Skip to main content

How to Define Treatment Success or Failure if Tumors Do Not Shrink

Consequences for Trial Design

  • Chapter
Molecular Targeting in Oncology

Summary

The development of targeted anti cancer drugs in recent years puts a challenge on classical trial designs. In this chapter we point out that defining a biological relevant dose might become more important than a MTD and establishing the mechanism of action becomes pivotal early in drug development. Furthermore we present examples of trails that show the importance of defining the patient population likely to benefit from targeted drugs.

Furthermore, the use of surrogate tissues to evaluate the biological activity of the agents under study is described.

Non-invasive techniques like PET, CT or MRI imaging are addressed as well as their present lack of validity in predicting patient outcome.

Alternative endpoint in phase II trail designs in relation to the development of targeted anticancer drugs are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albanell J, Rojo F, Averbuch S, et al. Pharmacodynamic studies of the epidermal growth factor receptor inhibitor ZD1839 in skin from cancer patients histopathologic and molecular consequences of receptor inhibition. J Clin Oncol 2002;20:110–124.

    Article  PubMed  CAS  Google Scholar 

  2. Malik S, Siu L, Rowinsky E. Pharmacodynamic evaluation of the epidermal growth factor receptor inhibitor OSI-774 in human epidermis of cancer patients. Clin Cancer Res 2003;9:2478–2486.

    PubMed  CAS  Google Scholar 

  3. Tan A, Yang X, Hewitt S, et al. Evaluation of biologic end points and pharmacokinetics in patients with metastatic breast cancer after treatment with erlotinib, an epidermal growth factor receptor tyrosine kinase inhibitor. J Clin Oncol 2004;22:3080–3090.

    Article  PubMed  CAS  Google Scholar 

  4. Saltz LB, Meropol NJ, Loehrer PJ Sr, et al. Phase II trial of cetuximab in patients with refractory colorectal cancer that express the epidermal growth factor receptor. J Clin Oncol 2004; 22:1201–8.

    Google Scholar 

  5. Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 2004; 351:337–45.

    Article  PubMed  CAS  Google Scholar 

  6. Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase-akt pathway in human cancer. Nat Rev Cancer 2002;2:489–501.

    Article  PubMed  CAS  Google Scholar 

  7. Ciardiello F, Tortora G. Epidermal growth receptor (EGFR) as a target in cancer therapy: understanding the role of receptor expression and other molecular determinants that could influence the response to anti-EGFR drugs. Eur J Cancer 2003;39:1348–1354.

    Article  PubMed  CAS  Google Scholar 

  8. Lynch T, Bell D, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004;350:2129–2139.

    Article  PubMed  CAS  Google Scholar 

  9. Paez J, Jänne P, Lee J, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004;304:1497–1500.

    Article  PubMed  CAS  Google Scholar 

  10. Douillard J, Giaccone G, Horai T, et al. Improvement in disease-related symptoms and quality of life in patients with advanced non-small-cell lung cancer treated with ZD1839. Proc Am Soc Clin Oncol 2002 (Abstract 1195).

    Google Scholar 

  11. Brunner T, Hahn S, Gupta A, et al. Farnesyltransferase Inhibitors: An overview of the results of preclinical and clinical investigations. Cancer Res 2003;63:5656–5668.

    PubMed  CAS  Google Scholar 

  12. Eskens F, Stoter G, Verweij J. Farnesyltransferase inhibitors: current developments and future perspectives. Cancer Treat Rev 2000;26:319–332.

    Article  PubMed  CAS  Google Scholar 

  13. Rowinsky E, Windle J, Von Hoff D. Ras protein farnesyltransferase: a strategic target for anticancer therapeutic development. J Clin Oncol 1999;17:3631–3652.

    PubMed  CAS  Google Scholar 

  14. Karp J, Lancet J, Kaufmann S. Clinical and biologic activity of the farnesyltransferase inhibitor R115777 in adults with refractory and relapsed acute leukemias: a phase I clinical-laboratory correlative trail. Blood 2001;97:3361–3369.

    Article  PubMed  CAS  Google Scholar 

  15. Harousseau J, Stone R, Thomas X, et al. Interim results from a phase II study of R115777 (Zarnestra) in patients with relapsed and refractory acute myelogenous leukaemia. Proc Am Soc Clin Oncol 2002 (Abstract 1056).

    Google Scholar 

  16. Johnston S, Kickish S, Houston S, et al. Efficacy and tolerability of two dosing regimens of R115777 (Zarnestra), a farnesylprotein transferase inhibitor, in patients with advanced breast cancer. Proc Am Soc Clin Oncol 2002 (Abstract 138).

    Google Scholar 

  17. Adjei A, Davis J, Erlichman C, et al. Comparison of potential markers of Farnesyltransferase inhibition. Clin Cancer Res 2000;6:2318–2325.

    PubMed  CAS  Google Scholar 

  18. Awada A, Eskens F, Piccart M, et al. A clinical pharmacodynamic and pharmacokinetic phase I study of SCH66336, an oral inhibitor of the enzyme farnesyltransferase, given once daily in patients with solid tumors. Clin Cancer Res 1999;5(Suppl):3733s.

    Google Scholar 

  19. Moasser M, Rosen N. The use of molecular markers in farnesyltransferase inhibitor (FTI) therapy of breast cancer. Breast cancer Res Treat 2002;73:135–144.

    Article  PubMed  CAS  Google Scholar 

  20. Eskens F. Angiogenesis inhibitors in clinical development; where are we now and where are we going? Br J Cancer 2004;90:1–7.

    Article  PubMed  CAS  Google Scholar 

  21. Longo R, Sarmiento R, Fanelli M, et al. Anti-angiogenic therapy: rationale, challenges and clinical studies. Angiogenesis 2002;5:237–256.

    Article  PubMed  CAS  Google Scholar 

  22. McCarty M, Liu W, Fan F, et al. Promises and pitfalls of anti-angiogenic therapy in clinical trials. Trends Mol Med 2003; 9:53–58.

    Article  PubMed  CAS  Google Scholar 

  23. Hugg C, Meuwly JY, Driscoll R, et al. The quest for surrogate markers of angiogenesis: a paradigm for translational research in tumor angiogenesis and anti-angiogenesis trials. Curr Mol Med 2003;3:673–691.

    Article  Google Scholar 

  24. Levitt N, Eskens F, O’Byrne K, et al. Phase I and pharmacological study of the oral matrix metalloproteinase inhibitor MMI270, in patients with advanced solid cancer. Clin Cancer Res 2001;7:1912–1922.

    PubMed  CAS  Google Scholar 

  25. Gearing A, Becket P, Christodoulou M, et al. Processing of tumor necrosis factor-alpha precursor by metalloproteinases. Nature 1994;370:555–557.

    Article  PubMed  CAS  Google Scholar 

  26. Herbst R, Hess K, Tran H, et al. Phase I study of recombinant human endostatin in patients with advanced solid tumors. J Clin Oncol 2002;20:3792–3803.

    Article  PubMed  CAS  Google Scholar 

  27. Davis D, McConkey D, Abbruzzese J, et al. Surrogate markers in antiangiogenesis clinical trials. Br J Cancer 2003;89:8–14.

    Article  PubMed  CAS  Google Scholar 

  28. Fine H, Figg W, Jaeckle K, et al. Phase II trails of the antiangiogenic agent thalidomide in patients with recurrent high-grade gliomas. J Clin Oncol 2000;18:708–715.

    PubMed  CAS  Google Scholar 

  29. Berglund A, Molin D, Larsson A, et al. Tumor markers as early predictors of response to chemotherapy in advanced colorectal carcinoma. Ann Oncol 2002;13:1430–1437.

    Article  PubMed  CAS  Google Scholar 

  30. Kerbel R. A cancer therapy resistant to resistance. Nature 1997;390:335–336.

    Article  PubMed  CAS  Google Scholar 

  31. Brown P, Bloxidge R, Stuart N, et al. Association between expression of activated 72-kilodalton gelatinase and tumor spread in non-small-cell lung carcinoma. J Natl Cancer Inst 1993;85:574–578.

    Article  PubMed  CAS  Google Scholar 

  32. Vihinen p, Kahari V. Matrix metalloproteinases in cancer: prognostic markers and therapeutic targets. Int J Cancer 2002;99:157–166.

    Google Scholar 

  33. Rafii S, Lyden D, Benezra R, et al. Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer 2002;2:826–835.

    Article  PubMed  CAS  Google Scholar 

  34. Stroobants S, Goeminne J, Seegers M, et al. 18FDG-Positron emission tomography for the early prediction of response in advanced soft tissue sarcoma treated with imatinib mesylate (Glivec). Eur J Cancer 2003;39:2012–2020.

    Article  PubMed  CAS  Google Scholar 

  35. Anderson H, Yap J, Wells P, et al. Measurement of renal tumor and normal tissue perfusion using positron emission tomography in a phase II clinical trial of razoxane. Br J Cancer 2003;89:262–267.

    Article  PubMed  CAS  Google Scholar 

  36. Anderson H, Yap J, Miller M, et al. Assessment of pharmacodynamic vascular response in a phase I trial of Combretastatin A4 phosphate. J Clin Oncol 2003;21:2823–2830.

    Article  PubMed  CAS  Google Scholar 

  37. Herbst R, Mullani N, Davis D, et al. Development of biologic markers of response and assessment of antiangiogenic activity in a clinical trial of human recombinant endostatin. J Clin Oncol 2002;20:3804–3814.

    Article  PubMed  CAS  Google Scholar 

  38. Knopp M, Weiss E, Sinn H, et al. Pathophysiologic basis of contrast enhancement in breast tumors. J Magn Reson Imaging 1999;10:260–266.

    Article  PubMed  CAS  Google Scholar 

  39. Stevenson J, Rosen M, Sun W, et al. Phase I trial of the antivascular agent Combretastatin A4 phosphate on a 5-day schedule to patients with cancer: magnetic resonance imaging evidence for altered tumor blood flow. J Clin Oncol 2003;21:4428–4438.

    Article  PubMed  CAS  Google Scholar 

  40. Purdie T, Henderson E, Lee T, et al. Functional CT imaging of angiogenesis in rabbit VX2 soft tissue tumor. Phys Med Biol 2001;46:3161–3175.

    Article  PubMed  CAS  Google Scholar 

  41. Natale RB, Skarin A, Maddox AM, et al. Improvement in symptoms and quality of life for advanced non-small-cell lung cancer patients receiving ZD1839 in IDEAL2. Proc Am Soc Clin Oncol 2002 (Abstract 1167).

    Google Scholar 

  42. Fukuoka M, Yano S, Giaccone G, et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer. J Clin Oncol 2003;21:2237–2246.

    Article  PubMed  CAS  Google Scholar 

  43. Kris M, Natale RB, Herbst RS, et al. A phase II trial of ZD1839 (‘Iressa’) in advanced non-small cell lung cancer (NSCLC) patients who had failed platinum- and docetaxel-based regimens (IDEAL 2). Proc Am Soc Clin Oncol 21: 2002 (Abstract 1166)

    Google Scholar 

  44. Giaccone G, Herbst R, Manegold C, et al. Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trial - Intact 1. J Clin Oncol 2004;22:777–784.

    Article  PubMed  CAS  Google Scholar 

  45. Herbst R, Giaccone G, Schiller J, et al. Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial – Intact 2. J Clin Oncol 2004;22:785–794.

    Article  PubMed  CAS  Google Scholar 

  46. Rosner G, Stadler W, Ratain M, et al. Randomized discontinuation design: application to cytostatic antineoplastic agents. J Clin Oncol 2002;20:4478–4484.

    Article  PubMed  CAS  Google Scholar 

  47. Mick R, Crowley J, Caroll R, et al. Phase II clinical trial design for noncytotoxic anticancer agents for which time to disease progression is the primary endpoint. Control Clin Trials 2000;21:343–359.

    Article  PubMed  CAS  Google Scholar 

  48. Gehan E. The determination of the number of patients required in a preliminary and a follow-up trial of a new chemotherapeutic agent. J Chronic Dis 1961;13:346–353.

    Article  PubMed  CAS  Google Scholar 

  49. Fleming T. One-sample multiple testing procedure for phase II clinical trials. Biometrics 1982;38:143–151.

    Article  PubMed  CAS  Google Scholar 

  50. Simon R. Optimal two-stage design for phase II clinical trials. Control Clin Trials 1989;10:1–10.

    Article  PubMed  CAS  Google Scholar 

  51. Van Oosterom AT. Progression arrest. In: Clinical Management of Soft Tissue Sarcomas. Martinus Nijhoff Publishers, den Haag (The Hague) 1986;131–138.

    Google Scholar 

  52. Zee B, Melnychuk D, Dancey J, et al. Multinomial phase II cancer trials incorporating response and early progression. J Biopharm Stat 1999;9:351–363.

    Article  PubMed  CAS  Google Scholar 

  53. Dent S, Zee B, Dancey J, et al. Application of a new multinomial phase II stopping rule using response and early progression. J Clin Oncol 2001;19:785–791.

    PubMed  CAS  Google Scholar 

  54. Korn E, Arbuck S, Pluda J, et al. Clinical trial designs for cytostatic agents: are new approaches needed? J Clin Oncol 2001;19:265–272.

    PubMed  CAS  Google Scholar 

  55. Van Glabbeke M, Verweij J, Judson I, et al. Progression-free rate as the principal end-point for phase II trials in soft-tissue sarcomas. Eur J Cancer 2002;38:543–549.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Kitzen, J., Jonge, M.d., Verweij, J. (2008). How to Define Treatment Success or Failure if Tumors Do Not Shrink. In: Kaufman, H.L., Wadler, S., Antman, K. (eds) Molecular Targeting in Oncology. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-337-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-337-0_28

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-577-4

  • Online ISBN: 978-1-59745-337-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics