Skip to main content

Quantitative Approaches to Positron Emission Tomography

  • Chapter
Book cover In Vivo Imaging of Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Over the past decade positron emission tomography (PET) has become the fastest growing medical imaging technology. This is primarily based on its performance as a diagnostic tool in oncology. In particular, its sensitivity for detecting metastases using whole body scans and 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) as a tracer is unrivaled, resulting in reimbursement for a steadily increasing number of indications. The development of PET/computed tomography (CT) scanners has further stimulated the use of PET, as investment in such a scanner is now also feasible for smaller hospitals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Phelps ME, Mazziotta, Schelbert HR. Positron Emission Tomography and Autoradiography. New York: Raven Press, 1986.

    Google Scholar 

  2. Jones T. The role of positron emission tomography within the spectrum of medical imaging. Eur J Nucl Med 1996;23:207–211.

    Article  PubMed  CAS  Google Scholar 

  3. Warburg O. On the origin of cancer cells. Science 1956;123:306–314.

    Article  Google Scholar 

  4. Comar D. PET for Drug Development and Evaluation. Dordrecht: Kluwer Academic Publishers, 1995.

    Google Scholar 

  5. Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 1977;28:897–916.

    Article  PubMed  CAS  Google Scholar 

  6. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: Validation of method. Ann Neurol 1979;6:371–388.

    Article  PubMed  CAS  Google Scholar 

  7. Hoekstra CJ, Paglianiti I, Hoekstra OS, Smit EF, Postmus PE, Teule GJJ, Lammertsma AA. Monitoring response to therapy in cancer using [18F]-2-fluoro-2-deoxy-D-glucose and positron emission tomography: An overview of different analytical methods. Eur J Nucl Med 2000;27:731–743.

    Article  PubMed  CAS  Google Scholar 

  8. Wahl RL, Cody RL, Hutchins GD, Mudgett EE. Primary and metastatic breast carcinoma: Initial clinical evaluation with PET with the radiolabeled glucose analogue 2-[F-18]-fluoro-2-deoxy-Dglucose. Radiology 1991;179:765–770.

    PubMed  CAS  Google Scholar 

  9. Kim CK, Gupta NC, Chandramouli B, Alavi A. Standardized uptake values of FDG: Body surface area correction is preferable to body weight correction. J Nucl Med 1994;35:164–167.

    PubMed  CAS  Google Scholar 

  10. Zasadny KR, Wahl RL. Standardized uptake values of normal tissues at PET with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose: Variations with body weight and a method for correction. Radiology 1993;189:847–850.

    PubMed  CAS  Google Scholar 

  11. Lindholm P, Minn H, Leskinen-Kallio S, Bergman J, Ruotsalainen U, Joensuu H. Influence of the blood glucose concentration on FDG uptake in cancer-a PET study. J Nucl Med 1993;34:1–6.

    PubMed  CAS  Google Scholar 

  12. Van der Weerdt AP, Klein LJ, Boellaard R, Visser CA, Visser FC, Lammertsma AA. Image-derived input functions for determination of MRGlu in cardiac (18)F-FDG PET scans. J Nucl Med 2001;42:1622–1629.

    PubMed  Google Scholar 

  13. Hoekstra CJ, Hoekstra OS, Lammertsma AA. On the use of image-derived input functions in oncological fluorine-18 fluorodeoxyglucose positron emission tomography studies. Eur J Nucl Med 1999;26:1489–1492.

    Article  PubMed  CAS  Google Scholar 

  14. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 1983;3: 1–7.

    PubMed  CAS  Google Scholar 

  15. Messa C, Choi Y, Hoh CK, Jacobs EL, Glaspy JA, Rege S, Nitzsche E, Huang SC, Phelps ME, Hawkins RA. Quantifi cation of glucose utilization in liver metastases: Parametric imaging of FDG uptake with PET. J Comput Assist Tomogr 1992;16:684–689.

    Article  PubMed  CAS  Google Scholar 

  16. Hunter GJ, Hamberg LM, Alpert NM, Choi NC, Fischman AJ. Simplifi ed measurement of deoxyglucose utilization rate. J Nucl Med 1996;37:950–955.

    PubMed  CAS  Google Scholar 

  17. Young H, Baum R, Cremerius U, Herholz K, Hoekstra O, Lammertsma AA, Pruim J, Price P on behalf of the European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Measurement of clinical and subclinical tumor response using [18F]-fluorodeoxyglucose and positron emission tomography: Review and 1999 EORTC recommendations. Eur J Cancer 1999;35:1773–1782.

    Article  PubMed  CAS  Google Scholar 

  18. Shankar LK, Hoffman JM, Bacharach S, Graham MM, Karp J, Lammertsma AA, Larson S, Mankoff DA, Siegel BA, van den Abbeele A, Yap J, Sullivan D. Consensus recommendations for the use of 18F-FDG as an indicator of therapeutic response in patients in national cancer institute trials. J Nucl Med 2006;47:1059–1066.

    PubMed  CAS  Google Scholar 

  19. Hoekstra CJ, Hoekstra OS, Stroobants SG, Vansteenkiste J, Nuyts J, Smit EF, Boers M, Twisk JWR, Lammertsma AA. Methods to monitor response to chemotherapy in non-small cell lung cancer with 18F-FDG PET. J Nucl Med 2002;43:1304–1309.

    PubMed  CAS  Google Scholar 

  20. Krak NC, van der Hoeven JJ, Hoekstra OS, Twisk JWR, van der Wall E, Lammertsma AA. Measuring [18F]FDG uptake in breast cancer during chemotherapy: Comparison of analytical methods. Eur J Nucl Med Mol Imaging 2003;30:674–681.

    Article  PubMed  CAS  Google Scholar 

  21. Kroep JR, Van Groeningen CJ, Cuesta MA, Craanen ME, Hoekstra OS, Comans EFI, Bloemena E, Hoekstra CJ, Golding RP, Twisk JWR, Peters GJ, Pinedo HM, Lammertsma AA. Positron emission tomography using 2-deoxy-2-[18F]-fluoro-D-glucose for response monitoring in locally advanced gastroesophageal cancer; a comparison of different analytical methods. Mol Imaging Biol 2003;5:337–346.

    Article  PubMed  Google Scholar 

  22. Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution and ROI definition on the accuracy of standard uptake values: A simulation study. J Nucl Med 2004;45:1519–1527.

    PubMed  Google Scholar 

  23. Krak NC, Boellaard R, Hoekstra OS, Twisk JWR, Hoekstra CJ, Lammertsma AA. Effects of ROI defi nition and reconstruction method on quantitative outcome and applicability in a response monitoring trial. Eur J Nucl Med Mol Imaging 2005;32:294–301.

    Article  PubMed  Google Scholar 

  24. Hoekstra CJ, Stroobants SG, Smit EF, Vansteenkiste J, van Tinteren H, Postmus PE, Golding R, Biesma B, Schramel FJHM, van Zandwijk N, Lammertsma AA, Hoekstra OS. Prognostic relevance of response evaluation using [18F]-2-fluoro-2-deoxy-D-glucose positron emission tomography in patients with locally advanced non-small-cell lung cancer. J Clin Oncol 2005;23:8362–8370.

    Article  PubMed  Google Scholar 

  25. Lammertsma AA, Mazoyer BM. EEC concerted action on cellular degeneration and regeneration studied with PET: Modelling expert meeting blood flow measurement with PET. Eur J Nucl Med 1990;16:807–812.

    Article  PubMed  CAS  Google Scholar 

  26. Hoekstra CJ, Stroobants SG, Hoekstra OS, Smit EF, Vansteenkiste J, Lammertsma AA. Measurement of perfusion in stage IIIA-N2 non-small cell lung cancer using H2 15O and positron emission tomography. Clin Cancer Res 2002;8:2109–2115.

    PubMed  Google Scholar 

  27. Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, Obradovich JE, Muzik O, Mangner TJ. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 1998;4:1334–1336.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Lammertsma, A.A. (2007). Quantitative Approaches to Positron Emission Tomography. In: Shields, A.F., Price, P. (eds) In Vivo Imaging of Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-341-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-341-7_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-633-7

  • Online ISBN: 978-1-59745-341-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics