Skip to main content

Engineering Oncolytic Measles Viruses for Targeted Cancer Therapy

  • Chapter
Molecular Targeting in Oncology

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Summary

Many viruses are capable of destructive propagation in tumors. The goal of cancer virotherapy is to harness this destructive power to selectively destroy tumors without causing damage to normal tissues. Compared with normal tissues, tumors are more highly permissive for virus propagation because they fail to shut down protein synthesis in response to virus infection and do not readily undergo apoptosis. Additional oncolytic specificity can be achieved by engineering viruses such that their life cycles become dependent on a factor or factors supplied exclusively by tumor cells. One such strategy is transductional targeting whereby the virus is modified such that its attachment and entry are redirected through a receptor unique to the tumor cells. The two key components of transductional targeting are incorporation of functional polypeptide ligands into the virus coat and ablation of natural receptor tropisms. Available polypeptide ligands include short peptides, single-domain growth factors and cytokines, and two-domain single-chain antibodies that have higher affinities and more versatile binding specificities than short peptide ligands but more stringent folding requirements such that they can be displayed only as fusions to the surface glycoproteins of enveloped viruses. Unfortunately, for many of the viruses that have been tested, retargeted attachment fails to mediate efficient virus entry through the targeted receptor. Oncolytic measles virus (MV) provides a notable exception to this ruleā€”not only can this virus tolerate the insertion of a wide variety of polypeptide ligands as C-terminal extensions of its attachment glycoprotein, but retargeted virus attachment usually leads to efficient virus entry through the targeted receptor. A versatile system has therefore been developed for the construction, rescue, and amplification of fully retargeted oncolytic MVs, and studies are currently underway to determine the value of transductional targeting using these agents in a variety of cancer therapy models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

references

  1. Kirn D, Martuza RL, Zwiebel J. Replication-selective virotherapy for cancer: biological principles, risk management and future directions. Nat Med 2001;7(7):781ā€“7.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  2. Russell SJ. RNA viruses as virotherapy agents. Cancer Gene Ther 2002;9(12):961ā€“6.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  3. Peng KW, Ahmann GJ, Pham L, Greipp PR, Cattaneo R, Russell SJ. Systemic therapy of myeloma xenografts by an attenuated measles virus. Blood 2001;98(7):2002ā€“7.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  4. Peng KW, Teneyck CJ, Galanis E, Kalli KR, Hartmann LC, Russell SJ. Intraperitoneal therapy of ovarian cancer using an engineered measles virus. Cancer Res 2002;62(16):4656ā€“62.

    PubMedĀ  CASĀ  Google ScholarĀ 

  5. Phuong LK, Allen C, Peng KW, et al. Use of a vaccine strain of measles virus genetically engineered to produce carcinoembryonic antigen as a novel therapeutic agent against glioblastoma multiforme. Cancer Res 2003;63(10):2462ā€“9.

    PubMedĀ  CASĀ  Google ScholarĀ 

  6. Grote D, Russell SJ, Cornu TI, et al. Live attenuated measles virus induces regression of human lymphoma xenografts in immunodeficient mice. Blood 2001;97(12):3746ā€“54.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  7. Hara T, Suzuki Y, Semba T, Hatanaka M, Matsumoto M, Seya T. High expression of membrane cofactor protein of complement (CD46) in human leukaemia cell lines: implication of an alternatively spliced form containing the STA domain in CD46 up-regulation. Scand J Immunol 1995;42(6): 581ā€“90.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  8. Seya T, Hara T, Matsumoto M, Akedo H. Quantitative analysis of membrane cofactor protein (MCP) of complement. High expression of MCP on human leukemia cell lines, which is down-regulated during cell differentiation. J Immunol 1990;145(1):238ā€“45.

    PubMedĀ  CASĀ  Google ScholarĀ 

  9. Yamakawa M, Yamada K, Tsuge T, et al. Protection of thyroid cancer cells by complement-regulatory factors. Cancer 1994;73(11):2808ā€“17.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  10. Thorsteinsson L, Oā€™Dowd GM, Harrington PM, Johnson PM. The complement regulatory proteins CD46 and CD59, but not CD55, are highly expressed by glandular epithelium of human breast and colorectal tumour tissues. APMIS 1998;106(9):869ā€“78.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  11. Gorter A, Blok VT, Haasnoot WH, Ensink NG, Daha MR, Fleuren GJ. Expression of CD46, CD55, and CD59 on renal tumor cell lines and their role in preventing complement-mediated tumor cell lysis. Lab Invest 1996;74(6):1039ā€“49.

    PubMedĀ  CASĀ  Google ScholarĀ 

  12. Juhl H, Helmig F, Baltzer K, Kalthoff H, Henne-Bruns D, Kremer B. Frequent expression of complement resistance factors CD46, CD55, and CD59 on gastrointestinal cancer cells limits the therapeutic potential of monoclonal antibody 17ā€“1A. J Surg Oncol 1997;64(3):222ā€“30.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  13. Kinugasa N, Higashi T, Nouso K, et al. Expression of membrane cofactor protein (MCP, CD46) in human liver diseases. Br J Cancer 1999;80(11):1820ā€“5.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  14. Murray KP, Mathure S, Kaul R, et al. Expression of complement regulatory proteins-CD 35, CD 46, CD 55, and CD 59-in benign and malignant endometrial tissue. Gynecol Oncol 2000;76(2):176ā€“82.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  15. Simpson KL, Jones A, Norman S, Holmes CH. Expression of the complement regulatory proteins decay accelerating factor (DAF, CD55), membrane cofactor protein (MCP, CD46) and CD59 in the normal human uterine cervix and in premalignant and malignant cervical disease. Am J Pathol 1997;151(5):1455ā€“67.

    PubMedĀ  CASĀ  Google ScholarĀ 

  16. Bjorge L, Hakulinen J, Wahlstrom T, Matre R, Meri S. Complement-regulatory proteins in ovarian malignancies. Int J Cancer 1997;70(1):14ā€“25.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  17. Blok VT, Daha MR, Tijsma OM, Weissglas MG, van den Broek LJ, Gorter A. A possible role of CD46 for the protection in vivo of human renal tumor cells from complement-mediated damage. Lab Invest 2000;80(3):335ā€“44.

    PubMedĀ  CASĀ  Google ScholarĀ 

  18. Fishelson Z, Donin N, Zell S, Schultz S, Kirschfink M. Obstacles to cancer immunotherapy: expression of membrane complement regulatory proteins (mCRPs) in tumors. Mol Immunol 2003;40(2ā€“4):109ā€“23.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  19. Dorig RE, Marcil A, Chopra A, Richardson CD. The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 1993;75(2):295ā€“305.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  20. Naniche D, Varior-Krishnan G, Cervoni F, et al. Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol 1993;67(10):6025ā€“32.

    PubMedĀ  CASĀ  Google ScholarĀ 

  21. Tatsuo H, Ono N, Tanaka K, Yanagi Y. SLAM (CDw150) is a cellular receptor for measles virus. Nature 2000;406(6798):893ā€“7.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  22. Hsu EC, Iorio C, Sarangi F, Khine AA, Richardson CD. CDw150(SLAM) is a receptor for a lymphotropic strain of measles virus and may account for the immunosuppressive properties of this virus. Virology 2001;279(1):9ā€“21.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  23. Minagawa H, Tanaka K, Ono N, Tatsuo H, Yanagi Y. Induction of the measles virus receptor SLAM (CD150) on monocytes. J Gen Virol 2001;82(Pt 12):2913ā€“7.

    Google ScholarĀ 

  24. Anderson BD, Nakamura T, Russell SJ, Peng KW. High CD46 receptor density determines preferential killing of tumor cells by oncolytic measles virus. Cancer Res 2004;64(14):4919ā€“26.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  25. Wickham TJ. Ligand-directed targeting of genes to the site of disease. Nat Med 2003;9(1):135ā€“9.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  26. Mizuguchi H, Hayakawa T. Targeted adenovirus vectors. Hum Gene Ther 2004;15(11):1034ā€“44.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  27. Ruoslahti E. Vascular zip codes in angiogenesis and metastasis. Biochem Soc Trans 2004;32 (Pt 3):397ā€“402.

    ArticleĀ  Google ScholarĀ 

  28. Zurita AJ, Arap W, Pasqualini R. Mapping tumor vascular diversity by screening phage display libraries. J Control Release 2003;91(1ā€“2):183ā€“6.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  29. Takahashi S, Mok H, Parrott MB, et al. Selection of chronic lymphocytic leukemia binding peptides. Cancer Res 2003;63(17):5213ā€“7.

    PubMedĀ  CASĀ  Google ScholarĀ 

  30. Work LM, Nicklin SA, Brain NJ, et al. Development of efficient viral vectors selective for vascular smooth muscle cells. Mol Ther 2004;9(2):198ā€“208.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  31. Muller OJ, Kaul F, Weitzman MD, et al. Random peptide libraries displayed on adeno-associated virus to select for targeted gene therapy vectors. Nat Biotechnol 2003;21(9):1040ā€“6.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  32. Perabo L, Buning H, Kofler DM, et al. In vitro selection of viral vectors with modified tropism: the adeno-associated virus display. Mol Ther 2003;8(1):151ā€“7.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  33. Weber E, Anderson WF, Kasahara N. Recent advances in retrovirus vector-mediated gene therapy: teaching an old vector new tricks. Curr Opin Mol Ther 2001;3(5):439ā€“53.

    PubMedĀ  CASĀ  Google ScholarĀ 

  34. Lavillette D, Russell SJ, Cosset FL. Retargeting gene delivery using surface-engineered retroviral vector particles. Curr Opin Biotechnol 2001;12(5):461ā€“6.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  35. Peng KW, Russell SJ. Viral vector targeting. Curr Opin Biotechnol 1999;10(5):454ā€“7.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  36. Tai CK, Logg CR, Park JM, Anderson WF, Press MF, Kasahara N. Antibody-mediated targeting of replication-competent retroviral vectors. Hum Gene Ther 2003;14(8):789ā€“802.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  37. Laquerre S, Anderson DB, Stolz DB, Glorioso JC. Recombinant herpes simplex virus type 1 engineered for targeted binding to erythropoietin receptor-bearing cells. J Virol 1998;72(12):9683ā€“97.

    PubMedĀ  CASĀ  Google ScholarĀ 

  38. Griffin DE. Measles virus. In: Knipe DM, Howley PM, eds. Fields Virology. Philadelphia, PA: Lippincott Williams & Wilkins; 2001:1402ā€“42.

    Google ScholarĀ 

  39. Cathomen T, Naim HY, Cattaneo R. Measles viruses with altered envelope protein cytoplasmic tails gain cell fusion competence. J Virol 1998;72(2):1224ā€“34.

    PubMedĀ  CASĀ  Google ScholarĀ 

  40. Wild TF, Fayolle J, Beauverger P, Buckland R. Measles virus fusion: role of the cysteine-rich region of the fusion glycoprotein. J Virol 1994;68(11):7546ā€“8.

    PubMedĀ  CASĀ  Google ScholarĀ 

  41. Oldstone MB. Measles virus. In: Oldstone MB, ed. Viruses, Plagues and History. New York: Oxford Press; 1998.

    Google ScholarĀ 

  42. Cutts FT, Markowitz LE. Successes and failures in measles control. J Infect Dis 1994;170(Suppl 1): S32ā€“41.

    Google ScholarĀ 

  43. Bluming AZ, Ziegler JL. Regression of Burkittā€™s lymphoma in association with measles infection. Lancet 1971;2(7715):105ā€“6.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  44. Yanagi Y. The cellular receptor for measles virusā€“elusive no more. Rev Med Virol 2001;11(3): 149ā€“56.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  45. Schneider U, von Messling V, Devaux P, Cattaneo R. Efficiency of measles virus entry and dissemination through different receptors. J Virol 2002;76(15):7460ā€“7.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  46. Hsu EC, Sarangi F, Iorio C, et al. A single amino acid change in the hemagglutinin protein of measles virus determines its ability to bind CD46 and reveals another receptor on marmoset B cells. J Virol 1998;72(4):2905ā€“16.

    PubMedĀ  CASĀ  Google ScholarĀ 

  47. Santiago C, Bjorling E, Stehle T, Casasnovas JM. Distinct kinetics for binding of the CD46 and SLAM receptors to overlapping sites in the measles virus hemagglutinin protein. J Biol Chem 2002;277(35):32294ā€“301.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  48. Katze MG, He Y, Gale M, Jr. Viruses and interferon: a fight for supremacy. Nat Rev Immunol 2002;2(9):675ā€“87.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  49. Stojdl DF, Lichty BD, Tenoever BR, et al. VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell 2003;4(4):263ā€“75.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  50. Balachandran S, Barber GN. Vesicular stomatitis virus (VSV) therapy of tumors. IUBMB Life 2000;50(2):135ā€“8.

    PubMedĀ  CASĀ  Google ScholarĀ 

  51. Strong JE, Coffey MC, Tang D, Sabinin P, Lee PW. The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus. EMBO J 1998;17(12):3351ā€“62.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  52. Norman KL, Lee PW. Reovirus as a novel oncolytic agent. J Clin Invest 2000;105(8):1035ā€“8.

    PubMedĀ  CASĀ  Google ScholarĀ 

  53. Farassati F, Yang AD, Lee PW. Oncogenes in Ras signalling pathway dictate host-cell permissiveness to herpes simplex virus 1. Nat Cell Biol 2001;3(8):745ā€“50.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  54. Varghese S, Rabkin SD. Oncolytic herpes simplex virus vectors for cancer virotherapy. Cancer Gene Ther 2002;9(12):967ā€“78.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  55. Peng KW, Facteau S, Wegman T, Oā€™Kane D, Russell SJ. Non-invasive in vivo monitoring of trackable viruses expressing soluble marker peptides. Nat Med 2002;8(5):527ā€“31.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  56. Dingli D, Peng KW, Harvey ME, et al. Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus expressing the thyroidal sodium iodide symporter. Blood 2004;103(5):1641ā€“6.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  57. Spitzweg C, Zhang S, Bergert ER, et al. Prostate-specific antigen (PSA) promoter-driven androgen-inducible expression of sodium iodide symporter in prostate cancer cell lines. Cancer Res 1999;59(9):2136ā€“41.

    PubMedĀ  CASĀ  Google ScholarĀ 

  58. Cho JY, Shen DH, Yang W, et al. In vivo imaging and radioiodine therapy following sodium iodide symporter gene transfer in animal model of intracerebral gliomas. Gene Ther 2002;9(17):1139ā€“45.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  59. Simpkin DJ, Mackie TR. EGS4 Monte Carlo determination of the beta dose kernel in water. Med Phys 1990;17(2):179ā€“86.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  60. Bramson JL, Hitt M, Addison CL, Muller WJ, Gauldie J, Graham FL. Direct intratumoral injection of an adenovirus expressing interleukin-12 induces regression and long-lasting immunity that is associated with highly localized expression of interleukin-12. Hum Gene Ther 1996;7(16):1995ā€“2002.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  61. Andreansky S, He B, van Cott J, et al. Treatment of intracranial gliomas in immunocompetent mice using herpes simplex viruses that express murine interleukins. Gene Ther 1998;5(1):121ā€“30.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  62. Dā€™Angelica M, Karpoff H, Halterman M, et al. In vivo interleukin-2 gene therapy of established tumors with herpes simplex amplicon vectors. Cancer Immunol Immunother 1999;47(5):265ā€“71.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  63. Kutubuddin M, Federoff HJ, Challita-Eid PM, et al. Eradication of pre-established lymphoma using herpes simplex virus amplicon vectors. Blood 1999;93(2):643ā€“54.

    PubMedĀ  CASĀ  Google ScholarĀ 

  64. Trudel S, Trachtenberg J, Toi A, et al. A phase I trial of adenovector-mediated delivery of interleukin-2 (AdIL-2) in high-risk localized prostate cancer. Cancer Gene Ther 2003;10(10):755ā€“63.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  65. Wong RJ, Patel SG, Kim S, et al. Cytokine gene transfer enhances herpes oncolytic therapy in murine squamous cell carcinoma. Hum Gene Ther 2001;12(3):253ā€“65.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  66. Grote D, Cattaneo R, Fielding AK. Neutrophils contribute to the measles virus-induced antitumor effect: enhancement by granulocyte macrophage colony-stimulating factor expression. Cancer Res 2003;63(19):6463ā€“8.

    PubMedĀ  CASĀ  Google ScholarĀ 

  67. von Messling V, Zimmer G, Herrler G, Haas L, Cattaneo R. The hemagglutinin of canine distemper virus determines tropism and cytopathogenicity. J Virol 2001;75(14):6418ā€“27.

    ArticleĀ  Google ScholarĀ 

  68. Xie M, Tanaka K, Ono N, Minagawa H, Yanagi Y. Amino acid substitutions at position 481 differently affect the ability of the measles virus hemagglutinin to induce cell fusion in monkey and marmoset cells co-expressing the fusion protein. Arch Virol 1999;144(9):1689ā€“99.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  69. Nakamura T, Peng KW, Vongpunsawad S, et al. Antibody-targeted cell fusion. Nat Biotechnol 2004;22(3):331ā€“6.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  70. Radecke F, Spielhofer P, Schneider H, et al. Rescue of measles viruses from cloned DNA. EMBO J 1995;14(23):5773ā€“84.

    PubMedĀ  CASĀ  Google ScholarĀ 

  71. Hadac EM, Peng KW, Nakamura T, Russell SJ. Reengineering paramyxovirus tropism. Virology 2004;329(2):217ā€“25.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  72. Schrag SJ, Rota PA, Bellini WJ. Spontaneous mutation rate of measles virus: direct estimation based on mutations conferring monoclonal antibody resistance. J Virol 1999;73(1):51ā€“4.

    PubMedĀ  CASĀ  Google ScholarĀ 

  73. Nakamura T, Peng KW, Harvey M, et al. Rescue and propagation of fully retargeted oncolytic measles viruses. Nat Biotechnol 2005;23(2):209ā€“14.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  74. Thibault G. Sodium dodecyl sulfate-stable complexes of echistatin and RGD-dependent integrins: a novel approach to study integrins. Mol Pharmacol 2000;58(5):1137ā€“45.

    PubMedĀ  CASĀ  Google ScholarĀ 

  75. Kumar CC, Nie H, Rogers CP, et al. Biochemical characterization of the binding of echistatin to integrin alphavbeta3 receptor. J Pharmacol Exp Ther 1997;283(2):843ā€“53.

    PubMedĀ  CASĀ  Google ScholarĀ 

  76. Ward CW, Garrett TP. Structural relationships between the insulin receptor and epidermal growth factor receptor families and other proteins. Curr Opin Drug Discov Dev 2004;7(5):630ā€“8.

    CASĀ  Google ScholarĀ 

  77. Einfeld DA, Brown JP, Valentine MA, Clark EA, Ledbetter JA. Molecular cloning of the human B cell CD20 receptor predicts a hydrophobic protein with multiple transmembrane domains. EMBO J 1988;7(3):711ā€“7.

    PubMedĀ  CASĀ  Google ScholarĀ 

  78. Mehta K, Shahid U, Malavasi F. Human CD38, a cell-surface protein with multiple functions. FASEB J 1996;10(12):1408ā€“17.

    PubMedĀ  CASĀ  Google ScholarĀ 

  79. Thomas P, Toth CA, Saini KS, Jessup JM, Steele G, Jr. The structure, metabolism and function of the carcinoembryonic antigen gene family. Biochim Biophys Acta 1990;1032(2ā€“3):177ā€“89.

    PubMedĀ  CASĀ  Google ScholarĀ 

  80. Carpenter G. Receptor tyrosine kinase substrates: src homology domains and signal transduction. FASEB J 1992;6(14):3283ā€“9.

    PubMedĀ  CASĀ  Google ScholarĀ 

  81. Kuan CT, Wikstrand CJ, Bigner DD. EGF mutant receptor vIII as a molecular target in cancer therapy. Endocr Relat Cancer 2001;8(2):83ā€“96.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  82. Germain RN. The T cell receptor for antigen: signaling and ligand discrimination. J Biol Chem 2001;276(38):35223ā€“6.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  83. Hallak LK, Merchan JR, Storgard CM, Loftus JC, Russell SJ. Targeted measles virus vector displaying echistatin infects endothelial cells via alpha(v)beta3 and leads to tumor regression. Cancer Res 2005;65(12):5292ā€“300.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  84. Schneider U, Bullough F, Vongpunsawad S, Russell SJ, Cattaneo R. Recombinant measles viruses efficiently entering cells through targeted receptors. J Virol 2000;74(21):9928ā€“36.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  85. Bucheit AD, Kumar S, Grote DM, et al. An oncolytic measles virus engineered to enter cells through the CD20 antigen. Mol Ther 2003;7(1):62ā€“72.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  86. Peng KW, Donovan KA, Schneider U, Cattaneo R, Lust JA, Russell SJ. Oncolytic measles viruses displaying a single-chain antibody against CD38, a myeloma cell marker. Blood 2003;101(7):2557ā€“62.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  87. Peng KW, Frenzke M, Myers R, et al. Biodistribution of oncolytic measles virus after intraperitoneal administration into Ifnar-CD46Ge transgenic mice. Hum Gene Ther 2003;14(16):1565ā€“77.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  88. Hammond AL, Plemper RK, Zhang J, Schneider U, Russell SJ, Cattaneo R. Single-chain antibody displayed on a recombinant measles virus confers entry through the tumor-associated carcinoembryonic antigen. J Virol 2001;75(5):2087ā€“96.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2008 Humana Press

About this chapter

Cite this chapter

Nakamura, T., Russell, S.J. (2008). Engineering Oncolytic Measles Viruses for Targeted Cancer Therapy. In: Kaufman, H.L., Wadler, S., Antman, K. (eds) Molecular Targeting in Oncology. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-337-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-337-0_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-577-4

  • Online ISBN: 978-1-59745-337-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics