Skip to main content

17-AAG

Targeting the Molecular Chaperone Heat Shock Protein 90

  • Chapter
Molecular Targeting in Oncology

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1457 Accesses

Summary

Heat shock protein 90 (Hsp90) is a molecular chaperone required for the stability and function of a number of conditionally activated and/or expressed signaling proteins, as well as multiple mutated, chimeric, and/or over-expressed signaling proteins, that promote cancer cell growth and/or survival. Hsp90 inhibitors, by interacting specifically with a single molecular target, cause the inactivation, destabilization, and eventual degradation of Hsp90 client proteins, and they have shown promising anti-tumor activity in preclinical model systems. One Hsp90 inhibitor, 17-allylamino-17-demethoxygeldanamycin, has completed phase I clinical trials, and several phase II trials of this agent are planned or are in progress. Phase I testing of a related Hsp90 inhibitor, 17-dimethylaminoethylamino-17-demethoxygeldanamycin, is currently in progress. Hsp90 inhibitors are unique in that, although they are directed toward a specific molecular target, they simultaneously inhibit multiple signaling pathways that frequently interact to promote cancer cell survival. Furthermore, by inhibiting nodal points in multiple overlapping survival pathways utilized by cancer cells, combination of an Hsp90 inhibitor with standard chemotherapeutic agents may dramatically increase the in vivo efficacy of the standard agent. Hsp90 inhibitors may circumvent the characteristic genetic plasticity that has allowed cancer cells to eventually evade the toxic effects of most molecularly targeted agents. The mechanism-based use of Hsp90 inhibitors, both alone and in combination with other drugs, should be effective toward multiple forms of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stoler DL, Chen N, Basik M, et al. The onset and extent of genomic instability in sporadic colorectal tumor progression. Proc Natl Acad Sci USA 1999;96(26):15121–15126.

    Google Scholar 

  2. Hahn WC, Weinberg RA. Modelling the molecular circuitry of cancer. Nat Rev Cancer 2002;2(5):331–341.

    Google Scholar 

  3. La Rosee P, O’Dwyer ME, Druker BJ. Insights from pre-clinical studies for new combination treatment regimens with the Bcr-Abl kinase inhibitor imatinib mesylate (Gleevec/Glivec) in chronic myelogenous leukemia: a translational perspective. Leukemia 2002;16(7):1213–1219.

    Article  PubMed  CAS  Google Scholar 

  4. Kitano H. Cancer robustness: tumour tactics. Nature 2003;426(6963):125.

    Article  PubMed  CAS  Google Scholar 

  5. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100(1):57–70.

    Article  PubMed  CAS  Google Scholar 

  6. Isaacs JS. Heat-shock protein 90 inhibitors in antineoplastic therapy: is it all wrapped up? Expert Opin Investig Drugs 2005;14:569–589.

    Article  PubMed  CAS  Google Scholar 

  7. Chiosis G, Vilenchik M, Kim J, Solit D. Hsp90: the vulnerable chaperone. Drug Discov Today 2004;9(20):881–888.

    Article  PubMed  CAS  Google Scholar 

  8. Workman P. Combinatorial attack on multistep oncogenesis by inhibiting the Hsp90 molecular chaperone. Cancer Lett 2004;206(2):149–157.

    Article  PubMed  CAS  Google Scholar 

  9. Bagatell R, Whitesell L. Altered Hsp90 function in cancer: a unique therapeutic opportunity. Mol Cancer Ther 2004;3(8):1021–1030.

    PubMed  CAS  Google Scholar 

  10. Zhang H, Burrows F. Targeting multiple signal transduction pathways through inhibition of Hsp90. J Mol Med 2004;82(8):488–499.

    Article  PubMed  CAS  Google Scholar 

  11. Goetz MP, Toft DO, Ames MM, Erlichman C. The Hsp90 chaperone complex as a novel target for cancer therapy. Ann Oncol 2003;14(8):1169–1176.

    Article  PubMed  CAS  Google Scholar 

  12. Isaacs JS, Xu W, Neckers L. Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell 2003;3(3):213–217.

    Google Scholar 

  13. Rutherford SL, Lindquist S. Hsp90 as a capacitor for morphological evolution. Nature 1998;396(6709):336–342.

    Article  PubMed  CAS  Google Scholar 

  14. Queitsch C, Sangster TA, Lindquist S. Hsp90 as a capacitor of phenotypic variation. Nature 2002;417(6889):618–624.

    Article  PubMed  CAS  Google Scholar 

  15. DeBoer C, Meulman PA, Wnuk RJ, Peterson DH. Geldanamycin, a new antibiotic. J Antibiot (Tokyo) 1970;23(9):442–447.

    CAS  Google Scholar 

  16. Schulte TW, Neckers LM. The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother Pharmacol 1998;42(4):273–279.

    Article  PubMed  CAS  Google Scholar 

  17. Supko JG, Hickman RL, Grever MR, Malspeis L. Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemother Pharmacol 1995;36(4):305–315.

    Article  PubMed  CAS  Google Scholar 

  18. Page J, Heath J, Fulton R, et al. Comparison of geldanamycin (NSC-122750) and 17-allylaminogel-danamycin (NSC-330507D) toxicity in rats. Proc Am Assoc Cancer Res 1997;38:abstract 2067.

    Google Scholar 

  19. Paine-Murrieta G, Cook P, Taylor CW, Whitesell L. The anti-tumor activity of 17-allylaminogel-danamycin is associated with modulation of target protien levels in vivo. Proc Am Assoc Cancer Res 1999;40:abstract 119.

    Google Scholar 

  20. Burger AM, Fiebig HH, Newman DJ, Camalier RF, Sausville EA. Antitumor activity of 17-allylaminogeldanamycin (NSC 330507) in melanoma xenografts is associated with decline in Hsp90 protein expression. 10th NCI-EORTC Symposium on New Drugs in Cancer Therapy 1998: abstract 504.

    Google Scholar 

  21. Siligardi G, Hu B, Panaretou B, Piper PW, Pearl LH, Prodromou C. Co-chaperone regulation of conformational switching in the Hsp90 ATPase cycle. J Biol Chem 2004; 279(50):51989–51998.

    Article  PubMed  CAS  Google Scholar 

  22. Wegele H, Muller L, Buchner J. Hsp70 and Hsp90–a relay team for protein folding. Rev Physiol Biochem Pharmacol 2004;151:1–44.

    Article  PubMed  CAS  Google Scholar 

  23. Prodromou C, Pearl LH. Structure and functional relationships of Hsp90. Curr Cancer Drug Targets 2003;3(5):301–323.

    Article  PubMed  CAS  Google Scholar 

  24. Neckers L. Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med 2002;8 (4 Suppl):S55–S61.

    Article  PubMed  CAS  Google Scholar 

  25. An WG, Schulte TW, Neckers LM. The heat shock protein 90 antagonist geldanamycin alters chaperone association with p210bcr-abl and v-src proteins before their degradation by the proteasome. Cell Growth Differ 2000;11(7):355–360.

    PubMed  CAS  Google Scholar 

  26. Fujimoto J, Shiota M, Iwahara T, et al. Characterization of the transforming activity of p80, a hyperphosphorylated protein in a Ki-1 lymphoma cell line with chromosomal translocation t(2;5). Proc Natl Acad Sci USA 1996;93(9):4181–4186.

    Article  PubMed  CAS  Google Scholar 

  27. Bonvini P, Gastaldi T, Falini B, Rosolen A. Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), a novel Hsp90- client tyrosine kinase: down-regulation of NPM-ALK expression and tyrosine phosphorylation in ALK(+) CD30(+) lymphoma cells by the Hsp90 antagonist 17-allylamino,17-demethoxygeldanamycin. Cancer Res 2002;62(5):1559–1566.

    PubMed  CAS  Google Scholar 

  28. Naoe T, Kiyoe H, Yamamoto Y, et al. FLT3 tyrosine kinase as a target molecule for selective antileukemia therapy. Cancer Chemother Pharmacol 2001;48(Suppl 1):S27–S30.

    Article  PubMed  CAS  Google Scholar 

  29. Minami Y, Kiyoi H, Yamamoto Y, et al. Selective apoptosis of tandemly duplicated FLT3-transformed leukemia cells by Hsp90 inhibitors. Leukemia 2002;16(8):1535–1540.

    Article  PubMed  CAS  Google Scholar 

  30. Shiotsu Y, Neckers LM, Wortman I, et al. Novel oxime derivatives of radicicol induce erythroid differentiation associated with preferential G(1) phase accumulation against chronic myelogenous leukemia cells through destabilization of Bcr-Abl with Hsp90 complex. Blood 2000;96(6):2284–2291.

    PubMed  CAS  Google Scholar 

  31. Druker BJ, Tamura S, Buchdunger E, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 1996;2(5):561–566.

    Article  PubMed  CAS  Google Scholar 

  32. Sawyers CL, Hochhaus A, Feldman E, et al. Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood 2002;99(10):3530–3539.

    Article  PubMed  CAS  Google Scholar 

  33. Shah NP, Nicoll JM, Nagar B, et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2002;2(2):117–125.

    Article  PubMed  CAS  Google Scholar 

  34. Gorre ME, Ellwood-Yen K, Chiosis G, Rosen N, Sawyers CL. BCR-ABL point mutants isolated from patients with STI571-resistant chronic myeloid leukemia remain sensitive to inhibitors of the BCR-ABL chaperone heat shock protein 90. Blood 2002;100:3041–3044.

    Article  PubMed  CAS  Google Scholar 

  35. Nimmanapalli R, O’Bryan E, Huang M, et al. Molecular characterization and sensitivity of STI-571 (imatinib mesylate, Gleevec)-resistant, Bcr-Abl-positive, human acute leukemia cells to SRC kinase inhibitor PD180970 and 17-allylamino-17-demethoxygeldanamycin. Cancer Res 2002;62(20):5761–5769.

    PubMed  CAS  Google Scholar 

  36. Fumo G, Akin C, Metcalfe DD, Neckers L. 17-Allylamino-17-demethoxygeldanamycin (17-AAG) is effective in down-regulating mutated, constitutively activated KIT protein in human mast cells. Blood 2004;103:1078–1084.

    Article  PubMed  CAS  Google Scholar 

  37. Vanaja DK, Mitchell SH, Toft DO, Young CYF. Effect of geldanamycin on androgen receptor function and stability. Cell Stress Chaperones 2002;7:55–64.

    Article  PubMed  CAS  Google Scholar 

  38. Georget V, Terouanne B, Nicolas J-C, Sultan C. Mechanism of antiandrogen action: key role of Hsp90 in conformational change and transcriptional activity of the androgen receptor. Biochemistry 2002;41:11824–11831.

    Article  PubMed  CAS  Google Scholar 

  39. Solit D, Zheng F, Drobnjak M, et al. 17-allylamino-17-demthoxygeldanamycin induces the degradation of androgen receptor and HER-2/neu and inhibits the growth of prostate cancer xenografts. Clin Cancer Res 2002:986–993.

    Google Scholar 

  40. Harris AL. Hypoxia- a key regulatory factor in tumor growth. Nat Rev Cancer 2002;2:38–47.

    Article  PubMed  CAS  Google Scholar 

  41. Maxwell PH, Wiesener MS, Chang G-W, et al. The tumor suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999;399:271–275.

    Article  PubMed  CAS  Google Scholar 

  42. Seizinger BR, Rouleau GA, Ozelius LJ, et al. Von Hippel-Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature 1988;332(6161):268–269.

    Article  PubMed  CAS  Google Scholar 

  43. Gradin K, McGuire J, Wenger RH, et al. Functional interference between hypoxia and dioxin signal transduction pathways: competition for recruitment of the Arnt transcription factor. Mol Cell Biol 1996;16(10):5221–5231.

    PubMed  CAS  Google Scholar 

  44. Hur E, Kim HH, Choi SM, et al. Reduction of hypoxia-induced transcription through the repression of hypoxia-inducible factor-1alpha/aryl hydrocarbon receptor nuclear translocator DNA binding by the 90-kDa heat-shock protein inhibitor radicicol. Mol Pharmacol 2002;62(5):975–982.

    Article  PubMed  CAS  Google Scholar 

  45. Isaacs JS, Jung YJ, Mimnaugh EG, Martinez A, Cuttitta F, Neckers LM. Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 alpha-degradative pathway. J Biol Chem 2002;277(33):29936–29944.

    Article  PubMed  CAS  Google Scholar 

  46. Mabjeesh NJ, Post DE, Willard MT, et al. Geldanamycin induces degradation of hypoxia-inducible factor 1α protein via the proteasome pathway in prostate cancer cells. Cancer Res 2002;62:2478–2482.

    PubMed  CAS  Google Scholar 

  47. Zagzag D, Nomura M, Friedlander DR, et al. Geldanamycin inhibits migration of glioma cells in vitro: a potential role for hypoxia-inducible factor (HIF-1alpha) in glioma cell invasion. J Cell Physiol 2003;196(2):394–402.

    Article  PubMed  CAS  Google Scholar 

  48. Dias S, Shmelkov SV, Lam G, Rafii S. VEGF(165) promotes survival of leukemic cells by Hsp90-mediated induction of Bcl-2 expression and apoptosis inhibition. Blood 2002;99(7):2532–2540.

    Article  PubMed  CAS  Google Scholar 

  49. Maulik G, Kijima T, Ma PC, et al. Modulation of the c-Met/hepatocyte growth factor pathway in small cell lung cancer. Clin Cancer Res 2002;8(2):620–627.

    PubMed  CAS  Google Scholar 

  50. Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 2003;3(4):347–361.

    Article  PubMed  Google Scholar 

  51. Tacchini L, Dansi P, Matteucci E, Desiderio MA. Hepatocyte growth factor signalling stimulates hypoxia inducible factor-1 (HIF-1) activity in HepG2 hepatoma cells. Carcinogenesis 2001;22(9):1363–1371.

    Article  PubMed  CAS  Google Scholar 

  52. Bottaro DP, Liotta LA. Out of air is not out of action. Nature 2003;423:593–595.

    Article  PubMed  CAS  Google Scholar 

  53. Santoro M, Melillo RM, Carlomagno F, Fusco A, Vecchio G. Molecular mechanisms of RET activation in human cancer. Ann N Y Acad Sci 2002;963:116–121.

    Article  PubMed  CAS  Google Scholar 

  54. Jhiang SM. The RET proto-oncogene in human cancers. Oncogene 2000;19(49):5590–5597.

    Article  PubMed  CAS  Google Scholar 

  55. Ichihara M, Murakumo Y, Takahashi M. RET and neuroendocrine tumors. Cancer Lett 2004;204(2):197–211.

    Article  PubMed  CAS  Google Scholar 

  56. Cohen MS, Hussain HB, Moley JF. Inhibition of medullary thyroid carcinoma cell proliferation and RET phosphorylation by tyrosine kinase inhibitors. Surgery 2002;132(6):960–966.

    Article  PubMed  Google Scholar 

  57. Mimnaugh EG, Chavany C, Neckers L. Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin. J Biol Chem 1996;271(37):22796–22801.

    Article  PubMed  CAS  Google Scholar 

  58. Schneider C, Sepp-Lorenzino L, Nimmesgern E, et al. Pharmacologic shifting of a balance between protein refolding and degradation mediated by Hsp90. Proc Natl Acad Sci USA 1996;93(25):14536–14541.

    Article  PubMed  CAS  Google Scholar 

  59. Basso AD, Solit DB, Chiosis G, Giri B, Tsichlis P, Rosen N. Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. J Biol Chem 2002;277(42):39858–39866.

    Article  PubMed  CAS  Google Scholar 

  60. French BA, van Leeuwen F, Riley NE, et al. Aggresome formation in liver cells in response to different toxic mechanisms: role of the ubiquitin-proteasome pathway and the frameshift mutant of ubiquitin. Exp Mol Pathol 2001;71(3):241–246.

    Article  PubMed  CAS  Google Scholar 

  61. Waelter S, Boeddrich A, Lurz R, et al. Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation. Mol Biol Cell 2001;12(5):1393–1407.

    PubMed  CAS  Google Scholar 

  62. Aghajanian C, Soignet S, Dizon DS, et al. A phase I trial of the novel proteasome inhibitor PS341 in advanced solid tumor malignancies. Clin Cancer Res 2002;8(8):2505–2511.

    PubMed  CAS  Google Scholar 

  63. L’Allemain G. [Update on. the proteasome inhibitor PS341]. Bull Cancer 2002;89(1):29–30.

    PubMed  Google Scholar 

  64. Mitsiades N, Mitsiades CS, Poulaki V, et al. Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci USA 2002;99(22):14374–14379.

    Article  PubMed  CAS  Google Scholar 

  65. Mimnaugh EG, Xu W, Vos M, et al. Simultaneous inhibition of hsp 90 and the proteasome promotes protein ubiquitination, causes endoplasmic reticulum-derived cytosolic vacuolization, and enhances antitumor activity. Mol Cancer Ther 2004;3(5):551–566.

    PubMed  CAS  Google Scholar 

  66. Bisht KS, Bradbury CM, Mattson D, et al. Geldanamycin and 17-allylamino-17-demethoxygel-danamycin potentiate the in vitro and in vivo radiation response of cervical tumor cells via the heat shock protein 90-mediated intracellular signaling and cytotoxicity. Cancer Res 2003;63(24):8984–8995.

    PubMed  CAS  Google Scholar 

  67. Machida H, Matsumoto Y, Shirai M, Kubota N. Geldanamycin, an inhibitor of Hsp90, sensitizes human tumour cells to radiation. Int J Radiat Biol 2003;79(12):973–980.

    Article  PubMed  CAS  Google Scholar 

  68. Becker B, Multhoff G, Farkas B, et al. Induction of Hsp90 protein expression in malignant melanomas and melanoma metastases. Exp Dermatol 2004;13(1):27–32.

    Article  PubMed  CAS  Google Scholar 

  69. Eustace BK, Sakurai T, Stewart JK, et al. Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness. Nat Cell Biol 2004;6(6):507–514.

    Article  PubMed  CAS  Google Scholar 

  70. Eustace BK, Jay DG. Extracellular roles for the molecular chaperone, hsp90. Cell Cycle 2004;3(9):1098–1100.

    PubMed  CAS  Google Scholar 

  71. Egorin MJ, Rosen DM, Wolff JH, Callery PS, Musser SM, Eiseman JL. Metabolism of 17-(allylamino)-17-demethoxygeldanamycin (NSC 330507) by murine and human hepatic preparations. Cancer Res 1998;58(11):2385–2396.

    PubMed  CAS  Google Scholar 

  72. Schnur RC, Corman ML, Gallaschun RJ, et al. erbB-2 oncogene inhibition by geldanamycin derivatives: synthesis, mechanism of action, and structure-activity relationships. J Med Chem 1995;38(19):3813–3820.

    Article  PubMed  CAS  Google Scholar 

  73. Kelland LR, Sharp SY, Rogers PM, Myers TG, Workman P. DT-Diaphorase expression and tumor cell sensitivity to 17-allylamino, 17-demethoxygeldanamycin, an inhibitor of heat shock protein 90. J Natl Cancer Inst 1999;91(22):1940–1949.

    Google Scholar 

  74. Egorin MJ, Lagattuta TF, Hamburger DR, et al. Pharmacokinetics, tissue distribution, and metabolism of 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (NSC 707545) in CD2F1 mice and Fischer 344 rats. Cancer Chemother Pharmacol 2002;49(1):7–19.

    Article  PubMed  CAS  Google Scholar 

  75. Eiseman JL, Sentz DL, Zuhowski EG. Plasma pharmacokinetics and tissue distribution of 17-allylaminogeldanamycin (NSC 330507), a prodrug for geldanamycin, in CD2F1 mice and Fisher 344 rats. Proc Am Assoc Cancer Res 1997;38:abstract 2063.

    Google Scholar 

  76. Noker PE, Thompson RB, Smith AC, et al. Toxicity and pharmacokinetics of 17-allylaminogel-danamycin (17-AAG, NSC-330507) in dogs. Proc Am Assoc Cancer Res 1999;40:abstract 804.

    Google Scholar 

  77. Eiseman JL, Grimm A, Sentz DL, et al. Pharmacokinetics and tissue distribution of 17-allylamino(17demethoxy)geldanamycin in SCID mice bearing MDA-MB-453 xenografts and alterations in the expression of p185 erbB2 in xenografts following treatment. AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutixs 1999;abstract 536.

    Google Scholar 

  78. Banerji U, Maloney A, Asad Y, et al. Pharmacokinetic-pharmacodynamic (PK-PD) relationships for the HSP90 molecular chaperone inhibitor 17-allylamino-17demethoxygeldanamycin (17AAG) in human ovarian cancer xenografts. Proc 11th NCI-EORTC Symposium on New Drugs in Cancer Therapy 2001;abstract 395.

    Google Scholar 

  79. Banerji U, Walton M, Raynauld F, et al. Validation of pharmacodynamic endpoints for the HSP90 molecular chaperone inhibitor 17-allylamino 17-demethoxygeldanamycin (17AAG) in a human tumor xenograft model. Proc Am Assoc Cancer Res 2001;42:abstract 4473.

    Google Scholar 

  80. Agnew EB, Neckers LM, Hehman HE, et al. Human plasma pharmacokinetics of the novel antitumor agent, 17-allylaminogeldanamycin (AAG) using a new HPLC-based analytic assay. Proc Am Assoc Cancer Res 2000;41:abstract 4458.

    Google Scholar 

  81. Wilson RH, Takimoto CH, Agnew EB. Phase I pharmacologic study of 17-(Allylamino)-17-demethoxygeldanamycin (AAG) in adult patients with advanced solid tumors. Proc Am Soc Clin Oncol 2001;20:abstract 325.

    Google Scholar 

  82. Agnew EB, Wilson RH, Morrison G, et al. Clinical pharmacokinetics of 17-(allylamino)-17-demethoxygeldanamycin and the active metabolite 17-(amino)-17-demethoxygeldanamycin given as a one-hour infusion daily for 5 days. Proc Am Assoc Cancer Res 2002;43:abstract 1349.

    Google Scholar 

  83. Munster PN, Tong W, Schwartz L, et al. Phase I trial of 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) in patients with advanced solid malignancies. Proc Am Soc Clin Oncol 2001;20:abstract 326.

    Google Scholar 

  84. Erlichman C, Toft D, Reid J. A phase I trial of 17-allyl-amino-geldanamycin in patients with advanced cancer. Proc Am Assoc Cancer Res 2001;42:abstract 4474.

    Google Scholar 

  85. Goetz M, Toft D, Reid J. A phase I trial of 17-allyl-amino-geldanamycin (17-AAG) in patients with advanced cancer. Eur J Cancer 2002;38 (Suppl 7):S54–S55, abstract 170.

    Google Scholar 

  86. Banerji U, O’Donnell A, Scurr M, et al. Phase I trial of the heat shock protein 90 (HSP90) inhibitor 17-allylamino 17-demethoxygeldanamycin 17aag. Pharmacokinetic (PK) profile and pharmacodynamic (PD) endpoints. Proc Am Soc Clin Oncol 2001;20:abstract 326.

    Google Scholar 

  87. Banerji U, O’Donnell A, Scurr M, et al. A pharmacokinetically (Pk) - pharmacodynamically (Pd) driven phase I trial of the Hsp90 molecular chaperone inhibitor 17-allyamino 17-demethoxygeldanamycin (17AAG). Proc 93rd Annu Meet Am Assoc Cancer Res 2002;43:abstract 1352.

    Google Scholar 

  88. Banerji U, O’Donnell A, Scurr M, et al. A pharmacokinetically (PK) - pharmacodynamically (PD) guided phase I trial of the heat shock protein 90 (HSP90) inhibitor 17-allylamino,17-demethoxygeldanamycin (17AAG). Proc Am Soc Clin Oncol 2003;22:abstract 797.

    Google Scholar 

  89. Burger AM, Sausville EA, Carmalier RF, Newman DJ, Fiebig HH. Response of human melanomas to 17-AAG is associated with modulation of the molecular chaperone function of Hsp90. Proc Am Assoc Cancer Res 2000;41:abstract 2844.

    Google Scholar 

  90. Banerji U, O’Donnell A, Scurr M, et al. Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino,17-demethoxygeldanamycin in patients with advanced malignancies. J Clin Oncol 2005;23:4152–4161.

    Article  PubMed  CAS  Google Scholar 

  91. Goetz M, Toft D, Reid J, et al. Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. J Clin Oncol 2005;23:1078–1087.

    Article  PubMed  CAS  Google Scholar 

  92. Grem JL, Morrison G, Guo X-D, et al. Phase I and pharmacologic study of 17-(allylamino)-17-demethoxygeldanamycin in adult patients with solid tumors. J Clin Oncol 2005;23:1885–1893.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Neckers, L., Ivy, P. (2008). 17-AAG. In: Kaufman, H.L., Wadler, S., Antman, K. (eds) Molecular Targeting in Oncology. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-337-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-337-0_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-577-4

  • Online ISBN: 978-1-59745-337-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics