CAS  Google Scholar 

  41. Saini S, et al. Multicentre dose-ranging study on the efficacy of USPIO ferumoxtran-10 for liver MR imaging. Clin Radiol 2000;55(9):690–695.

    Article  PubMed  CAS  Google Scholar 

  42. Reimer P, et al. Hepatic lesion detection and characterization: Value of nonenhanced MR imaging, superparamagnetic iron oxide-enhanced MR imaging, and spiral CT-ROC analysis. Radiology 2000;217(1):152–158.

    PubMed  CAS  Google Scholar 

  43. Weissleder H, Weissleder R. Interstitial lymphangiography: Initial clinical experience with a dimeric nonionic contrast agent. Radiology 1989;170(2):371–374.

    PubMed  CAS  Google Scholar 

  44. Weissleder R, et al. Experimental lymph node metastases: Enhanced detection with MR lymphography. Radiology 1989;171(3):835–839.

    PubMed  CAS  Google Scholar 

  45. Reimer P, Bader A, Weissleder R. Preclinical assessment of hepatocyte-targeted MR contrast agents in stable human liver cell cultures. J Magn Reson Imaging 1998;8(3):687–689.

    Article  PubMed  CAS  Google Scholar 

  46. Harisinghani M, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 2003;348(25):2491–2499; erratum in:2003;349 (10):1010.

    Article  PubMed  Google Scholar 

  47. Harisinghani M, et al. MR imaging of lymph nodes in patients with primary abdominal and pelvic malignancies using ultrasmall superparamagnetic iron oxide (Combidex). Acad Radiol 1998;(Suppl 1):S167–169; discusion S183–184.

    Article  Google Scholar 

  48. Harisinghani M, et al. MR imaging of pelvic lymph nodes in primary pelvic cancer with USPIO (Combidex). In 1997 Contrast Medical Research Conference. Kyoto, Japan: Academic Radiology.

    Google Scholar 

  49. Harisinghani M, et al. MR imaging of pelvic lymph nodes in primary pelvic carcinoma with ultrasmall superparamagnetic iron oxide (Combidex): Preliminary observatinons. J Magn Reson Imaging 1997;7:161–163.

    Article  PubMed  CAS  Google Scholar 

  50. Bulte JW, et al. Preparation of magnetically labeled cells for cell tracking by magnetic resonance imaging. Methods Enzymol 2004;386:275–299.

    PubMed  CAS  Google Scholar 

  51. Kohler N, Fryxell GE, Zhang M. A bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents. J Am Chem Soc 2004;126(23):7206–7211.

    Article  PubMed  CAS  Google Scholar 

  52. Molday RS, MacKenzie D. Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells. J Immunol Methods 1982;52(3):353–367.

    Article  PubMed  CAS  Google Scholar 

  53. Wunderbaldinger P, Josephson L, Weissleder R. Crosslinked iron oxides (CLIO): A new platform for the development of targeted MR contrast agents. Acad Radiol 2002;9(Suppl 2):S304–306.

    Article  PubMed  Google Scholar 

  54. Renshaw PF, et al. Immunospecific NMR contrast agents. Magn Reson Imaging 1986;4(4):351–357.

    Article  PubMed  CAS  Google Scholar 

  55. Jung HI, et al. Detection of apoptosis using the C2A domain of synaptotagmin I. Bioconjug Chem 2004;15(5):983–987.

    Article  PubMed  CAS  Google Scholar 

  56. Josephson L, Groman E, Weissleder R. Contrast agents for magnetic resonance imaging of the liver. Targeted Diagn Ther 1991;4:163–187.

    PubMed  CAS  Google Scholar 

  57. Moore A, et al. In vivo targeting of underglycosylated MUC-1 tumor antigen using a multimodal imaging probe. Cancer Res 2004;64(5):1821–1827.

    Article  PubMed  CAS  Google Scholar 

  58. Schellenberger EA, et al. Annexin V-CLIO: A nanoparticle for detecting apoptosis by MRI. Mol Imaging 2002;1(2):102–107.

    Article  PubMed  CAS  Google Scholar 

  59. Weissleder R, et al. In vivo magnetic resonance imaging of transgene expression. Nat Med 2000;6(3):351–355.

    Article  PubMed  CAS  Google Scholar 

  60. Zhao M, et al. Differential conjugation of tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake. Bioconjug Chem 2002;13(4):840–844.

    Article  PubMed  CAS  Google Scholar 

  61. Perez JM, et al. Magnetic relaxation switches capable of sensing molecular interactions. Nat Biotechnol 2002;20(8):816–820.

    PubMed  CAS  Google Scholar 

  62. Perez JM, Josephson L, Weissleder R. Use of magnetic nanoparticles as nanosensors to probe for molecular interactions. Chembiochem 2004;5(3):261–264.

    Article  PubMed  CAS  Google Scholar 

  63. Perez JM, et al. DNA-based magnetic nanoparticle assembly acts as a magnetic relaxation nanoswitch allowing screening of DNA-cleaving agents. J Am Chem Soc 2002;124(12):2856–2857.

    Article  PubMed  CAS  Google Scholar 

  64. Tofts PS, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: Standardized quantities and symbols. J Magn Reson Imaging 1999;10(3):223–232.

    Article  PubMed  CAS  Google Scholar 

  65. Hulka C, et al. Dynamic echo-planar imaging of the breast: Experience in diagnosing breast carcinoma and correlation with tumor angiogenesis. Radiology 1997;205:837–842.

    PubMed  CAS  Google Scholar 

  66. Hulka C, Smith B, Sgroi D. Benign and malignant breast lesions: Differentiation with echo-planar MR imaging. Radiology 1995;197:33–38.

    PubMed  CAS  Google Scholar 

  67. Rosen B., et al. Perfusion imaging and NMR contrast agents. Magn Reson Med 1990;14(2):249–265.

    Article  PubMed  CAS  Google Scholar 

  68. Kety SS. Determinants of tissue oxygen tension. Fed Proc 1957;16(3):666–671.

    PubMed  CAS  Google Scholar 

  69. Knopp MV, et al. Pathophysiologic basis of contrast enhancement in breast tumors. J Magn Reson Imaging 1999;10(3):260–266.

    Article  PubMed  CAS  Google Scholar 

  70. Pham CD, et al. Magnetic resonance imaging detects suppression of tumor vascular permeability after administration of antibody to vascular endothelial growth factor. Cancer Invest 1998;16(4):225–230.

    PubMed  CAS  Google Scholar 

  71. Morgan B, et al. Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: Results from two phase I studies. J Clin Oncol 2003;21(21):3955–3964.

    Article  PubMed  CAS  Google Scholar 

  72. Piccoli CW. Contrast-enhanced breast MRI: Factors affecting sensitivity and specificity. Eur Radiol 1997;7(Suppl 5):281–288.

    Article  PubMed  Google Scholar 

  73. Su M, et al. Correlation of dynamic contrast enhancement MRI parameters with microvessel density and VEGF for assessment of angiogenesis in a breast cancer. J Magn Reson Imaging 2003;18:467–477.

    Article  PubMed  Google Scholar 

  74. Dadiani M, et al. High-resolution magnetic resonance imaging of disparities in the transcapillary transfer rates in orthotopically inoculated invasive breast tumors. Cancer Res 2004;64(9):3155–3161.

    Article  PubMed  CAS  Google Scholar 

  75. Port RE, et al. Multicompartment analysis of gadolinium chelate kinetics: Blood-tissue exchange in mammary tumors as monitored by dynamic MR imaging. J Magn Reson Imaging 1999;10(3):233–241.

    Article  PubMed  CAS  Google Scholar 

  76. Turetschek K, et al. MR imaging characterization of microvessels in experimental breast tumors by using a particulate contrast agent with histopathologic correlation. Radiology 2001;218:562–569.

    PubMed  CAS  Google Scholar 

  77. Turetschek K, et al. MRI monitoring of tumor response following angiogenesis inhibition in an experimental human breast cancer model. Eur J Nucl Med Mol Imaging 2002;30(3):448–455.

    Article  CAS  Google Scholar 

  78. Turetschek K, et al. MRI monitoring of tumor response to a novel VEGF tyrosine kinase inhibitor in an experimental breast cancer model. Acad Radiol 2002;9(Suppl 2):S519–20.

    Article  PubMed  Google Scholar 

  79. Turetschek K, et al. Tumor microvascular characterization using ultrasmall superparamagnetic iron oxide particles (USPIO) in an experimental breast cancer model. J Magn Reson Imaging 2001;13:882–888.

    Article  PubMed  CAS  Google Scholar 

  80. Rydland J, et al. New intravascular contrast agent applied to dynamic contrast enhanced MR imaging of human breast cancer. Acta Radiol 2003;44:275–283.

    Article  PubMed  CAS  Google Scholar 

  81. Turetschek K, et al. Tumor microvascular changes in antiangiogenic treatment: Assessment by magnetic resonance contrast media of different molecular weights. J Magn Reson Imaging 2004;20(1):138–144.

    Article  PubMed  Google Scholar 

  82. Schmiedl U, et al. Comparison of initial biodistribution patterns of Gd-DTPA and albumin-(Gd-DTPA) using rapid spin echo MR imaging. J Comput Assist Tomogr 1987;11(2):306–313.

    Article  PubMed  CAS  Google Scholar 

  83. Boxerman J. et al. MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 1995;34:555–566.

    Article  PubMed  CAS  Google Scholar 

  84. Dennie J, et al. NMR imaging of changes in vascular morphology due to tumor angiogenesis. Magn Reson Med 1998;40:793–799.

    Article  PubMed  CAS  Google Scholar 

  85. Bremer C, et al. Steady-state blood volume measurements in experimental tumors with different angiogenic burdens-a study in mice. Radiology 2003;226(1):214–220.

    Article  PubMed  Google Scholar 

  86. Tropres I, et al. Vessel size imaging. Magn Reson Med 2001;45:397–408.

    Article  PubMed  CAS  Google Scholar 

  87. Callahan RJ, et al. Preclinical evaluation and phase I clinical trial of a 99mTc-labeled synthetic polymer used in blood pool imaging. AJR Am J Roentgenol 1998;171(1):137–143.

    PubMed  CAS  Google Scholar 

  88. Bogdanov AA, Lewin M, Weissleder R. Approaches and agents for imaging the vascular system. Adv Drug Deliv Rev 1999;37(1–3):279–293.

    Article  PubMed  CAS  Google Scholar 

  89. Pasqualini R, Koivunen E, Ruoslahti E. Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol 1997;15(6):542–546.

    Article  PubMed  CAS  Google Scholar 

  90. Falcioni R, et al. Alpha 6 beta 4 and alpha 6 beta 1 integrins associate with ErbB-2 in human carcinoma cell lines. Exp Cell Res 1997;236(1):76–85.

    Article  PubMed  CAS  Google Scholar 

  91. Cheresh DA, et al. An Arg-Gly-Asp-directed receptor on the surface of human melanoma cells exists in an divalent cation-dependent functional complex with the disialoganglioside GD2. J Cell Biol 1987;105(3):1163–1173.

    Article  PubMed  CAS  Google Scholar 

  92. Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 1994;264(5158):569–571.

    Article  PubMed  CAS  Google Scholar 

  93. Schmieder AH, et al. Molecular MR imaging of melanoma angiogenesis with alpha(nu)beta(3)-targeted paramagnetic nanoparticles. Magn Reson Med 2005;53(3):621–627.

    Article  PubMed  CAS  Google Scholar 

  94. Anderson SA, et al. Magnetic resonance contrast enhancement of neovasculature with alpha(v)beta(3)-targeted nanoparticles. Magn Reson Med 2000;44(3):433–439.

    Article  PubMed  CAS  Google Scholar 

  95. Winter PM, et al. Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel alpha(nu)beta3-targeted nanoparticle and 1.5 tesla magnetic resonance imaging. Cancer Res 2003;63(18):5838–5843.

    PubMed  CAS  Google Scholar 

  96. Montet X, Funovics M, Montet-Abou K, Weissleder R, Josephson L. Multivalent effects of RGD peptides obtained by nanoparticle display. J Med Chem 2006;49:6087–6093.

    Article  PubMed  CAS  Google Scholar 

  97. Siegel BM, Mayzel KA, Love SM. Level I and II axillary dissection in the treatment of early-stage breast cancer. An analysis of 259 consecutive patients. Arch Surg 1990;125(9):1144–1147.

    PubMed  CAS  Google Scholar 

  98. Senofsky GM, et al. Total axillary lymphadenectomy in the management of breast cancer. Arch Surg 1991;126(11):1336–41; discussion 1341–1342.

    PubMed  CAS  Google Scholar 

  99. Stets C, et al. Axillary lymph node metastases: A statistical analysis of various parameters in MRI with USPIO. J Magn Reson Imaging 2002;16:60–68.

    Article  PubMed  Google Scholar 

  100. Weissleder R, et al. Ultrasmall superparamagnetic iron oxide: An intravenous contrast agent for assessing lymph nodes with MR imaging. Radiology 1990;175:494–498.

    PubMed  CAS  Google Scholar 

  101. Harisinghani MG, Weissleder R. Sensitive, noninvasive detection of lymph node metastases. PLoS Med 2004;1(3):e66.

    Article  PubMed  Google Scholar 

  102. Misselwitz B, Platzek J, Weinmann HJ. Early MR lymphography with gadofluorine M in rabbits. Radiology 2004;231(3):682–688.

    Article  PubMed  Google Scholar 

  103. Harika L, et al. Macromolecular intravenous contrast agent for MR lymphography: Characterization and efficacy studies. Radiology 1996;198(2):365–370.

    PubMed  CAS  Google Scholar 

  104. Harika L, et al. MR lymphography with a lymphotropic T1-type MR contrast agent: Gd-DTPA-PGM. Magn Reson Med 1995;33(1):88–92.

    Article  PubMed  CAS  Google Scholar 

  105. Wunderbaldinger P, et al. Detection of lymph node metastases by contrast-enhanced MRI in an experimental model. Magn Reson Med 2002;47(2):292–297.

    Article  PubMed  Google Scholar 

  106. Safarik I, Safarikova M. Use of magnetic techniques for the isolation of cells. J Chromatogr B Biomed Sci Appl 1999;722(1–2):33–53.

    Article  PubMed  CAS  Google Scholar 

  107. Lewin M, et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 2000;18(4):410–414.

    Article  PubMed  CAS  Google Scholar 

  108. Weissleder R, et al. Magnetically labeled cells can be detected by MR imaging. J Magn Reson Imaging 1997;7(1):258–263.

    Article  PubMed  CAS  Google Scholar 

  109. Schoepf U, et al. Intracellular magnetic labeling of lymphocytes for in vivo trafficking studies. Biotechniques 1998;24(4):642–646, 648–651.

    PubMed  CAS  Google Scholar 

  110. Hawrylak N, et al. Nuclear magnetic resonance (NMR) imaging of iron oxide-labeled neural transplants. Exp Neurol 1993;121(2):181–192.

    Article  PubMed  CAS  Google Scholar 

  111. Bulte JW, et al. Neurotransplantation of magnetically labeled oligodendrocyte progenitors: Magnetic resonance tracking of cell migration and myelination. Proc Natl Acad Sci USA 1999;96(26):15256–15261.

    Article  PubMed  CAS  Google Scholar 

  112. Lewin M, et al. In vivo assessment of vascular endothelial growth factor-induced angiogenesis. Int J Cancer 1999;83(6):798–802.

    Article  PubMed  CAS  Google Scholar 

  113. Zelivyanskaya ML, et al. Tracking superparamagnetic iron oxide labeled monocytes in brain by high-field magnetic resonance imaging. J Neurosci Res 2003;73(3):284–295.

    Article  PubMed  CAS  Google Scholar 

  114. Moore A, Weissleder R, Bogdanov A Jr. Uptake of dextran-coated monocrystalline iron oxides in tumor cells and macrophages. J Magn Reson Imaging 1997;7(6):1140–1145.

    Article  PubMed  CAS  Google Scholar 

  115. Franklin RJ, et al. Magnetic resonance imaging of transplanted oligodendrocyte precursors in the rat brain. Neuroreport 1999;10(18):3961–3965.

    Article  PubMed  CAS  Google Scholar 

  116. Kircher MF, et al. In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors. Cancer Res 2003;63(20):6838–6846.

    PubMed  CAS  Google Scholar 

  117. Bulte JW, et al. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 2001;19(12):1141–1147.

    Article  PubMed  CAS  Google Scholar 

  118. Bulte JW, Duncan ID, Frank JA. In vivo magnetic resonance tracking of magnetically labeled cells after transplantation. J Cereb Blood Flow Metab 2002;22(8):899–907.

    Article  PubMed  Google Scholar 

  119. Daldrup-Link HE, et al. In vivo tracking of genetically engineered, anti-HER2/neu directed natural killer cells to HER2/neu positive mammary tumors with magnetic resonance imaging. Eur Radiol 2005;15(1):4–13.

    Article  PubMed  Google Scholar 

  120. Anderson SA, et al. Noninvasive MR imaging of magnetically labeled stem cells to directly identify neovasculature in a glioma model. Blood 2005;105(1):420–425.

    Article  PubMed  CAS  Google Scholar 

  121. Zhao M, et al. Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat Med 2001;7(11):1241–1244.

    Article  PubMed  CAS  Google Scholar 

  122. Josephson L, et al. High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug Chem 1999;10(2):186–191.

    Article  PubMed  CAS  Google Scholar 

  123. Perez JM, et al. Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. J Am Chem Soc 2003;125(34):10192–10193.

    Article  PubMed  CAS  Google Scholar 

  124. Hogemann D, Basilion JP. “Seeing inside the body”: MR imaging of gene expression. Eur J Nucl Med Mol Imaging 2002;29(3):400–408

    Article  PubMed  CAS  Google Scholar 

  125. Tempany CM, McNeil BJ. Advances in biomedical imaging. JAMA 2001;285(5):562–567.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Guimaraes, A.S.R., Weissleder, R. (2007). Magnetic Resonance Probes for Tumor Imaging. In: Shields, A.F., Price, P. (eds) In Vivo Imaging of Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-341-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-341-7_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-633-7

  • Online ISBN: 978-1-59745-341-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics