Skip to main content

Positron Emission Tomography Measurement of Drug Kinetics

  • Chapter
Book cover In Vivo Imaging of Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Positron emission tomography (PET) is a highly sensitive noninvasive functional imaging modality that can provide quantitative in vivo tissue data with high temporal resolution. Such information can be exploited to assess the behavior of a drug within the body (pharmacokinetics) and its effects on the biosystem (pharmacodynamics). Knowledge of in vivo drug pharmacology is especially invaluable in the assessment and development of anticancer agents and is likely to play a significant role in the development of novel targeted therapies. Specifically, PET pharmacokinetic studies can provide information on drug access, kinetics, and drug concentration in tumors and normal tissues, all of which have a bearing on drug activity, tissue toxicity, and drug scheduling. In addition, such studies can provide proof of principle of the in vivo mechanism of drug action and in vivo targeting of molecular therapeutic targets. In this review, basic principles of PET drug kinetic measurement techniques are discussed, followed by examples of PET kinetic studies performed at various stages of the drug developmental process and their utility and contribution to anticancer drug development are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Teorell T. Kinetics of distribution of substances administered to the body. I: The extravascular modes of administration. Arch Int Pharmacodynam 1937;57:205–225.

    CAS  Google Scholar 

  2. Teorell T. Kinetics of distribution of substances administered to the body. II: The intravascular modes of administration. Arch Int Pharmacodynam 1937;57:226–240.

    CAS  Google Scholar 

  3. Pond SM, Tozer TN. First-pass elimination. Basic concepts and clinical consequences. 1984;9(1):1–25.

    CAS  Google Scholar 

  4. Laurence DR, Bennett PN, Brown MJ. General pharmacology. In: Clinical Pharmacology, 8th ed. Edinburgh: Churchill Livingstone, 1997.

    Google Scholar 

  5. Ayrton A, Morgan P. Role of transport proteins in drug absorption, distribution and excretion. Xenobiotica 2001;31(8–9):469–497.

    PubMed  CAS  Google Scholar 

  6. Sitar DS. Human drug metabolism in vivo. Pharmacol Ther 1989;43(3):363–375.

    PubMed  CAS  Google Scholar 

  7. Meyer UA, Zanger UM, Skoda RC, Grant D, Blum M. Genetic polymorphisms of drug metabolism. Prog Liver Dis 1990;9:307–323.

    PubMed  CAS  Google Scholar 

  8. Diasio RB, Beavers TL, Carpenter JT. Familial deficiency of dihydropyrimidine dehydrogenase. Biochemical basis for familial pyrimidinemia and severe 5-fluorouracil-induced toxicity. J Clin Invest 1988;81(1):47–51.

    PubMed  CAS  Google Scholar 

  9. Desmeules J, Gascon MP, Dayer P, Magistris M. Impact of environmental and genetic factors on codeine analgesia. Eur J Clin Pharmacol 1991;41(1):23–26.

    PubMed  CAS  Google Scholar 

  10. Idle JR, Armstrong M, Boddy AV, et al. The pharmacogenetics of chemical carcinogenesis. Pharmacogenetics 1992;2(6):246–258.

    PubMed  CAS  Google Scholar 

  11. Kintzel PE, Dorr RT. Anticancer drug renal toxicity and elimination: Dosing guidelines for altered renal function. Cancer Treat Rev 1995;21(1):33–64.

    PubMed  CAS  Google Scholar 

  12. LeBlanc GA. Hepatic vectorial transport of xenobiotics. Chem Biol Interact 1994;90(2):101–120.

    PubMed  CAS  Google Scholar 

  13. Gibaldi M, Koup JR. Pharmacokinetic concepts—drug binding, apparent volume of distribution and clearance. Eur J Clin Pharmacol 1981;20(4):299–305.

    PubMed  CAS  Google Scholar 

  14. Ratain MJ. Pharmacology of cancer chemotherapy. In: DeVita VT, Hellman S, Rosenberg SA, eds. Cancer: Principles and Practice of Oncology, 5th ed. Philadelphia: Lippincott-Raven, 1997:375–385.

    Google Scholar 

  15. Riegelman S, Loo J, Rowland M. Concept of a volume of distribution and possible errors in evaluation of this parameter. J Pharm Sci 1968;57(1):128–133.

    PubMed  CAS  Google Scholar 

  16. D’Argenio DZ, Schumitzky A. A program package for simulation and parameter estimation in pharmacokinetic systems. Comput Programs Biomed 1979;9(2):115–134.

    CAS  Google Scholar 

  17. Weiner DL. NONLIN84/PCNONLIN: Software for the statistical analysis of nonlinear models. Methods Find Exp Clin Pharmacol 1986;8(10):625–628.

    PubMed  CAS  Google Scholar 

  18. Yamaoka K, Nakagawa T, Uno T. Statistical moments in pharmacokinetics. J Pharmacokinet Biopharm 1978;6(6):547–558.

    PubMed  CAS  Google Scholar 

  19. Cutler DJ. Theory of the mean absorption time, an adjunct to conventional bioavailability studies. J Pharm Pharmacol 1978;30(8):476–478.

    PubMed  CAS  Google Scholar 

  20. Yeh KC, Kwan KC. A comparison of numerical integrating algorithms by trapezoidal, Lagrange, and spline approximation. J Pharmacokinet Biopharm 1978;6(1):79–98.

    PubMed  CAS  Google Scholar 

  21. Kobayashi K, Jodrell DI, Ratain MJ. Pharmacodynamic-pharmacokinetic relationships and therapeutic drug monitoring. Cancer Surv 1993;17:51–78.

    PubMed  CAS  Google Scholar 

  22. Stoller RG, Hande KR, Jacobs SA, Rosenberg SA, Chabner BA. Use of plasma pharmacokinetics to predict and prevent methotrexate toxicity. N Engl J Med 1977;297(12):630–634.

    PubMed  CAS  Google Scholar 

  23. Monjanel S, Rigault JP, Cano JP, Carcassonne Y, Favre R. High-dose methotrexate: Preliminary evaluation of a pharmacokinetic approach. Cancer Chemother Pharmacol 1979;3(3):189–196.

    PubMed  CAS  Google Scholar 

  24. Calvert AH, Newell DR, Gumbrell LA, et al. Carboplatin dosage: Prospective evaluation of a simple formula based on renal function. J Clin Oncol 1989;7(11):1748–1756.

    PubMed  CAS  Google Scholar 

  25. Newell DR, Siddik ZH, Gumbrell LA, et al. Plasma free platinum pharmacokinetics in patients treated with high dose carboplatin. Eur J Cancer Clin Oncol 1987;23(9):1399–1405.

    PubMed  CAS  Google Scholar 

  26. Chou TC. Derivation and properties of Michaelis-Menten type and Hill type equations for reference ligands. J Theor Biol 1976;59(2):253–276.

    PubMed  CAS  Google Scholar 

  27. Drewinko B, Roper PR, Barlogie B. Patterns of cell survival following treatment with antitumor agents in vitro. Eur J Cancer 1979;15(1):93–99.

    PubMed  CAS  Google Scholar 

  28. Wagner JG. Kinetics of pharmacologic response. I. Proposed relationships between response and drug concentration in the intact animal and man. J Theor Biol 1968;20(2):173–201.

    PubMed  CAS  Google Scholar 

  29. Reece PA, Stafford I, Russell J, Khan M, Gill PG. Creatinine clearance as a predictor of ultrafilterable platinum disposition in cancer patients treated with cisplatin: Relationship between peak ultra-filterable platinum plasma levels and nephrotoxicity. J Clin Oncol 1987;5(2):304–309.

    PubMed  CAS  Google Scholar 

  30. Grochow LB, Jones RJ, Brundrett RB, et al. Pharmacokinetics of busulfan: Correlation with venoocclusive disease in patients undergoing bone marrow transplantation. Cancer Chemother Pharmacol 1989;25(1):55–61.

    PubMed  CAS  Google Scholar 

  31. Egorin MJ, Van Echo DA, Tipping SJ, et al. Pharmacokinetics and dosage reduction of cis-diamine(1,1-cyclobutanedicarboxylato)platinum in patients with impaired renal function. Cancer Res 1984;44(11):5432–5438.

    PubMed  CAS  Google Scholar 

  32. Newell DR, Pearson AD, Balmanno K, et al. Carboplatin pharmacokinetics in children: The development of a pediatric dosing formula. The United Kingdom Children’s Cancer Study Group. J Clin Oncol 1993;11(12):2314–2323.

    PubMed  CAS  Google Scholar 

  33. Jodrell DI, Egorin MJ, Canetta RM, et al. Relationships between carboplatin exposure and tumor response and toxicity in patients with ovarian cancer. J Clin Oncol 1992;10(4):520–528.

    PubMed  CAS  Google Scholar 

  34. Ackland SP, Ratain MJ, Vogelzang NJ, Choi KE, Ruane M, Sinkule JA. Pharmacokinetics and pharmacodynamics of long-term continuous-infusion doxorubicin. Clin Pharmacol Ther 1989;45(4):340–347.

    PubMed  CAS  Google Scholar 

  35. Extra JM, Rousseau F, Bruno R, Clavel M, Le Bail N, Marty M. Phase I and pharmacokinetic study of Taxotere (RP 56976; NSC 628503) given as a short intravenous infusion. Cancer Res 1993;53(5):1037–1042.

    PubMed  CAS  Google Scholar 

  36. Kunitoh H, Watanabe K. Phase I/II and pharmacologic study of long-term continuous infusion etoposide combined with cisplatin in patients with advanced non-small-cell lung cancer. J Clin Oncol 1994;12(1):83–89.

    PubMed  CAS  Google Scholar 

  37. Santini J, Milano G, Thyss A, et al. 5-FU therapeutic monitoring with dose adjustment leads to an improved therapeutic index in head and neck cancer. Br J Cancer 1989;59(2):287–290.

    PubMed  CAS  Google Scholar 

  38. Vokes EE, Mick R, Kies MS, et al. Pharmacodynamics of fluorouracil-based induction chemotherapy in advanced head and neck cancer. J Clin Oncol 1996;14(5):1663–1671.

    PubMed  CAS  Google Scholar 

  39. Thyss A, Milano G, Renee N, Vallicioni J, Schneider M, Demard F. Clinical pharmacokinetic study of 5-FU in continuous 5-day infusions for head and neck cancer. Cancer Chemother Pharmacol 1986;16(1):64–66.

    PubMed  CAS  Google Scholar 

  40. Milano G, Etienne MC, Renee N, et al. Relationship between fluorouracil systemic exposure and tumor response and patient survival. J Clin Oncol 1994;12(6):1291–1295.

    PubMed  CAS  Google Scholar 

  41. Canal P, Gay C, Dezeuze A, et al. Pharmacokinetics and pharmacodynamics of irinotecan during a phase II clinical trial in colorectal cancer. Pharmacology and Molecular Mechanisms Group of the European Organization for Research and Treatment of Cancer. J Clin Oncol 1996;14(10):2688–2695.

    PubMed  CAS  Google Scholar 

  42. Mick R, Gupta E, Vokes EE, Ratain MJ. Limited-sampling models for irinotecan pharmacokinetics-pharmacodynamics: Prediction of biliary index and intestinal toxicity. J Clin Oncol 1996;14(7):2012–2019.

    PubMed  CAS  Google Scholar 

  43. Evans WE, Crom WR, Abromowitch M, et al. Clinical pharmacodynamics of high-dose methotrexate in acute lymphocytic leukemia. Identification of a relation between concentration and effect. N Engl J Med 1986;314(8):471–477.

    PubMed  CAS  Google Scholar 

  44. Gianni L, Kearns CM, Giani A, et al. Nonlinear pharmacokinetics and metabolism of paclitaxel and its pharmacokinetic/pharmacodynamic relationships in humans. J Clin Oncol 1995;13(1):180–190.

    PubMed  CAS  Google Scholar 

  45. Ratain MJ, Vogelzang NJ. Phase I and pharmacological study of vinblastine by prolonged continuous infusion. Cancer Res 1986;46(9):4827–4830.

    PubMed  CAS  Google Scholar 

  46. Desai ZR, Van den Berg HW, Bridges JM, Shanks RG. Can severe vincristine neurotoxicity be prevented? Cancer Chemother Pharmacol 1982;8(2):211–214.

    PubMed  CAS  Google Scholar 

  47. Saleem A, Aboagye EO, Price PM. In vivo monitoring of drugs using radiotracer techniques. Adv Drug Deliv Rev 2000;41(1):21–39.

    PubMed  CAS  Google Scholar 

  48. Mintun MA, Welch MJ, Siegel BA, et al. Breast cancer: PET imaging of estrogen receptors. Radiology 1988;169(1):45–48.

    PubMed  CAS  Google Scholar 

  49. Metzler CM, Tong DD. Computational problems of compartment models with Michaelis-Mententype elimination. J Pharm Sci 1981;70(7):733–737.

    PubMed  CAS  Google Scholar 

  50. Zasadny KR, Wahl RL. Standardized uptake values of normal tissues at PET with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose: Variations with body weight and a method for correction. Radiology 1993;189(3):847–850.

    PubMed  CAS  Google Scholar 

  51. Kim CK, Gupta NC, Chandramouli B, Alavi A. Standardized uptake values of FDG: Body surface area correction is preferable to body weight correction. J Nucl Med 1994;35(1):164–167.

    PubMed  CAS  Google Scholar 

  52. Kety SS, Schmidt CF. The nitrous oxide method for quantitative determination of cerebral blood flow in man; theory, procedure and normal values. J Clin Invest 1948;27:476–483.

    PubMed  CAS  Google Scholar 

  53. Gunn RN, Yap JT, Wells P, et al. A general method to correct PET data for tissue metabolites using a dual-scan approach. J Nucl Med 2000;41(4):706–711.

    PubMed  CAS  Google Scholar 

  54. Blasberg RG, Roelcke U, Weinreich R, et al. Imaging brain tumor proliferative activity with [124I]iododeoxyuridine. Cancer Res 2000;60(3):624–635.

    PubMed  CAS  Google Scholar 

  55. Aboagye EO, Saleem A, Cunningham VJ, Osman S, Price PM. Extraction of 5-fluorouracil by tumor and liver: A noninvasive positron emission tomography study of patients with gastrointestinal cancer. Cancer Res 2001;61(13):4937–4941.

    PubMed  CAS  Google Scholar 

  56. Pedersen F, Bergstrom M, Bengtsson E, Langstrom B. Principal component analysis of dynamic positron emission tomography images. Eur J Nucl Med 1994;21(12):1285–1292.

    PubMed  CAS  Google Scholar 

  57. O’Sullivan F, Muzi M, Graham MM, Spence A. Parametric imaging by mixture analysis in 3D validation for dual-tracer glucose studies. In: Myers R, Cunningham VJ, Bailey DL, Jones T, eds. Quantification of Brain Function Using PET. San Diego: Academic Press, 1996:297–300.

    Google Scholar 

  58. Yap JT, Cooper M, Chen CT, Cunningham VJ. Generation of parametric images using factor analysis. In: Myers R, Cunningham VJ, Bailey DL, Jones T, eds. Quantification of Brain Function Using PET. San Diego: Academic Press, 1996:292–296.

    Google Scholar 

  59. Cunningham VJ, Jones T. Spectral analysis of dynamic PET studies. J Cereb Blood Flow Metab 1993;13(1):15–23.

    PubMed  CAS  Google Scholar 

  60. Rutland MD. A single injection technique for subtraction of blood background in 131I-hippuran renograms. Br J Radiol 1979;52(614):134–137.

    PubMed  CAS  Google Scholar 

  61. Gjedde A. Calculation of cerebral glucose phosphorylation from brain uptake of glucose analogs in vivo: A re-examination. Brain Res 1982;257(2):237–74.

    PubMed  CAS  Google Scholar 

  62. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 1983;3(1):1–7.

    PubMed  CAS  Google Scholar 

  63. Tobler HJ, Engel G. Affinity spectra: A novel way for the evaluation of equilibrium binding experiments. Naunyn Schmiedebergs Arch Pharmacol 1983;322(3):183–192.

    PubMed  CAS  Google Scholar 

  64. Meikle SR, Matthews JC, Brock CS, et al. Pharmacokinetic assessment of novel anti-cancer drugs using spectral analysis and positron emission tomography: A feasibility study. Cancer Chemother Pharmacol 1998;42(3):183–193.

    PubMed  CAS  Google Scholar 

  65. Ginos JZ, Cooper AJ, Dhawan V, et al. [13N]cisplatin PET to assess pharmacokinetics of intra-arterial versus intravenous chemotherapy for malignant brain tumors. J Nucl Med 1987;28(12):1844–1852.

    PubMed  CAS  Google Scholar 

  66. Tyler JL, Yamamoto YL, Diksic M, et al. Pharmacokinetics of superselective intra-arterial and intravenous [11C]BCNU evaluated by PET. J Nucl Med 1986;27(6):775–780.

    PubMed  CAS  Google Scholar 

  67. Inoue T, Kim EE, Wallace S, et al. Preliminary study of cardiac accumulation of F-18 fluorotamoxifen in patients with breast cancer. Clin Imaging 1997;21(5):332–336.

    PubMed  CAS  Google Scholar 

  68. Atwell GJ, Rewcastle GW, Baguley BC, Denny WA. Potential antitumor agents. 50. In vivo solidtumor activity of derivatives of N-[2-(dimethylamino)ethyl]acridine-4-carboxamide. J Med Chem 1987;30(4):664–669.

    PubMed  CAS  Google Scholar 

  69. Finlay GJ, Marshall E, Matthews JH, Paull KD, Baguley BC. In vitro assessment of N-[2-(dimethyl amino)ethyl]acridine-4-carboxamide, a DNA-intercalating antitumour drug with reduced sensitivity to multidrug resistance. Cancer Chemother Pharmacol 1993;31(5):401–406.

    PubMed  CAS  Google Scholar 

  70. Finlay GJ, Baguley BC. Selectivity of N-[2-(dimethylamino)ethyl]acridine-4-carboxamide towards Lewis lung carcinoma and human tumour cell lines in vitro. Eur J Cancer Clin Oncol 1989;25(2):271–277.

    PubMed  CAS  Google Scholar 

  71. Baguley BC, Holdaway KM, Fray LM. Design of DNA intercalators to overcome topoisomerase IImediated multidrug resistance. J Natl Cancer Inst 1990;82(5):398–402.

    PubMed  CAS  Google Scholar 

  72. Baguley BC, Zhuang L, Marshall E. Experimental solid tumour activity of N-[2-(dimethylamino)ethyl]-acridine-4-carboxamide. Cancer Chemother Pharmacol 1995;36(3):244–248.

    PubMed  CAS  Google Scholar 

  73. Paxton JW, Young D, Evans SM, Kestell P, Robertson IG, Cornford EM. Pharmacokinetics and toxicity of the antitumour agent N-[2-(dimethylamino)ethyl]acridine-4-carboxamide after i.v. administration in the mouse. Cancer Chemother Pharmacol 1992;29(5):379–384.

    PubMed  CAS  Google Scholar 

  74. Paxton JW, Young D, Robertson IG. Pharmacokinetics of acridine-4-carboxamide in the rat, with extrapolation to humans. Cancer Chemother Pharmacol 1993;32(4):323–325.

    PubMed  CAS  Google Scholar 

  75. Cornford EM, Young D, Paxton JW. Comparison of the blood-brain barrier and liver penetration of acridine antitumor drugs. Cancer Chemother Pharmacol 1992;29(6):439–444.

    PubMed  CAS  Google Scholar 

  76. Osman S, Luthra SK, Brady F, et al. Studies on the metabolism of the novel antitumor agent [Nmethyl-11C]N-[2-(dimethylamino)ethyl]acridine-4-carboxamide in rats and humans prior to phase I clinical trials. Cancer Res 1997;57(11):2172–2180.

    PubMed  CAS  Google Scholar 

  77. Brady F, Luthra SK, Brown G, et al. Carbon-11 labelling of the antitumour agent N-[2-(dimethyla mino)ethyl]acridine-4-carboxamide (DACA) and determination of plasma metabolites in man. Appl Radiat Isot 1997;48(4):487–492.

    PubMed  CAS  Google Scholar 

  78. Saleem A, Harte RJ, Matthews JC, et al. Pharmacokinetic evaluation of N-[2-(dimethylamino)ethyl]acridine-4-carboxamide in patients by positron emission tomography. J Clin Oncol 2001;19(5):1421–1429.

    PubMed  CAS  Google Scholar 

  79. Propper DJ, de Bono J, Saleem A, et al. Use of positron emission tomography in pharmacokinetic studies to investigate therapeutic advantage in a phase I study of 120-hour intravenous infusion XR5000. J Clin Oncol 2003;21(2):203–210.

    PubMed  CAS  Google Scholar 

  80. Osman S, Rowlinson-Busza G, Luthra SK, et al. Comparative biodistribution and metabolism of carbon-11-labeled N-[2-(dimethylamino)ethyl]acridine-4-carboxamide and DNA-intercalating analogues. Cancer Res 2001;61(7):2935–2944.

    PubMed  CAS  Google Scholar 

  81. Schofield PC, Robertson IG, Paxton JW, et al. Metabolism of N-[2-(Dimethylamino)ethyl]acridine-4-carboxamide in cancer patients undergoing a phase I clinical trial. Cancer Chemother Pharmacol 1999;44(1):51–58.

    PubMed  CAS  Google Scholar 

  82. Twelves CJ, Gardner C, Flavin A, et al. Phase I and pharmacokinetic study of DACA (XR5000): A novel inhibitor of topoisomerase I and II. CRC Phase I/II Committee. Br J Cancer 1999;80(11):1786–1791.

    PubMed  CAS  Google Scholar 

  83. McCrystal MR, Evans BD, Harvey VJ, Thompson PI, Porter DJ, Baguley BC. Phase I study of the cytotoxic agent N-[2-(dimethylamino)ethyl]acridine-4-carboxamide. Cancer Chemother Pharmacol 1999;44(1):39–44.

    PubMed  CAS  Google Scholar 

  84. Evans SM, Young D, Robertson IG, Paxton JW. Intraperitoneal administration of the antitumour agent N-[2-(dimethylamino)ethyl]acridine-4-carboxamide in the mouse: Bioavailability, pharmacokinetics and toxicity after a single dose. Cancer Chemother Pharmacol 1992;31(1):32–36.

    PubMed  CAS  Google Scholar 

  85. Pinedo HM, Peters GF. Fluorouracil: Biochemistry and pharmacology. J Clin Oncol 1988;6(10):1653–1664.

    PubMed  CAS  Google Scholar 

  86. Modulation of fluorouracil by leucovorin in patients with advanced colorectal cancer: Evidence in terms of response rate. Advanced Colorectal Cancer Meta-Analysis Project [see comments]. J Clin Oncol 1992;10(6):896–903.

    Google Scholar 

  87. Meta-analysis of randomized trials testing the biochemical modulation of fluorouracil by methotrexate in metastatic colorectal cancer. Advanced Colorectal Cancer Meta-Analysis Project. J Clin Oncol 1994;12(5):960–969.

    Google Scholar 

  88. Efficacy of intravenous continuous infusion of fluorouracil compared with bolus administration in advanced colorectal cancer. Meta-analysis Group In Cancer. J Clin Oncol 1998;16(1):301–308.

    Google Scholar 

  89. Saltz LB, Cox JV, Blanke C, et al. Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan Study Group. N Engl J Med 2000;343(13):905–914.

    PubMed  CAS  Google Scholar 

  90. Douillard JY, Cunningham D, Roth AD, et al. Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: A multicentre randomised trial. Lancet 2000;355(9209):1041–1047.

    PubMed  CAS  Google Scholar 

  91. Chau I, Webb A, Cunningham D, et al. Oxaliplatin and protracted venous infusion of 5-fluorouracil in patients with advanced or relapsed 5-fluorouracil pretreated colorectal cancer. Br J Cancer 2001;85(9):1258–1264.

    PubMed  CAS  Google Scholar 

  92. de Gramont A, Figer A, Seymour M, et al. Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J Clin Oncol 2000;18(16):2938–2947.

    PubMed  Google Scholar 

  93. Brown GD, Khan SR, Steel CJ, et al. A practical synthesis of 5-[18F]fluorouracil using HPLC and a study of its metabolic profile in rats. J Label Compd Radiopharm 1993;32:521–522.

    Google Scholar 

  94. Vine EN, Young D, Vine WH, Wolf W. An improved synthesis of 18F-5-fluorouracil. Int J Appl Radiat Isot 1979;30(7):401–405.

    PubMed  CAS  Google Scholar 

  95. Shani J, Young D, Schlesinger T, et al. Dosimetry and preliminary human studies of 18F-5-fluorouracil. Int J Nucl Med Biol 1982;9(1):25–35.

    PubMed  CAS  Google Scholar 

  96. Young D, Vine E, Ghanbarpour A, Shani J, Siemsen JK, Wolf W. Metabolic and distribution studies with radiolabeled 5-fluorouracil. Nuklearmedizin 1982;21(1):1–7.

    PubMed  CAS  Google Scholar 

  97. Dimitrakopoulou-Strauss A, Strauss LG, Schlag P, et al. Fluorine-18-fluorouracil to predict therapy response in liver metastases from colorectal carcinoma. J Nucl Med 1998;39(7):1197–1202.

    PubMed  CAS  Google Scholar 

  98. Dimitrakopoulou-Strauss A, Strauss LG, Schlag P, et al. Intravenous and intra-arterial oxygen-15-labeled water and fluorine-18-labeled fluorouracil in patients with liver metastases from colorectal carcinoma. J Nucl Med 1998;39(3):465–473.

    PubMed  CAS  Google Scholar 

  99. Harte RJ, Matthews JC, O’Reilly SM, Price PM. Sources of error in tissue and tumor measurements of 5-[18F]fluorouracil. J Nucl Med 1998;39(8):1370–1376.

    PubMed  CAS  Google Scholar 

  100. Harte RJ, Matthews JC, O’Reilly SM, et al. Tumor, normal tissue, and plasma pharmacokinetic studies of fluorouracil biomodulation with N-phosphonacetyl-L-aspartate, folinic acid, and interferon alfa. J Clin Oncol 1999;17(5):1580–158.

    PubMed  CAS  Google Scholar 

  101. Moehler M, Dimitrakopoulou-Strauss A, Gutzler F, Raeth U, Strauss LG, Stremmel W. 18F-labeled fluorouracil positron emission tomography and the prognoses of colorectal carcinoma patients with metastases to the liver treated with 5-fluorouracil. Cancer 1998;83(2):245–253.

    PubMed  CAS  Google Scholar 

  102. Dimitrakopoulou A, Strauss LG, Clorius JH, et al. Studies with positron emission tomography after systemic administration of fluorine-18-uracil in patients with liver metastases from colorectal carcinoma. J Nucl Med 1993;34(7):1075–1081.

    PubMed  CAS  Google Scholar 

  103. Kissel J, Brix G, Bellemann ME, et al. Pharmacokinetic analysis of 5-[18F]fluorouracil tissue concentrations measured with positron emission tomography in patients with liver metastases from colorectal adenocarcinoma. Cancer Res 1997;57(16):3415–3423.

    PubMed  CAS  Google Scholar 

  104. Shani J, Wolf W, Schlesinger T, et al. Distribution of 18F-5-fluorouracil in tumor-bearing mice and rats. Int J Nucl Med Biol 1978;5(1):19–28.

    PubMed  CAS  Google Scholar 

  105. Presant CA, Wolf W, Albright MJ, et al. Human tumor fluorouracil trapping: Clinical correlations of in vivo 19F nuclear magnetic resonance spectroscopy pharmacokinetics. J Clin Oncol 1990;8(11):1868–1873.

    PubMed  CAS  Google Scholar 

  106. Presant CA, Wolf W, Waluch V, et al. Association of intratumoral pharmacokinetics of fluorouracil with clinical response. Lancet 1994;343(8907):1184–1187.

    PubMed  CAS  Google Scholar 

  107. Ahmed FY, Johnston SJ, Cassidy J, et al. Eniluracil treatment completely inactivates dihydropyrimidine dehydrogenase in colorectal tumours. J Clin Oncol 1999;17(8):2439–2445.

    PubMed  CAS  Google Scholar 

  108. Baker SD, Khor SP, Adjei AA, et al. Pharmacokinetic, oral bioavailability, and safety study of fluorouracil in patients treated with 776C85, an inactivator of dihydropyrimidine dehydrogenase. J Clin Oncol 1996;14(12):3085–3096.

    PubMed  CAS  Google Scholar 

  109. Saleem A, Yap J, Osman S, et al. Modulation of fluorouracil tissue pharmacokinetics by eniluracil: In-vivo imaging of drug action. Lancet 2000;355(9221):2125–2131.

    PubMed  CAS  Google Scholar 

  110. Lu Z, Zhang R, Diasio RB. Population characteristics of hepatic dihydropyrimidine dehydrogenase activity, a key metabolic enzyme in 5-fluorouracil chemotherapy. Clin Pharmacol Ther 1995;58(5):512–522.

    PubMed  CAS  Google Scholar 

  111. Naguib FN, el Kouni MH, Cha S. Enzymes of uracil catabolism in normal and neoplastic human tissues. Cancer Res 1985;45(11 Pt 1):5405–5412.

    PubMed  CAS  Google Scholar 

  112. Brix G, Bellemann ME, Gerlach L, Haberkorn U. Intra-and extracellular fluorouracil uptake: Assessment with contrast-enhanced metabolic F-19 MR imaging. Radiology 1998;209(1):259–267.

    PubMed  CAS  Google Scholar 

  113. Heggie GD, Sommadossi JP, Cross DS, Huster WJ, Diasio RB. Clinical pharmacokinetics of 5-fluorouracil and its metabolites in plasma, urine, and bile. Cancer Res 1987;47(8):2203–2206.

    PubMed  CAS  Google Scholar 

  114. Zhang RW, Soong SJ, Liu TP, Barnes S, Diasio SB. Pharmacokinetics and tissue distribution of 2-fluoro-beta-alanine in rats. Potential relevance to toxicity pattern of 5-fluorouracil. Drug Metab Dispos 1992;20(1):113–119.

    PubMed  CAS  Google Scholar 

  115. Toxicity of fluorouracil in patients with advanced colorectal cancer: Effect of administration schedule and prognostic factors. Meta-Analysis Group In Cancer. J Clin Oncol 1998;16(11):3537–3541.

    Google Scholar 

  116. Fraile RJ, Baker LH, Buroker TR, Horwitz J, Vaitkevicius VK. Pharmacokinetics of 5-fluorouracil administered orally, by rapid intravenous and by slow infusion. Cancer Res 1980;40(7):2223–2228.

    PubMed  CAS  Google Scholar 

  117. Baker SD, Diasio RB, O’Reilly S, et al. Phase I and pharmacologic study of oral fluorouracil on a chronic daily schedule in combination with the dihydropyrimidine dehydrogenase inactivator eniluracil. J Clin Oncol 2000;18(4):915–926.

    PubMed  CAS  Google Scholar 

  118. Schilsky RL, Levin J, West WH, et al. Randomized, open-label, phase III study of a 28-day oral regimen of eniluracil plus fluorouracil versus intravenous fluorouracil plus leucovorin as first-line therapy in patients with metastatic/advanced colorectal cancer. J Clin Oncol 2002;20(6):1519–1526.

    PubMed  CAS  Google Scholar 

  119. Brix G, Bellemann ME, Haberkorn U, Gerlach L, Lorenz WJ. Assessment of the biodistribution and metabolism of 5-fluorouracil as monitored by 18F PET and 19F MRI: A comparative animal study. Nucl Med Biol 1996;23(7):897–906.

    PubMed  CAS  Google Scholar 

  120. Ikenaka K, Shirasaka T, Kitano S, Fujii S. Effect of uracil on metabolism of 5-fluorouracil in vitro. Gann 1979;70(3):353–359.

    PubMed  CAS  Google Scholar 

  121. Stevens MF, Hickman JA, Stone R, et al. Antitumor imidazotetrazines. 1. Synthesis and chemistry of 8-carbamoyl-3-(2-chloroethyl)imidazo[5,1-d]-1,2,3,5-tetrazin-4(3 H)-one, a novel broad-spectrum antitumor agent. J Med Chem 1984;27(2):196–201.

    PubMed  CAS  Google Scholar 

  122. Baker SD, Wirth M, Statkevich P, et al. Absorption, metabolism, and excretion of 14C-temozolomide following oral administration to patients with advanced cancer. Clin Cancer Res 1999;5(2):309–317.

    PubMed  CAS  Google Scholar 

  123. Clark AS, Deans B, Stevens MF, et al. Antitumor imidazotetrazines. 32. Synthesis of novel imidazotetrazinones and related bicyclic heterocycles to probe the mode of action of the antitumor drug temozolomide. J Med Chem 1995;38(9):1493–1504.

    PubMed  CAS  Google Scholar 

  124. Newlands ES, O’Reilly SM, Glaser MG, et al. The Charing Cross Hospital experience with temozolomide in patients with gliomas. Eur J Cancer 1996;32A(13):2236–2241.

    PubMed  CAS  Google Scholar 

  125. Brada M, Hoang-Xuan K, Rampling R, et al. Multicenter phase II trial of temozolomide in patients with glioblastoma multiforme at first relapse. Ann Oncol 2001;12(2):259–266.

    PubMed  CAS  Google Scholar 

  126. Bleehen NM, Newlands ES, Lee SM, et al. Cancer Research Campaign phase II trial of temozolomide in metastatic melanoma. J Clin Oncol 1995;13(4):910–913.

    PubMed  CAS  Google Scholar 

  127. Estlin EJ, Lashford L, Ablett S, et al. Phase I study of temozolomide in paediatric patients with advanced cancer. United Kingdom Children’s Cancer Study Group. Br J Cancer 1998;78(5):652–661.

    PubMed  CAS  Google Scholar 

  128. Brock CS, Newlands ES, Wedge SR, et al. Phase I trial of temozolomide using an extended continuous oral schedule. Cancer Res 1998;58(19):4363–4367.

    PubMed  CAS  Google Scholar 

  129. Brock CS, Matthews JC, Brown G, et al. The kinetic behavior of temozolomide in man (Meeting abstract). In: Annual Meeting of the American Society of Clinical Oncology, 1996.

    Google Scholar 

  130. Brock CS, Matthews JC, Brown G, et al. Response to temozolomide (TEM) in recurrent high grade gliomas (HGG) is related to tumour drug concentration. (Meeting abstract). Ann Oncol 1998;9(Suppl 1):174.

    Google Scholar 

  131. Denny BJ, Wheelhouse RT, Stevens MF, Tsang LL, Slack JA. NMR and molecular modeling investigation of the mechanism of activation of the antitumor drug temozolomide and its interaction with DNA. Biochemistry 1994;33(31):9045–9051.

    PubMed  CAS  Google Scholar 

  132. Vaupel P, Kallinowski F, Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: A review. Cancer Res 1989;49(23):6449–6465.

    PubMed  CAS  Google Scholar 

  133. Saleem A, Brown GD, Brady F, et al. Metabolic activation of temozolomide measured in vivo using positron emission tomography. Cancer Res 2003;63(10):2409–2415.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Saleem, A., Price, P. (2007). Positron Emission Tomography Measurement of Drug Kinetics. In: Shields, A.F., Price, P. (eds) In Vivo Imaging of Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-341-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-341-7_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-633-7

  • Online ISBN: 978-1-59745-341-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics