Skip to main content

Development of a Targeted Treatment for Cancer

The Example of C225 (Cetuximab)

  • Chapter
Molecular Targeting in Oncology

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Summary

This is a review of the discovery and development of C225/Cetuximab, a novel monoclonal antibody (mAb) treatment for cancer. Cetuximab was the first anticancer agent that successfully targeted a receptor for a growth factor and a protein tyrosine kinase. Blocking the signaling activity of the epidermal growth factor (EGF) receptor represented a new targeted approach to cancer therapy. Preclinical studies with human cancer xenografts suggested that C225 worked best in combination with chemotherapy or radiation. Many possible mechanisms of action have been uncovered, including inhibition of each of the six characteristics of a cancer cell described by Hanahan and Weinberg (1). The research on C225 over a period of two decades has involved dozens of academic collaborations, numerous grants from the National Cancer Institute, and the work of four pharmaceutical/biotech companies. There was a setback in the Food and Drug Administration (FDA) review process, but approval for clinical use in advanced refractory colorectal cancer was obtained in 2004. Much additional research is needed (and is ongoing) to discover markers that predict clinical responsiveness and to determine how and for whom to use this therapy most effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57–70.

    Article  PubMed  CAS  Google Scholar 

  2. Kawamoto T, Sato JD, Le A, Polikoff J, Sato GH, Mendelsohn J. Growth stimulation of A431 cells by EGF: identification of high affinity receptors for epidermal growth factor by an anti-receptor monoclonal antibody. Proc Natl Acad Sci USA 1983;80:1337–1341.

    Article  PubMed  CAS  Google Scholar 

  3. Barnes D, Sato G. Serum-free cell culture: a unifying approach. Cell 1980;22:649–655.

    Article  PubMed  CAS  Google Scholar 

  4. Paul J. The nutrition of animal cells in vitro. Proc Nutr Soc 1960;19:45–50 (Reference to unpublished observations).

    Article  PubMed  CAS  Google Scholar 

  5. Bernheim JL, Dorian R, Mendelsohn J. DNA synthesis and proliferation of human lymphocytes in vitro: II. Cell kinetics of response to phytohemagglutinin. J Immunol 1978;120:955–962.

    PubMed  CAS  Google Scholar 

  6. Mendelsohn J, Nordberg J. Adenylate cyclase in thymus-derived and bone marrow-derived lymphocytes from normal donors and patients with chronic lymphocytic leukemia. J Clin Invest 1979;63:1124–1132.

    Article  PubMed  CAS  Google Scholar 

  7. Sporn MB, Todaro GJ. Autocrine secretion and malignant transformation of cells. N Engl J Med 1980;303:878–880.

    Article  PubMed  CAS  Google Scholar 

  8. Cooper JA, Hunter T. Similarities and differences between the effect of epidermal growth factor Rous sarcoma virus. J Cell Biol 1981;91:878–883.

    Article  PubMed  CAS  Google Scholar 

  9. Chinkers M, Cohen S. Purified EGF receptor-kinase interacts specifically with antibodies to Rous sarcoma virus transforming protein. Nature (Lond.) 1981;290:516–519.

    Article  CAS  Google Scholar 

  10. Erickson E, Shealy DJ, Erickson RL. Evidence that viral transforming gene products and epidermal growth factor stimulate phosphorylation of the same cellular protein with similar specificity. J Biol Chem 1981;25:11381–11384.

    Google Scholar 

  11. Ozanne B, Richards CS, Hendler F, Burns D, Gusterson B. Over-expression of the EGF receptor is a hallmark of squamous cell carcinomas. J Pathol 1986;149:9–14.

    Article  PubMed  CAS  Google Scholar 

  12. Mendelsohn J. Epidermal growth factor receptor inhibition by a monoclonal antibody as anticancer therapy. Clin Cancer Res 1997;3:2703–2707.

    PubMed  CAS  Google Scholar 

  13. Sato JD, Kawamoto T, Le AD, Mendelsohn J, Polikoff J, Sato GH. Biological effects in vitro of monoclonal antibodies to human EGF receptors. Mol Biol Med 1983;1:511–529.

    PubMed  CAS  Google Scholar 

  14. Masui H, Kawamoto T, Sato JD, Wolf B, Sato GH, Mendelsohn J. Growth inhibition of human tumor cells in athymic mice by anti-EGF receptor monoclonal antibodies. Cancer Res 1984;44:1002–1007.

    PubMed  CAS  Google Scholar 

  15. Gill GN, Kawamoto T, Cochet C, Le A, Sato JD, Masui H, McLeod C, Mendelsohn J. Monoclonal anti-epidermal growth factor receptor antibodies which are inhibitors of epidermal growth factor binding and antagonists of epidermal growth factor-stimulated tyrosine protein kinase activity. J Biol Chem 1984;259:7755–7760.

    PubMed  CAS  Google Scholar 

  16. Sunada H, Magun B, Mendelsohn J, MacLeod CL. Monoclonal antibody against EGF receptor is internalized without stimulating receptor phosphorylation. Proc Natl Acad Sci USA 1986;83:3825–3829.

    Article  PubMed  CAS  Google Scholar 

  17. Masui H, Morayama T, Mendelsohn J. Mechanism of antitumor activity in mice for anti-EGF receptor monoclonal antibodies with different isotypes. Cancer Res 1986;46:5592–5598.

    PubMed  CAS  Google Scholar 

  18. Sunada H, Yu P, Peacock JS, Mendelsohn J. Modulation of tyrosine serine and threonine phosphorylation and intracellular processing of the epidermal growth factor receptor by anti-receptor monoclonal antibody. J Cell Physiol 1990;142:284–292.

    Article  PubMed  CAS  Google Scholar 

  19. Van de Vijver M, Kumar R, Mendelsohn J. Ligand-induced activation of A431 cell EGF receptors occurs primarily by an autocrine pathway that acts upon receptors on the surface rather than intracellularly. J Biol Chem 1991;266:7503–7508.

    PubMed  Google Scholar 

  20. Masui H, Castro L, Mendelsohn J. Consumption of epidermal growth factor by A431 cells: Evidence for receptor recycling. J Cell Biol 1983;120:85–93.

    Article  Google Scholar 

  21. Fan Z, Masui H, Atlas I, Mendelsohn J. Blockade of epidermal growth factor (EGF) receptor function by bivalent and monovalent fragments of 225 anti-EGF receptor monoclonal antibody. Cancer Res 1993;53:4322–4328.

    PubMed  CAS  Google Scholar 

  22. Naramura M, Gillies SD, Mendelsohn J, Reisfeld RA, Mueller BM. Therapeutic potential of chimeric and murine anti-(epidermal growth factor receptor) antibodies in a metastasis model for human melanoma. Cancer Immunol Immunother 1993;37:343–349.

    Article  PubMed  CAS  Google Scholar 

  23. Fan Z, Lu Y, Wu X, Mendelsohn J. Antibody-induced epidermal growth factor receptor dimerization mediates inhibition of autocrine proliferation of A431 squamous carcinoma cells. J Biol Chem 1994;269:27595–27602.

    PubMed  CAS  Google Scholar 

  24. Mendelsohn J, Masui H, Sunada H, and MacLeod C. Monoclonal antibodies against the receptor for epidermal growth factor as potential anticancer agents. In Cellular and Molecular Biology of Tumors and Potential Clinical Applications, pp. 307–312. New York: Alan R. Liss Inc., 1988.

    Google Scholar 

  25. Goldenberg A, Masui H, Divgi C, Kamrath H, Pentlow K, Mendelsohn J. EGF receptor overexpression and localization of nude mouse xenografts using 111Indium labeled anti-EGF receptor monoclonal antibody. J Natl Cancer Inst 1989;81:1616–1625.

    Article  PubMed  CAS  Google Scholar 

  26. Divgi CR, Welt C, Kris M, Real FX, Yeh SDJ, Gralla R, Merchant B, Schweighart S, Unger M, Larson SM, Mendelsohn J. Phase I and imaging trial of indium-111 labeled anti-EGF receptor monoclonal antibody 225 in patients with squamous cell lung carcinoma. J Natl Cancer Inst 1991;83:97–104.

    Article  PubMed  CAS  Google Scholar 

  27. Fan Z, Masui H, Atlas I, Mendelsohn J. Blockade of epidermal growth factor (EGF) receptor function by bivalent and monovalent fragments of 225 anti-EGF receptor monoclonal antibody. Cancer Res 1993;53:4322–4328.

    PubMed  CAS  Google Scholar 

  28. Goldstein NI, Prewett M, Zuklys K, Rockwell P, Mendelsohn J. Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model. Clin Cancer Res 1995;1:1311–1318.

    PubMed  CAS  Google Scholar 

  29. Mendelsohn J, Baselga J. Status of EGF-receptor antagonists in the biology and treatment of cancer. J Clin Oncol (Biology of Neoplasia series) 2003;21:2787–2799.

    CAS  Google Scholar 

  30. Wu X, Fan Z, Masui H, Rosen N, Mendelsohn J. Apoptosis induced by an anti-epidermal growth factor receptor monoclonal antibody in a human colorectal carcinoma cell line and its delay by insulin. J Clin Invest 1995;95:1897–1905.

    PubMed  CAS  Google Scholar 

  31. Soos T, Kiyokawa H, Yan JS, Rubin MS, Giordano A, DeBlasio A, Bottega S, Wong B, Mendelsohn J, Koff A. Formation of p27-CDK complexes during the human mitotic cell cycle. Cell Growth Differ 1996;7:135–146.

    PubMed  CAS  Google Scholar 

  32. Wu X, Rubin M, Fan Z, DeBlasio T, Soos T, Koff A, Mendelsohn J. Involvement of p27^KIP1 in G1 arrest mediated by an anti-epidermal growth factor receptor monoclonal antibody. Oncogene 1996;12:1397–1403.

    PubMed  CAS  Google Scholar 

  33. Peng D, Fan Z, Lu Y, DeBlasio T, Scher H, Mendelsohn J. Anti-epidermal growth factor receptor monoclonal antibody 225 upregulates p27Kip1 and induces G1 arrest in prostatic cancer cell line DU145. [Advances in Brief] Cancer Res 1996;56:3666–3669.

    PubMed  CAS  Google Scholar 

  34. Perrotte P, Matsumoto T, Inoue K, Kuniyasu H, Eve BY, Hicklin DJ, Radinsky R, Dinney CP. Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice. Clin Cancer Res 1999;5:257–265.

    PubMed  CAS  Google Scholar 

  35. Bruns CJ, Harbison MT, Davis DW, Portera CA, Tsan R, McConkey DJ, Evans DB, Abbruzzese JL, Hicklin DJ, Radinsky R. Epidermal growth factor receptor blockade with C225 plus gemcitabine results in regression of human pancreatic carcinoma growing orthotopically in nude mice by anti-angiogenic mechanisms. Clin Cancer Res 2000;6:1936–1948.

    PubMed  CAS  Google Scholar 

  36. Mandal M, Adam L, Mendelsohn J, Kumar R. Nuclear targeting of Bax during epidermal growth factor receptor-induced apoptosis in colorectal cancer cells. Oncogene 1998;17:999–1007.

    Article  PubMed  CAS  Google Scholar 

  37. Liu B, Fang M, Schmidt M, Lu Y, Mendelsohn J, Fan Z. Induction of apoptosis and activation of the caspase cascade by anti-EGF receptor monoclonal antibodies in DiFi human colon cancer cells do not involve the c-jun N-terminal kinase activity. Br J Cancer 2000;82:1991–1999.

    Article  PubMed  CAS  Google Scholar 

  38. Albanell J, Codony-Servat J, Rojo F, Del Campo J, Sauleda S, Anido J, Raspall G, Giralt J, Rosello J, Nicholson R, Mendelsohn J, Baselga J. Activated extracellular signal-regulated kinases: association with epidermal growth factor receptor/transforming growth factor alpha expression in head and neck squamous carcinoma and inhibition by anti-EGF receptor treatments. Cancer Res 2001;61 (17):6500–6510.

    PubMed  CAS  Google Scholar 

  39. Aboud-Pirak E, Hurwitz E, Pirak ME, Bellot F, Schlessinger J, Sela M. Efficacy of antibodies to epidermal growth factor receptor against KB carcinoma in vitro and in nude mice. J Natl Cancer Inst 1988;80:1605–1611.

    Article  PubMed  CAS  Google Scholar 

  40. Baselga J, Norton L, Masui H, Pandiella A, Coplan K, Miller WH, Jr, Mendelsohn J. Antitumor effects of doxorubicin in combination with anti-epidermal growth factor receptor monoclonal antibodies. J Natl Cancer Inst 1993;85:1327–1333.

    Article  PubMed  CAS  Google Scholar 

  41. Fan Z, Baselga J, Masui H, Mendelsohn J. Antitumor effect of anti-epidermal growth factor receptor monoclonal antibodies plus cis-diamminedichloroplatinum on well established A431 cell xenografts. Cancer Res 1993;53:4637–4642.

    PubMed  CAS  Google Scholar 

  42. Baselga J, Norton L, Coplan K, Shalaby R, Mendelsohn J. Antitumor activity of paclitaxel in combination with anti-growth factor receptor monoclonal antibodies in breast cancer xenografts. Proc Annu Meet Am Assoc Cancer Res 1994;35:A2262–A2380.

    Google Scholar 

  43. Ciardiello F, Bianco R, Damiano V, De Lorenzo S, Pepe S, De Placido S, Fan Z, Mendelsohn J, Bianco AR, Tortora G. Antitumor activity of sequential treatment with Topotecan and anti-epidermal growth factor receptor monoclonal antibody C225. Clin Cancer Res 1999;5:909–916.

    PubMed  CAS  Google Scholar 

  44. Prewett MC, Hooper AT, Bassi R, Ellis LM, Waksal H, Hicklin DJ. Enhanced antitumor activity of anti-epidermal growth factor receptor monoclonal antibody IMC-C225 in combination with irinotecan (CPT-11) against human colerectal tumor xenografts. Clin Cancer Res 2002;8:994–1003.

    PubMed  CAS  Google Scholar 

  45. Huang SM, Bock JM, Harari PM. Epidermal growth factor receptor blockade with C225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck. Cancer Res 1999;59:1935–1940.

    PubMed  CAS  Google Scholar 

  46. Milas L, Mason K, Hunter N, Petersen S, Yamakawa M, Ang K, Mendelsohn J, Fan Z. In vivo enhancement of tumor radioresponse by C225 antiepidermal growth factor receptor antibody. Clin Cancer Res 2000;6:701–708.

    PubMed  CAS  Google Scholar 

  47. Baselga J, Pfister D, Cooper MR, Cohen R, Burtness B, Bos M, D’Andrea G, Seidman A, Norton L, Gunnet K, Anderson V, Waksal H, Mendelsohn J. Phase I studies of anti-epidermal growth factor receptor chimeric antibody C225 alone and in combination with cisplatin. J Clin Oncol 2000;18: 904–914.

    PubMed  CAS  Google Scholar 

  48. Saltz L, Rubin M, Hochster H, Tchekmevdian NS, Waksal H, Needle M, LoBuglio AF. Cetuximab (IMC-225) plus irinotecan (CPT-11) is active in CPT-11-refractory colorectal cancer (CRC) that expresses epidermal growth factor receptor (EGFR). Proc Am Soc Clin Oncol 2001;20:3a (abstract 7).

    Google Scholar 

  49. Saltz L, Meropol NJ, Loehrer PJ, Waksal H, Needle MN, Mayer RJ. Single agent IMC-C225 (Erbitux^TM) has activity in CPT-11-refractory colorectal cancer (CRC) that expresses the epidermal growth factor receptor (EGFR). Proc Annu Meet Am Soc Clin Oncol 2002;21:127a (abstract 504).

    Google Scholar 

  50. Saltz LB, Meropol NJ, Lochrer PJ Sr, Needle MN, Kopit J, Mayer RJ. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol 2004;22(7):1177–1179.

    Article  CAS  Google Scholar 

  51. Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, Bets D, Mueser M, Harstrick Y, Van Cutsem E. Cetuximab (C225) alone or in combination with irinotecan (CPT-11) in patients with epidermal growth factor receptor (EGFR)-positive, irinotecan-refractory metastatic colorectal cancer (MCRC). Proc Annu Meet Am Soc Clin Oncol 2003;22:252 (abstract 1012).

    Google Scholar 

  52. Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santor AD, Mueser M, Harstrick A, Verslype C, Chau I, Van Cutsem E. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 2004;22;351(4):337–345.

    Google Scholar 

  53. Robert F, Ezekiel MP, Spencer SA, Meredith RF, Bonner JA, Khazaeli MB, Saleh MN, Carey D, LoBuglio AF, Wheeler RH, Cooper MR, Waksal HW. Phase I study of anti-epidermal growth factor receptor antibody cetuximab in combination with radiation therapy in patients with advanced head and neck cancer. J Clin Oncol 2001;19:3234–3243.

    PubMed  CAS  Google Scholar 

  54. Bonner JA, Harari PM, Giralt J, Azarnia N, Cohen RB, Raben D, Jones C, Kies MS, Baselga J, Ang KK. Cetuximab prolongs survival in patients with locoregionally advanced squamous cell carcinoma of head and neck: a phase III study of high dose radiation therapy with our without cetuximab. Proc Annu Meet Am Soc Clin Oncol 2004;23(14S):489s (abstract 5507).

    Google Scholar 

  55. Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB, Jones CU, Sur R, Raben D, Jassem J, Ove R, Kies MS, Baselga J, Youssoufian H, Amellal N, Rowinsky EK, and Ang K. Radiotherapy plus cetuximab for squamous-cell carcinoma in head and neck. N Engl J Med 2006;354:567–578.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Mendelsohn, J. (2008). Development of a Targeted Treatment for Cancer. In: Kaufman, H.L., Wadler, S., Antman, K. (eds) Molecular Targeting in Oncology. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-337-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-337-0_23

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-577-4

  • Online ISBN: 978-1-59745-337-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics