Skip to main content

VEGF Inhibition for Cancer Therapy

  • Chapter
Molecular Targeting in Oncology

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Summary

Drugs targeting vasculoendothelial cell growth factor (VEGF) are now among the most commonly used anti-cancer agents. The agent with the greatest current clinical experience is bevacizumab, a monoclonal antibody to VEGF which has been studied primarily in combination regimens. Clinical benefit with bevacizumab has been seen across multiple tumor types, including colon cancer, non–small cell lung cancer, breast cancer, renal cell cancer, among others. Two other small molecule inhibitors of the VEGF axis, sunitinib and sorafenib, have shown benefit in renal cell cancer, as well as other tumor types. The efficacy and toxicity of these and other VEGF inhibitors is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ferrara N. VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2002; 2:795–803.

    Article  PubMed  CAS  Google Scholar 

  2. Lewis WH. The vascular pattern of tumors. Johns Hopkins Hospital Bulletin 1927; 41:156–162

    Google Scholar 

  3. Ide AG, et al. Vascularization of the Brown Pearce rabbit epithelioma transplant as seen in the transparent ear chamber. Am J Roentgenol 1939; 42:891–899.

    Google Scholar 

  4. Algire GH, et al. Vascular reactions of normal and malignant tissues in vivo. I. Vascular reactions of mice to wounds and to normal and neoplastic transplants. J Natl Cancer Inst 1945; 6:73–82.

    Google Scholar 

  5. Folkman J, et al. Isolation of a tumor factor responsible for angiogenesis. J Exp Med 1971; 133:275-288.

    Article  PubMed  CAS  Google Scholar 

  6. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971;285: 1182–1186.

    Article  PubMed  CAS  Google Scholar 

  7. Senger DR, et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983; 219: 983–985.

    Article  PubMed  CAS  Google Scholar 

  8. Ferrara N, et al. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 1989;161: 851–858.

    Article  PubMed  CAS  Google Scholar 

  9. Senger DR, et al. A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines. Cancer Res 1986; 46:5629–5632.

    PubMed  CAS  Google Scholar 

  10. Senger DR, et al. Purification and NH2-terminal amino acid sequence of guinea pig tumor-secreted vascular permeability factor. Cancer Res 1990;50: 1774–1748.

    PubMed  CAS  Google Scholar 

  11. de Vries C, et al. The FMS-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 1992; 255: 989–991.

    Article  PubMed  Google Scholar 

  12. Terman BI, et al. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial growth factor. Biochem Biophys Res Commun 1992;187: 1579–1586.

    Article  PubMed  CAS  Google Scholar 

  13. Millauer B, et al. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 1993; 72: 835–846.

    Article  PubMed  CAS  Google Scholar 

  14. Quinn TP, et al. Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proc Natl Acad Sci USA 1993; 90:7533–7537.

    Article  PubMed  CAS  Google Scholar 

  15. Ferrara N, et al. The biology of VEGF and its receptors. Nat Med 2003; 9:669–676.

    Article  PubMed  CAS  Google Scholar 

  16. Pugh CW, et al. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 2003; 9:677–684.

    Article  PubMed  CAS  Google Scholar 

  17. Ferrara N. Vascular endothelial growth factor as a target for anticancer therapy. Oncologist 2004; 9(suppl):2–10.

    Article  PubMed  CAS  Google Scholar 

  18. Shweiki D, et al. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992; 359:843–845.

    Article  PubMed  CAS  Google Scholar 

  19. Josko J, et al. Transcription factors having impact on vascular endothelial growth factor (VEGF) gene expression in angiogenesis. Med Sci Monitor 2004;10: RA89–98.

    CAS  Google Scholar 

  20. Fong GH, et al. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 1995; 376:66–70.

    Article  PubMed  CAS  Google Scholar 

  21. Shalaby F, et al. Failure of blood-island formation and vasculogenesis in Flk-1 deficient mice. Nature 1995;376:62–66.

    Article  PubMed  CAS  Google Scholar 

  22. Carmeliet P, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996;380:435–439.

    Article  PubMed  CAS  Google Scholar 

  23. Ferrara N, et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996; 380:439–442.

    Article  PubMed  CAS  Google Scholar 

  24. Jubb A, et al. Expression of vascular endothelial growth factor, hypoxia inducible factor 1alpha, and carbonic anhydrase IX in human tumours. J Clin Pathol 2004; 57(5):504–512.

    Article  PubMed  CAS  Google Scholar 

  25. Yang JC, et al. A randomized trial of bevacizumab, an antivascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 2003; 349:427–434.

    Article  PubMed  CAS  Google Scholar 

  26. Cobleigh MA, et al. A phase I/II dose escalation trial of bevacizumab in previously treated metastatic breast cancer. Semin Oncol 2003; 30 (suppl 16): 117–124.

    Article  PubMed  CAS  Google Scholar 

  27. Motzer RJ, et al. Phase 2 trials of SU11248 show antitumor activity in second-line therapy for patients with metastatic renal cell carcinoma (RCC). 2005 ASCO Annual Meeting, abstract #4508.

    Google Scholar 

  28. Motzer RJ, et al. Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J Clin Orthod 2006; 24:16–23.

    CAS  Google Scholar 

  29. Giantonio BJ, et al. High-dose bevacizumab improves survival when combined with FOLFOX4 in previously treated advanced colorectal cancer: results from the Eastern Cooperative Oncology Group (ECOG) study E3200. J Clin Orthod 2005; 23(suppl): 2s, abstract 2.

    Google Scholar 

  30. Escudier B, et al. Randomized phase III trial of the Raf kinase and VEGFR inhibitor sorafenib (BAY 43–9006) in patients with advanced renal cell carcinoma (RCC). 2005 ASCO Annual Meeting, abstract #4510.

    Google Scholar 

  31. Jain RK. Antiangiogenic therapy for cancer: current and emerging concepts. Oncology 2005; 19(suppl): 7–16.

    PubMed  Google Scholar 

  32. Semenza G. HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol 2001;13:167–171.

    Article  PubMed  CAS  Google Scholar 

  33. Kabbinavar F, et al. Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Orthod 2003; 21:60–65.

    CAS  Google Scholar 

  34. Hurwitz H, et al. Bevacizumab plus irinotecan, fluorouracil and leucovorin for metastatic colorectal cancer. N Engl J Med 2004; 350: 2335–2342.

    Article  PubMed  CAS  Google Scholar 

  35. Sandler AB, et al. Randomized phase II/III trial of paclitaxel (P) plus carboplatin (C) with or without bevacizumab (NSC #704865) in patients with advanced non-squamous non-small cell lung cancer (NSCLC): an Eastern Cooperative Group (ECOG) Trial – E4599. J Clin Orthod 2005; 23(suppl): abstract LBA4.

    Google Scholar 

  36. Laskin JJ, et al. First-line treatment for advanced NSCLC. Oncology, 19: 1671–76, 2005.

    PubMed  Google Scholar 

  37. Tyagi P. Bevacizumab, when added to paclitaxel/carboplatin, prolongs survival in previously untrested patients with advanced NSCLC: preliminary results from the ECOG 4599 trial. Clin Lung Cancer, 6: 276–78, 2005.

    PubMed  Google Scholar 

  38. Miller K, et al. Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J Clin Orthod 2005; 23: 792–799.

    CAS  Google Scholar 

  39. Kabbinavar FF, et al. Addition of bevacizumab to bolus fluorouracil and leucovorin in first-line metastatic colorectal cancer: results of a randomized phase II trial. J Clin Orthod 2005; 23:3697–3705.

    CAS  Google Scholar 

  40. Skillings JR, et al. Arterial thromboembolic events (ATEs) in a pooled analysis of 5 randomized, controlled trials (RCTs) of bevacizumab (BV) with chemotherapy. JCO, 23(suppl): abstract 3019, 2005.

    Google Scholar 

  41. Miller KD, et al. E2100: a randomized phase III trial of paclitaxel versus paclitaxel plus bevacizumab as first-line therapy for locally recurrent or metastatic breast cancer. Presented at the 41^st Annual Meeting of the American Society of Clincial Oncology (ASCO), May 13–17, 2005, Orlando, FL.

    Google Scholar 

  42. Avastin (bevacizumab) package insert 2004.

    Google Scholar 

  43. D’Adamo DR, et al. Phase II study of doxorubicin and bevacizumab for patients with metastatic soft-tissue sarcomas. J Clin Orthod 2005; 23:7135–7142.

    CAS  Google Scholar 

  44. Scappaticci FA, et al. Surgical wound healing complications in metastatic colorectal cancer patients treated with bevacizumab. J Surg Oncol 2005; 91:173–180.

    Article  PubMed  CAS  Google Scholar 

  45. Nexavar (sorafenib) package insert 2005.

    Google Scholar 

  46. Ratain MJ, et al. Final findings from a phase II, placebo-controlled, randomized discontinuation trial (RDT) of sorafenib (BAY 43–9006) in patients with advanced renal cell carcinoma (RCC). 2005 ASCO Annual Meeting, abstract #4544.

    Google Scholar 

  47. SU11248 (Sutent) package insert. Pfizer 2006.

    Google Scholar 

  48. Demetri et al. Improved survival and sustained clinical benefit with SU11248 (SU) in pts with GIST after failure of imatinib mesylate (IM) therapy in a phase III trial. 2006 ASCO Gastrointestinal Cancers Symposium, abstract #8.

    Google Scholar 

  49. Faivre S, et al. Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Orthod 2006; 24: 25–35.

    CAS  Google Scholar 

  50. Desai J, et al. Hypothyroidism may accompany SU11248 therapy in a subset of patients (pts) with metastatic (met) gastrointestinal stromal tumors (GIST) and is manageable with replacement therapy. J Clin Orthod 2005; 23(suppl): abstract 3040.

    Google Scholar 

  51. Hecht JR, et al. A randomized, double-blind, placebo-controlled, phase III study in patients with metastatic adenocarcinoma of the colon or rectum receiving first-line chemotherapy with oxaliplatin/5-fluorouracil/leucovorin and PTK787/ZK222584 or placebo (CONFIRM-1). 2005 ASCO Annual Meeting, abstract #3.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Saini, S., Hurwitz, H. (2008). VEGF Inhibition for Cancer Therapy. In: Kaufman, H.L., Wadler, S., Antman, K. (eds) Molecular Targeting in Oncology. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-337-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-337-0_24

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-577-4

  • Online ISBN: 978-1-59745-337-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics