Skip to main content

Investigational Anticancer Agents Targeting the Microtubule

  • Chapter
  • 1901 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

This chapter summarizes the preclinical and clinical development to date of investigational anticancer agents whose mechanism of action is thought to be via direct interaction with tubulin or microtubules. All of the compounds discussed are agents discovered or derived from screening natural materials for anti-cancer activity. The underlying theme for pursuit of these agents is that tubulin is a validated anticancer target and that novel interactions between new chemical entities and tubulin may overcome resistance, increase therapeutic index, or alter the spectrum of clinical utility against different cancer types.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borzilleri RM, Vite GD. Epothilones: new tubulin polymerization agents in preclinical and clinical development. Drugs Future 2002;27:1149–1163.

    CAS  Google Scholar 

  2. Gerth K, Bedorf N, Hofle G, et al. Epothilons A and B: antifungal and cytotoxic compounds from Sorangium cellulosum (Myxobacteria). Production, physico-chemical and biological properties. J Antibiot (Tokyo) 1996;49:560–563.

    CAS  Google Scholar 

  3. Höfle G, Bedorf N, Steinmetz H, et al. Epothilone A and B — novel 16-membered macrolides with cytotoxic activity: isolation, crystal structure, and conformation in solution. Angew Chem Int Ed Engl 1996;35:1567–1569.

    Google Scholar 

  4. Bollag DM, McQueney PA, Zhu J, et al. Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res 1995;55:2325–2333.

    PubMed  CAS  Google Scholar 

  5. Kowalski RJ, Giannakakou P, Hamel E. Activities of the microtubule-stabilizing agents epothilones A and B with purified tubulin and in cells resistant to paclitaxel (Taxol(R)). J Biol Chem 1997;272: 2534–2541.

    PubMed  CAS  Google Scholar 

  6. Rubin EH, Rothermel J, Tesfaye F, et al. Phase I dose-finding study of weekly single-agent patupilone in patients with advanced solid tumors. J Clin Oncol 2005;23:9120–9129.

    PubMed  CAS  Google Scholar 

  7. Calvert PM, O’Neill V, Twelves C, et al. A phase I clinical and pharmacokinetic study of EPO906 (Epothilone B), given every three weeks, in patients with advanced solid tumors. Proc Am Soc Clin Oncol 2001;20:A429.

    Google Scholar 

  8. Melichar B, Tabernero J, Casado E, et al. Phase I dose optimization trial of patupilone in previously treated patients (pts) with advanced colon cancer (ACC). Proc Am Soc Clin Oncol 2005;24:A3688.

    Google Scholar 

  9. Thompson JA, Swerdloff J, Escudier B, et al. Phase II trial evaluating the safety and efficacy of EPO906 in patients with advanced renal cancer. Proc Am Soc Clin Oncol 2003;22:A1628 (Poster presentation).

    Google Scholar 

  10. Poplin E, Moore M, O’Dwyer P, et al. Safety and efficacy of EPO906 in patients with advanced colorectal cancer: A review of 2 phase II trials. Proc Am Soc Clin Oncol 2003;22:A1135.

    Google Scholar 

  11. Gore M, Kaye S, Oza AM, et al. Phase I trial of patupilone plus carboplatin in patients with advanced cancer. Proc Am Soc Clin Oncol 2005;24:A5087.

    Google Scholar 

  12. Awada A, Bleiberg H, de Valeriola D, et al. Phase I clinical and pharmacology study of the epothilone analog BMS-247550 given weekly in patients (pts) with advanced solid tumors. Proc Am Soc Clin Oncol 2001;20:A427.

    Google Scholar 

  13. Spriggs D, Soignet S, Bienvenu B, et al. Phase I first-in-man study of the epothilone B analog BMS-247550 in patients with advanced cancer. Proc Am Soc Clin Oncol 2001;20:A428.

    Google Scholar 

  14. Gadgeel SM, Wozniak A, Boinpally RR, et al. Phase I clinical trial of BMS-247550, a derivative of epothilone B, using accelerated titration 2B design. Clin Cancer Res 2005;11:6233–6239.

    PubMed  CAS  Google Scholar 

  15. Mani S, McDaid H, Goel S, et al. Expanded evaluation of BMS-247550 (BMS) using a 1hr infusion at the recommended phase II dose (RPTD). Proc Am Soc Clin Oncol 2003;22:A995.

    Google Scholar 

  16. Mani S, McDaid H, Shen HJ, et al. Phase I pharmacokinetic and pharmacodynamic study of an epothilone B analog (BMS-247550) administered as a 1-hour infusion every 3 weeks: an update. Proc Am Soc Clin Oncol 2002;21:A409.

    Google Scholar 

  17. Tripathi R, Gadgeel SM, Wozniak AJ, et al. Phase I clinical trial of BMS-247550 (epothilone B derivative) in adult patients with advanced solid tumors. Proc Am Soc Clin Oncol 2002;21:A407.

    Google Scholar 

  18. Awada A, Jones S, Piccart M, et al. Final results of the phase I study of the novel epothilone BMS-247550 administered weekly in patients (pts) with advanced solid tumors. Eur J Cancer 2002;38:S41(A122).

    Google Scholar 

  19. Hao D, Hammond LA, deBono JS, et al. Continuous weekly administration of the epothilone-B derivative, BMS247,550 (NSC710428): a phase I and pharmacokinetic (PK) study. Proc Am Soc Clin Oncol 2002;21:A411.

    Google Scholar 

  20. Burns HA, Awada A, Jones S, et al. Phase I study of the novel epothilone BMS-247550 administered weekly in patients (pts) with advanced malignancies. Proc Am Soc Clin Oncol 2002;21:A412.

    Google Scholar 

  21. Abraham J, Agrawal M, Bakke S, et al. Phase I trial and pharmacokinetic study of BMS-247550, an epothilone B analog, administered intravenously on a daily schedule for five days. J Clin Oncol 2003;21:1866–1873.

    PubMed  CAS  Google Scholar 

  22. Agrawal M, Kotz H, Abraham J, et al. A phase I clinical trial of BMS 247550 (NSC 71028), an epothilone B derivative, in patients with refractory neoplasms. Proc Am Soc Clin Oncol 2002;21: A410.

    Google Scholar 

  23. Peerebom D, Batchelor T, Lesser G, et al. NABTT 2111: A phase I trial of BMS-247550 for patients with recurrent high-grade gliomas. Proc Am Soc Clin Oncol 2005;24:A1563.

    Google Scholar 

  24. Thambi P, Edgerly M, Agrawal M, et al. A phase I clinical trial of BMS 247550 (NSC 71028), an epothilone B derivative, given daily for 3 days on a 21 day cycle in patients with refractory neoplasms. Proc Am Soc Clin Oncol 2003;22: A540.

    Google Scholar 

  25. Zhuang SH, Agrawal M, Edgerly M, et al. A Phase I clinical trial of ixabepilone (BMS-247550), an epothilone B analog, administered intravenously on a daily schedule for 3 days. Cancer 2005;103: 1932–1938.

    PubMed  CAS  Google Scholar 

  26. Widemann BC, Fox E, Goodspeed WJ, et al. Phase I trial of the epothilone B analog BMS-247550 (ixabepilone) in children with reractory solid tumors. Proc Am Soc Clin Oncol 2005;24:A8529.

    Google Scholar 

  27. Plummer R, Molife R, Verrill M, et al. Phase I and pharmacokinetic study of BMS-247550 in combination with carboplatin in patients with advanced solid malignancies. Proc Am Soc Clin Oncol 2002;21:A2125 (Poster presentation).

    Google Scholar 

  28. Kelly WK, Galsky MD, Small EJ, et al. Multi-institutional trial of the epothilone B analogue BMS-247550 with or without estrumustine phosphate (EMP) in patients with progressive castrate-metastatic prostate cancer (PCMPC): updated results. Proc Am Soc Clin Oncol 2004;23:A4509.

    Google Scholar 

  29. Smaletz O, Galsky M, Scher HI, et al. Pilot study of epothilone B analog (BMS-247550) and estramustine phosphate in patients with progressive metastatic prostate cancer following castration. Ann Oncol 2003;14:1518–1524.

    PubMed  CAS  Google Scholar 

  30. Anderson S, Dizon D, Sabbatini P, et al. Phase I trial of BMS-247550 and gemcitabine in patients with advanced solid tumor malignancies. Proc Am Soc Clin Oncol 2004;23:A2098.

    Google Scholar 

  31. Roché H, Delord JP, Bunnell CA, et al. Phase II studies of the novel epothilone BMS-247550 in patients (pts) with taxane-naïve or taxane-refractory metastatic breast cancer. Proc Am Soc Clin Oncol 2002;21:A223.

    Google Scholar 

  32. Roché H, Cure H, Bunnell C, et al. A phase II study of epothilone analog BMS-247550 in patients with metastatic breast cancer previously treated with an anthracycline. Proc Am Soc Clin Oncol 2003;22:A69 (Poster presentation).

    Google Scholar 

  33. Thomas E, Tabernero J, Former M, et al. A phase II study of the epothilone B analog BMS-247550 in patients with taxane-resistant metastatic breast cancer. Proc Am Soc Clin Oncol 2003;22:A30 (Poster presentation).

    Google Scholar 

  34. Chen T, Molina A, Moore S, et al. Epothilone B analog (BMS-247550) at the recommended phase II dose (RPTD) in patients (pts) with gynecologic (gyn) and breast cancer. Proc Am Soc Clin Oncol 2004;23:A2115.

    Google Scholar 

  35. Low JA, Wedam SB, Brufsky A, et al. A phase 2 trial of BMS-247550 (ixabepilone), and epothilone B analog, given daily x 5 in breast cancer. Proc Am Soc Clin Oncol 2004;23:A545.

    Google Scholar 

  36. Zhuang SH, Menefee M, Kotz H, et al. A phase II clinical trial of BMS-247550 (ixabepilone), a microtubule-stabilizing agent in renal cell cancer. Proc Am Soc Clin Oncol 2004;23:A4550.

    Google Scholar 

  37. Delbaldo C, Lara PN, Vansteenkiste J, et al. Phase II study of the novel epothilone BMS-247550 in patients (pts) with recurrent or metastatic non-small cell lung cancer (NSCLC) who have failed firstline platinum-based chemotherapy. Proc Am Soc Clin Oncol 2002;21:A1211.

    Google Scholar 

  38. Vansteenkiste JF, Breton JL, Sandier A, et al. A randomized phase II study of epothilone analog BMS-247550 in patients (pts) with non-small cell lung cancer (NSCLC) who have failed first-line platinum-based chemotherapy. Proc Am Soc Clin Oncol 2003;22:A2519 (Poster presentation).

    Google Scholar 

  39. Ajani JA, Shah MA, Bokemeyer C, et al. Phase II study of the novel epothilone BMS-247550 in patients (pts) with metastatic gastric adenocarcinoma previously treated with a taxane. Proc Am Soc Clin Oncol 2002;21:A619.

    Google Scholar 

  40. Okuno SH, Geyer SM, Maples WJ, et al. Phase 2 study of epothilone B analog (BMS-247550) in soft tissue sarcomas. Proc Am Soc Clin Oncol 2002;21:A1645 (Poster presentation).

    Google Scholar 

  41. Eng C, Kindler HL, Skoog L, et al. The epothilone analogue, BMS-247550, in patients (pts) with advanced colorectal cancer (CRC). Proc Am Soc Clin Oncol 2003;22:A1134.

    Google Scholar 

  42. Singh DA, Kindler HL, Eng C, et al. Phase II trial of the epothilone B analog BMS-247550 in patients with hepatobiliary cancer. Proc Am Soc Clin Oncol 2003;22:A1127.

    Google Scholar 

  43. Whitehead RP, McCoy SA, Rivkin SE, et al. A phase II trial of epothilone B analogue BMS-247550 (NSC No.710428) in patients with advanced pancreas cancer: a Southwest Oncology Group Study. Proc Am Soc Clin Oncol 2004;23: A4012.

    Google Scholar 

  44. Pavlick AC, Millward M, Farrell K, et al. A phase II study of epothilone B analog (EpoB)-BMS 247550 (NSC No. 710428) in stage IV malignant melanoma (MM). Proc Am Soc Clin Oncol 2004;23:A7542.

    Google Scholar 

  45. Rosen PJ, Rosen LS, Britten C, et al. KOS-862 (epothilone D): results of a phase I dose-escalating trial in patients with advanced malignancies. Proc Am Soc Clin Oncol 2002;21:A413.

    Google Scholar 

  46. Piro LD, Rosen LS, Parson M, et al. KOS-862 (epothilone D): A comparison of two schedules in patients with advanced malignancies. Proc Am Soc Clin Oncol 2003;22:A539 (Poster presentation).

    Google Scholar 

  47. Marshall JL, Ramalingam S, Hwang JJ, et al. Phase 1 and pharmacokinetic (PK) study of weekly KOS-862 (Epothilone D) combined with gemcitabine (GEM) in patients (pts) with advanced solid tumors. Proc Am Soc Clin Oncol 2005;24:A2041.

    Google Scholar 

  48. Monk JP, Calero-Villalona M, Dupont J, et al. Phase 1 trial of KOS-862 (epothilone D) in combination with carboplating (C) in patients with solid tumors. Proc Am Soc Clin Oncol 2005;24:A2049.

    Google Scholar 

  49. Overmoyer B, Waintraub S, Kaufman PA, et al. Phase II trial of KOS-862 (epothilone D) in anthracycline and taxane pretreated metastatic breast cancer. Proc Am Soc Clin Oncol 2005;24:A778.

    Google Scholar 

  50. Yee L, Lynch T, Villalona-Calero M, et al. A phase II study of KOS-862 (Epothilone D) as secondline therapy in non-small cell lung cancer. Proc Am Soc Clin Oncol 2005;24:A7127.

    Google Scholar 

  51. Smit WM, Sufliarsky J, Spanik S, et al. Phase I/II dose-escalation trial of patupilone every 3 weeks in patients with relapsed/refractory ovarian cancer. Proc Am Soc Clin Oncol 2005;24:A5056.

    Google Scholar 

  52. Osterlind K, Sanchez JM, Zatloukal P, et al. Phase I/II dose escalation trial of patupilone every 3 weeks in patients with non-small cell lung cancer. Proc Am Soc Clin Oncol 2005;24:A7110.

    Google Scholar 

  53. Aisner J, Gore M, Rubin EH, et al. Two phase IB trials of EPO906 plus carboplatin in patients with advanced malignancies. Proc Am Soc Clin Oncol 2003;22:A574 (Poster presentation).

    Google Scholar 

  54. Jordan A, Hadfield JA, Lawrence NJ, et al. Tubulin as a target for anticancer drugs: agents which interact with the mitotic spindle. Med Res Rev 1998;18:259–296.

    PubMed  CAS  Google Scholar 

  55. Jordan MA, Walker D, de Arruda M, et al. Suppression of microtubule dynamics by binding of cemadotin to tubulin: possible mechanism for its antitumor action. Biochemistry 1998;37: 17,571–17,578.

    PubMed  CAS  Google Scholar 

  56. Otani M, Natsume T, Watanabe JI, et al. TZT-1027, an antimicrotubule agent, attacks tumor vasculature and induces tumor cell death. Jpn J Cancer Res 2000;91:837–844.

    PubMed  CAS  Google Scholar 

  57. Pettit GR, Singh SB, Hogan F, et al. The absolute configuratiion and synthesis of natural (-)-dolastatin 10. J Am Chem Soc 1989;111:5463–5465.

    CAS  Google Scholar 

  58. Bai R, Pettit GR, Hamel E. Dolastatin 10, a powerful cytostatic peptide derived from a marine animal. Inhibition of tubulin polymerization mediated through the vinca alkaloid binding domain. Biochem Pharmacol 1990;39:1941–1949.

    PubMed  CAS  Google Scholar 

  59. Bai R, Roach MC, Jayaram SK, et al. Differential effects of active isomers, segments, and analogs of dolastatin 10 on ligand interactions with tubulin. Correlation with cytotoxicity. Biochem Pharmacol 1993;45:1503–1515.

    CAS  Google Scholar 

  60. Bai RL, Pettit GR, Hamel E. Structure-activity studies with chiral isomers and with segments of the antimitotic marine peptide dolastatin 10. Biochem Pharmacol 1990;40:1859–1864.

    PubMed  CAS  Google Scholar 

  61. Pettit GR, Srirangam JK, Barkoczy J, et al. Antineoplastic agents 337. Synthesis of dolastatin 10 structural modifications. Anticancer Drug Des 1995;10:529–544.

    PubMed  CAS  Google Scholar 

  62. de Arruda M, Cocchiaro CA, Nelson CM, et al. LU103793 (NSC D-669356): a synthetic peptide that interacts with microtubules and inhibits mitosis. Cancer Res 1995;55:3085–3092.

    PubMed  Google Scholar 

  63. Hopper LD, Van Dijk S, Shannon P, et al. Safety and toxicokinetics in a five-day oral toxicity study of a dolastatin-15 analog, ILX651, in beagle dogs. Proc Am Assoc Cancer Res 2003;44:A1749.

    Google Scholar 

  64. Li Y, Kobayashi H, Hashimoto Y, et al. Interaction of marine toxin dolastatin 10 with porcine brain tubulin: competitive inhibition of rhizoxin and phomopsin A binding. Chem Biol Interact 1994;93: 175–183.

    PubMed  Google Scholar 

  65. Haldar S, Basu A, Croce CM. Serine-70 is one of the critical sites for drug-induced Bcl2 phosphorylation in cancer cells. Cancer Res 1998;58:1609–1615.

    PubMed  CAS  Google Scholar 

  66. Kalemkerian GP, Ou X, Adil MR, et al. Activity of dolastatin 10 against small-cell lung cancer in vitro and in vivo: induction of apoptosis and bcl-2 modification. Cancer Chemother Pharmacol 1999;43: 507–515.

    PubMed  CAS  Google Scholar 

  67. Natsume T, Watanabe J, Tamaoki S, et al. Characterization of the interaction of TZT-1027, a potent antitumor agent, with tubulin. Jpn J Cancer Res 2000;91:737–747.

    PubMed  CAS  Google Scholar 

  68. Madden T, Tran HT, Beck D, et al. Novel marine-derived anticancer agents: a phase I clinical, pharmacological, and pharmacodynamic study of dolastatin 10 (NSC 376128) in patients with advanced solid tumors. Clin Cancer Res 2000;6:1293–1301.

    PubMed  CAS  Google Scholar 

  69. Pitot HC, McElroy EA Jr, Reid JM, et al. Phase I trial of dolastatin-10 (NSC 376128) in patients with advanced solid tumors. Clin Cancer Res 1999;5:525–531.

    PubMed  CAS  Google Scholar 

  70. Vaishampayan U, Glode M, Du W, et al. Phase II study of dolastatin-10 in patients with hormonerefractory metastatic prostate adenocarcinoma. Clin Cancer Res 2000;6:4205–4208.

    PubMed  CAS  Google Scholar 

  71. Saad ED, Kraut EH, Hoff PM, et al. Phase II study of dolastatin-10 as first-line treatment for advanced colorectal cancer. Am J Clin Oncol 2002;25:451–453.

    PubMed  Google Scholar 

  72. Hoffman MA, Blessing JA, Lentz SS. A phase II trial of dolastatin-10 in recurrent platinum-sensitive ovarian carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol 2003;89:95–98.

    PubMed  CAS  Google Scholar 

  73. Pitot HC, Frytak S, Croghan GA, et al. Phase II study of dolastatin-10 (dola-10) in patients (pts) with advanced renal cell carcinoma. Proc Am Soc Clin Oncol 2002;21:A2409.

    Google Scholar 

  74. Krug LM, Miller VA, Kalemkerian GP, et al. Phase II study of dolastatin-10 in patients with advanced non-small-cell lung cancer. Ann Oncol 2000;11:227–228.

    PubMed  CAS  Google Scholar 

  75. Margolin K, Longmate J, Synold TW, et al. Dolastatin-10 in metastatic melanoma: a phase II and pharmokinetic trial of the California Cancer Consortium. Invest New Drugs 2001;19:335–340.

    PubMed  CAS  Google Scholar 

  76. Perez EA, Hillman DW, Fishkin PA, et al. Phase II trial of dolastatin-10 in patients with advanced breast cancer. Invest New Drugs 2005;23:257–261.

    PubMed  CAS  Google Scholar 

  77. Kindler HL, Tothy PK, Wolff R, et al. Phase II trials of dolastatin-10 in advanced pancreaticobiliary cancers. Invest New Drugs 2005;23:489–493.

    PubMed  CAS  Google Scholar 

  78. Yamamoto N, Andoh M, Kawahara M, et al. Phase I study of TZT-1027, an inhibitor of tubulin polymerization, given weekly x 3 as a 1-hour intravenous infusion in patients (pts) with solid tumors. Proc Am Soc Clin Oncol 2002;21:A420.

    Google Scholar 

  79. Schoffski P, Thate B, Beutel G, et al. Phase I and pharmacokinetic study of TZT-1027, a novel synthetic dolastatin 10 derivative, administered as a 1-hour intravenous infusion every 3 weeks in patients with advanced refractory cancer. Ann Oncol 2004;15:671–679.

    PubMed  CAS  Google Scholar 

  80. de Jonge MJ, van der Gaast A, Planting AS, et al. Phase I and pharmacokinetic study of the dolastatin 10 analogue TZT-1027, given on days 1 and 8 of a 3-week cycle in patients with advanced solid tumors. Clin Cancer Res 2005;11:3806–3813.

    PubMed  Google Scholar 

  81. Horti J, Juhasz E, Bodrogi I. Preliminary results of a phase I trial of TZT-1027, an inhibitor of tubulin polymerization, in patients with advanced non-small cell lung cancer. Proc Am Assoc Cancer Res 2002;43:A2744.

    Google Scholar 

  82. Blagden S, Thomas A, De-Bono JS, et al. Phase I study of intravenous TZT-1027 (T) and carboplating (C), administered on day 1 (T and C) and day 8 (T) every three weeks in patients (pts) with advanced solid tumors. Proc Am Soc Clin Oncol 2005;24:A3141.

    Google Scholar 

  83. Wolff I, Bruntsch U, Cavalli F, et al. Phase I clinical study of LU 103793 (cemadotin) given on a weekly (wkly) x 4 schedule. Proc Am Soc Clin Oncol 1997;16:A783.

    Google Scholar 

  84. Mross K, Berdel WE, Fiebig HH, et al. Clinical and pharmacologic phase I study of Cemadotin-HCl (LU103793), a novel antimitotic peptide, given as 24-hour infusion in patients with advanced cancer. A study of the Arbeitsgemeinschaft Internistische Onkologie (AIO) Phase I Group and Arbeitsgruppe Pharmakologie in der Onkologie und Haematologie (APOH) Group of the German Cancer Society. Ann Oncol 1998;9:1323–1330.

    PubMed  CAS  Google Scholar 

  85. Villalona-Cajero M, Von Hoff D, Eckhardt G, et al. Phase I and pharmacokinetic (PK) study of LU 103793, a water soluble analog of dolastatin-15, on a daily x 5 schedule. Proc Am Soc Clin Oncol 1997;16:784.

    Google Scholar 

  86. Villalona-Calero MA, Baker SD, Hammond L, et al. Phase I and pharmacokinetic study of the watersoluble dolastatin 15 analog LU103793 in patients with advanced solid malignancies. J Clin Oncol 1998;16:2770–2779.

    PubMed  CAS  Google Scholar 

  87. Supko JG, Lynch TJ, Clark JW, et al. A phase I clinical and pharmacokinetic study of the dolastatin analogue cemadotin administered as a 5-day continuous intravenous infusion. Cancer Chemother Pharmacol 2000;46:319–328.

    PubMed  CAS  Google Scholar 

  88. Kerbrat P, Dieras V, Pavlidis N, et al. Phase II study of LU 103793 (dolastatin analogue) in patients with metastatic breast cancer. Eur J Cancer 2003;39:317–320.

    PubMed  CAS  Google Scholar 

  89. Smyth J, Boneterre ME, Schellens J, et al. Activity of the dolastatin analogue, LU103793, in malignant melanoma. Ann Oncol 2001;12:509–511.

    PubMed  CAS  Google Scholar 

  90. Marks RS, Graham DL, Sloan JA, et al. A phase II study of the dolastatin 15 analogue LU 103793 in the treatment of advanced non-small-cell lung cancer. Am J Clin Oncol 2003;26:336–337.

    PubMed  CAS  Google Scholar 

  91. Ebbinghaus S, Rubin E, Hersh E, et al. A phase I study of the dolastatin-15 analogue tasidotin (ILX651) administered intravenously daily for 5 consecutive days every 3 weeks in patients with advanced solid tumors. Clin Cancer Res 2005;11:7807–7816.

    PubMed  CAS  Google Scholar 

  92. Cunningham C, Appleman LJ, Kirvan-Visovatti M, et al. Phase I and pharmacokinetic study of the dolastatin-15 analogue tasidotin (ILX651) administered intravenously on days 1, 3, and 5 every 3 weeks in patients with advanced solid tumors. Clin Cancer Res 2005;11:7825–7833.

    PubMed  CAS  Google Scholar 

  93. Weiss GR, Mita A, Garrison M, et al. Phase I, pharmacokinetic (PK) study of synthadotin (SYN-D; ILX651), a next generation antitubulin, administered IV weekly x3 weeks every 4 weeks (wx3q4w). Proc Am Soc Clin Oncol 2005;24:A3073.

    Google Scholar 

  94. Ebbinghaus S, Hersh E, Cunningham CC, et al. Phase II study of synthadotin (SYN-D; ILX651) administered daily for 5 consecutive days once every 3 weeks (qdx5q3w) in patients (pts) with inoperable locally advanced or metastatic melanoma. Proc Am Soc Clin Oncol 2004;24: A7530.

    Google Scholar 

  95. McDermott DF, Hersh E, Weber J, et al. ILX651 administered daily for five days every 3 weeks (qdx5dq3w) in patients (pts) with inoperable locally advanced or metastatic melanoma: phase II experience. Proc Am Soc Clin Oncol 2005;24:A7556.

    Google Scholar 

  96. Blakey DC, Ashton SE, Westwood FR, et al. ZD6126: a novel small molecule vascular targeting agent. Int J Radiat Oncol Biol Phys 2002;54:1497–1502.

    PubMed  CAS  Google Scholar 

  97. Schumacher G, Neuhaus P. The physiological estrogen metabolite 2-methoxyestradiol reduces tumor growth and induces apoptosis in human solid tumors. J Cancer Res Clin Oncol 2001;127:405–410.

    PubMed  CAS  Google Scholar 

  98. Sklarin NT, Lathia CD, Benson L, et al. A phase I trial and pharmacokinetic evaluation of CI-980 in patients with advanced solid tumors. Invest New Drugs 1997;15:235–246.

    PubMed  CAS  Google Scholar 

  99. Tozer GM, Kanthou C, Parkins CS, et al. The biology of the combretastatins as tumour vascular targeting agents. Int J Exp Pathol 2002;83:21–38.

    PubMed  CAS  Google Scholar 

  100. Sackett DL, Varma JK. Molecular mechanism of colchicine action: induced local unfolding of betatubulin. Biochemistry 1993;32:13,560–13,565.

    PubMed  CAS  Google Scholar 

  101. Davis PD, Dougherty GJ, Blakey DC, et al. ZD6126: a novel vascular-targeting agent that causes selective destruction of tumor vasculature. Cancer Res 2002;62:7247–7253.

    PubMed  CAS  Google Scholar 

  102. Micheletti G, Poli M, Borsotti P, et al. Vascular-targeting activity of ZD6126, a novel tubulin-binding agent. Cancer Res 2003;63:1534–1537.

    PubMed  CAS  Google Scholar 

  103. Blakey DC, Westwood FR, Walker M, et al. Antitumor activity of the novel vascular targeting agent ZD6126 in a panel of tumor models. Clin Cancer Res 2002;8:1974–1983.

    PubMed  CAS  Google Scholar 

  104. Pettit GR, Cragg GM, Singh SB. Antineoplastic agents, 122. Constituents of Combretum caffrum. J Nat Prod 1987;50:386–391.

    PubMed  CAS  Google Scholar 

  105. Pettit GR, Temple C Jr, Narayanan VL, et al. Antineoplastic agents 322. synthesis of combretastatin A-4 prodrugs. Anticancer Drug Des 1995;10:299–309.

    PubMed  CAS  Google Scholar 

  106. Dark GG, Hill SA, Prise VE, et al. Combretastatin A-4, an agent that displays potent and selective toxicity toward tumor vasculature. Cancer Res 1997;57:1829–1834.

    PubMed  CAS  Google Scholar 

  107. Ahmed B, Van Eijk LI, Bouma-Ter Steege JC, et al. Vascular targeting effect of combretastatin A-4 phosphate dominates the inherent angiogenesis inhibitory activity. Int J Cancer 2003;105:20–25.

    PubMed  CAS  Google Scholar 

  108. D’Amato RJ, Lin CM, Flynn E, et al. 2-Methoxyestradiol, an endogenous mammalian metabolite, inhibits tubulin polymerization by interacting at the colchicine site. Proc Natl Acad Sci USA 1994;91:3964–3968.

    PubMed  CAS  Google Scholar 

  109. Fotsis T, Zhang Y, Pepper MS, et al. The endogenous oestrogen metabolite 2-methoxyoestradiol inhibits angiogenesis and suppresses tumour growth. Nature 1994;368:237–239.

    PubMed  CAS  Google Scholar 

  110. de Ines C, Leynadier D, Barasoain I, et al. Inhibition of microtubules and cell cycle arrest by a new l-deaza-7,8-dihydropteridine antitumor drug, CI 980, and by its chiral isomer, NSC 613863. Cancer Res 1994;54:75–84.

    PubMed  Google Scholar 

  111. Portnow J, Stuart G, Eller S, et al. The intracerebral distribution study of CI-980: A new agent being studied in patients with glioblastoma multiforme. Proc Am Soc Clin Oncol 1999;18:565.

    Google Scholar 

  112. Waud WR, Leopold WR, Elliott WL, et al. Antitumor activity of ethyl 5-amino-1,2-dihydro-2-methyl-3-phenyl-pyrido [3,4-b]pyrazin-7-ylcarbamate, 2-hydroxyethanesulfonate, hydrate (NSC 370147) against selected tumor systems in culture and in mice. Cancer Res 1990;50:3239–3244.

    PubMed  CAS  Google Scholar 

  113. Radema SA, Beerepoot LV, Witteveen PO, et al. Clinical evaluation of the novel vascular-targeting agent, ZD6126: assessment of toxicity and surrogate markers of vascular damage. Proc Am Soc Clin Oncol 2002;21:A439.

    Google Scholar 

  114. Gadgeel SM, LoRusso PM, Wozniak AJ, et al. A dose-escalation study of the novel vascular-targeting agent, ZD6126, in patients with solid tumors. Proc Am Soc Clin Oncol 2002;21:A438.

    Google Scholar 

  115. Thorpe PE, Chaplin DJ, Blakey DC. The first international conference on vascular targeting: meeting overview. Cancer Res 2003;63:1144–1147.

    PubMed  CAS  Google Scholar 

  116. DelProposto Z, LoRusso P, Latif Z, et al. MRI evaluation of the effects of the vascular-targeting agent ZD6126 on tumor vasculature. Proc Am Soc Clin Oncol 2002;21:A440.

    Google Scholar 

  117. Dowlati A, Robertson K, Cooney M, et al. A phase I pharmacokinetic and translational study of the novel vascular targeting agent combretastatin a-4 phosphate on a single-dose intravenous schedule in patients with advanced cancer. Cancer Res 2002;62:3408–3416.

    PubMed  CAS  Google Scholar 

  118. Rustin GJ, Galbraith SM, Anderson H, et al. Phase I clinical trial of weekly combretastatin A4 phosphate: clinical and pharmacokinetic results. J Clin Oncol 2003;21:2815–2822.

    PubMed  CAS  Google Scholar 

  119. Stevenson JP, Rosen M, Sun W, et al. Phase I trial of the antivascular agent combretastatin A4 phosphate on a 5-day schedule to patients with cancer: magnetic resonance imaging evidence for altered tumor blood flow. J Clin Oncol 2003;21:4428–4438.

    PubMed  CAS  Google Scholar 

  120. Bilenker JH, Flaherty KT, Rosen M, et al. Phase I trial of combretastatin a-4 phosphate with carboplatin. Clin Cancer Res 2005;11:1527–1533.

    PubMed  CAS  Google Scholar 

  121. Rustin GJ, Nathan PD, Boxall J, et al. A phase Ib trial of combretastatin A-4 phosphate (CA4P) in combination with carboplatin or paclitaxel chemotehrapy in patients with advanced cancer. Proc Am Soc Clin Oncol 2005;24:A3103.

    Google Scholar 

  122. Sledge GW Jr, Miller KD, Haney LG, et al. A phase I study of 2-methoxyestradiol (2ME2) in patients (pts) with refractory metastatic breast cancer (MBC). Proc Am Soc Clin Oncol 2002;21:A441.

    Google Scholar 

  123. Dahut WL, Lakhani NJ, Gulley JL, et al. Phase I clinical trial of oral 2-methoxyestradiol, an antiangiogenic and apoptotic agent, in patients with solid tumors. Cancer Biol Ther 2006;5:22–27.

    PubMed  CAS  Google Scholar 

  124. Miller KD, Murry DJ, Curry E, et al. A phase I study of 2-methoxyestradiol (2ME2) plus docetaxel (D) in patients (pts) with metastatic breast cancer (MBC). Proc Am Soc Clin Oncol 2002;21: A442.

    Google Scholar 

  125. Sweeney C, Liu G, Yiannoutsos C, et al. A phase II multicenter, randomized, double-blind, safety trial assessing the pharmacokinetics, pharmacodynamics, and efficacy of oral 2-methoxyestradiol capsules in hormone-refractory prostate cancer. Clin Cancer Res 2005;11:6625–6633.

    PubMed  CAS  Google Scholar 

  126. Volker KM, Mercer BG, Treston A, et al. Effect of route of administration, dose, and schedule on the anti-tumor activity of Panzern NCD in a murine orthotopic lung cancer model. Proc Am Assoc Cancer Res 2005;46:A2993.

    Google Scholar 

  127. EntreMed I: 2006 EntreMed commences phase 2 studies with panzern NCD. http://www.entremed. com./download/press/GBM_Ph2_FINALOUT.pdf, last date accessed March 6, 2007.

    Google Scholar 

  128. Bernstein ML, Baruchel S, Devine S, et al. Phase I and pharmacokinetic study of CI-980 in recurrent pediatric solid tumor cases: a Pediatric Oncology Group study. J Pediatr Hematol Oncol 1999;21: 494–500.

    PubMed  CAS  Google Scholar 

  129. Fishkin P, Stadler WM, Gibbons J, et al. A university of Chicago phase II consortium study(UCPC) of CI-980 in patients (pts) metastatic renal cell carcinoma (RCC). Proc Am Soc Clin Oncol 1998;17: 1275.

    Google Scholar 

  130. Gutheil J, Van Echo D, Egorin M, et al. Phase I study of CI-980 in patients with refractory malignancies. Proc Am Assoc Cancer Res 1996;37:1129.

    Google Scholar 

  131. Kudelka AP, Hasenburg A, Verschraegen CF, et al. Phase II study of i.v. CI-980 in patients with advanced platinum refractory epithelial ovarian carcinoma. Anticancer Drugs 1998;9:405–409.

    PubMed  CAS  Google Scholar 

  132. Kunschner LJ, Fine H, Hess K, et al. CI-980 for the treatment of recurrent or progressive malignant gliomas: national central nervous system consortium phase I-II evaluation of CI-980. Cancer Invest 2002;20:948–954.

    PubMed  CAS  Google Scholar 

  133. Mikkelsen T, Phuphanich S, Batchelor T, et al. Phase I/II trial of CI-980 in newly diagnosed malignant glioma — NABTT 9602. Proc Am Soc Clin Oncol 2000;19:A619.

    Google Scholar 

  134. Natale R, Waterhouse D, Grove WR, et al. Phase I clinical and pharmacokinetic trial of CI-980, a novel mitotic inhibitor. Proc Am Soc Clin Oncol 1992;11:292.

    Google Scholar 

  135. Patel SR, Burgess MA, Papadopolous NE, et al. Phase II study of CI-980 (NSC 635370) in patients with previously treated advanced soft-tissue sarcomas. Invest New Drugs 1998;16:87–92.

    PubMed  CAS  Google Scholar 

  136. Pazdur R, Meyers C, Diaz-Canton E, et al. Phase II trial of intravenous CI-980 (NSC 370147) in patients with metastatic colorectal carcinoma. Model for prospective evaluation of neurotoxicity. Am J Clin Oncol 1997;20:573–576.

    PubMed  CAS  Google Scholar 

  137. Rowinsky EK, Long GS, Noe DA, et al. Phase I and pharmacological study of CI-980, a novel synthetic antimicrotubule agent. Clin Cancer Res 1997;3:401–407.

    PubMed  CAS  Google Scholar 

  138. Rowinsky EK, Noe DA, Grochow LB, et al. Phase I and pharmacological study of CI-980, a synthetic and structurally unique antimicrotubule agent, on a 72-hour continuous infusion schedule in adults with solid tumors. Proc Am Soc Clin Oncol 1995; 14:1477.

    Google Scholar 

  139. Ryan CW, Shulman KL, Richards JM, et al. CI-980 in advanced melanoma and hormone refractory prostate cancer. Invest New Drugs 2000;18:187–191.

    PubMed  CAS  Google Scholar 

  140. Sciortino D, Arrieta R, Masters GA, et al. A phase II trial of CI-980 in advanced non-smallCELL lung cancer (NSCLC). Proc Am Soc Clin Oncol 1998;17:1925.

    Google Scholar 

  141. Thomas JP, Moore T, Kraut EH, et al. A phase II study of CI-980 in previously untreated extensive small cell lung cancer: an Ohio State University phase II research consortium study. Cancer Invest 2002;20:192–198.

    PubMed  CAS  Google Scholar 

  142. Whitehead RP, Unger JM, Flaherty LE, et al. Phase II trial of CI-980 in patients with disseminated malignant melanoma and no prior chemotherapy. A Southwest Oncology Group study. Invest New Drugs 2001;19:239–243.

    PubMed  CAS  Google Scholar 

  143. Yokoi A, Kuromitsu J, Kawai T, et al. Profiling novel sulfonamide antitumor agents with cell-based phenotypic screens and array-based gene expression analysis. Mol Cancer Ther 2002;1:275–286.

    PubMed  CAS  Google Scholar 

  144. Patnaik A, Forero L, Goetz A, et al. HMN-214, a novel oral antimicrotubular agent and inhibitor of polo-like-and cyclin-dependent kinases: Clinical, pharmacokinetic (PK) and pharmacodynamic (PD) relationships observed in a phase I trial of a daily x 5 schedule every 28 days. Proc Am Soc Clin Oncol 2003;22:A514 (Poster presentation).

    Google Scholar 

  145. Patnaik A, Forero L, Goetz A, et al. HMN-214, a novel oral antimicrotubular agent and inhibitor of polo-like-and cyclin-dependent kinases: Clinical, pharmacokinetic (PK) and pharmacodynamic (PD) relationships observed in a phase I trial of a daily x 5 schedule every 28 days. Proc Am Soc Clin Oncol 2003;22:A514.

    Google Scholar 

  146. Owa T, Yoshino H, Okauchi T, et al. Discovery of novel antitumor sulfonamides targeting Gl phase of the cell cycle. J Med Chem 1999;42:3789–3799.

    PubMed  CAS  Google Scholar 

  147. Yoshino H, Ueda N, Niijima J, et al. Novel sulfonamides as potential, systemically active antitumor agents. J Med Chem 1992;35:2496–2497.

    PubMed  CAS  Google Scholar 

  148. Supuran CT. Indisulam: an anticancer sulfonamide in clinical development. Expert Opin Invest Drugs 2003; 12:283–287.

    CAS  Google Scholar 

  149. Yoshimatsu K, Yamaguchi A, Yoshino H, et al. Mechanism of action of E7010, an orally active sulfonamide antitumor agent: inhibition of mitosis by binding to the colchicine site of tubulin. Cancer Res 1997;57:3208–3213.

    PubMed  CAS  Google Scholar 

  150. Shoemaker AR, Oleksijew A, Credo B, et al. Evaluation of the Antimitotic Agent ABT-751 in the ApcMin Model of Intestinal Tumorigenesis. Proc Am Assoc Cancer Res 2003;44:A2738.

    Google Scholar 

  151. Yamamoto K, Noda K, Yoshimura A, et al. Phase I study of E7010. Cancer Chemother Pharmacol 1998;42:127–134.

    PubMed  CAS  Google Scholar 

  152. Yee KW, Hagey A, Verstovsek S, et al. Phase 1 study of ABT-751, a novel microtubule inhibitor, in patients with refractory hematologic malignancies. Clin Cancer Res 2005;11:6615–6624.

    PubMed  CAS  Google Scholar 

  153. Cho SY, Adamson PC, Hagey A, et al. Phase I trial and pharmacokinetic (PK) study of ABT-751, and orally bioavailable tubulin agent, in pediatric patients with refractory solid tumors. Proc Am Soc Clin Oncol 2004;23:A2080.

    Google Scholar 

  154. Fox E, Adamson PC, Hagey A, et al. Phase I trial of oral ABT-751 in pediatric patients: preliminary evidence of activity in neuroblastoma (NBL). Proc Am Soc Clin Oncol 2005;24:A8527.

    Google Scholar 

  155. Sprague E, Fleming GF, Carr R, et al. Phase I study of 21-day continuous dosing of the oral antimitotic agent ABT-751. Proc Am Soc Clin Oncol 2003;22:A518 (Poster presentation).

    Google Scholar 

  156. Hande KR, Meek K, Lockhart AC, et al. Pharmacokinetics and toxicity of ABT-751, a novel orally administered microtubulin inhibitor. Proc Am Soc Clin Oncol 2003;22:A520 (Poster presentation).

    Google Scholar 

  157. Kobayashi H, Hande KR, Berlin JD, et al. Phase I results of ABT-751, a novel microtubulin inhibitor, administered daily x 7 every 3 weeks. Proc Am Soc Clin Oncol 2004;23:A2079.

    Google Scholar 

  158. Benson AB, Kindler HL, Jodrell D, et al. Phase 2 study of ABT-751 in patients with refratory metastatic colorectal carcinoma (CRC). Proc Am Soc Clin Oncol 2005;24: A3537.

    Google Scholar 

  159. Hagey A, Figlin RA, Moldawer N, et al. Preliminary phase 2 results of ABT-751 in subjects with advanced renal cell carcinoma (RCC). Proc Am Soc Clin Oncol 2005;24:A4603.

    Google Scholar 

  160. Mauer AM, Szeto L, Belt RJ, et al. Preliminary results of a phase 2 study of ABT-751 in patients (pts) with taxane-refractory non-small cell lung carcinoma (NSCLC). Proc Am Soc Clin Oncol 2005;24: A7137.

    Google Scholar 

  161. Washington DK, Storniolo AV, Saleh M, et al. Phase 2 results of ABT-751 in subjects with taxanerefractory breast cancer: interim analysis. Proc Am Soc Clin Oncol 2005;24:A724.

    Google Scholar 

  162. Taylor C, Dragovich T, Simpson A, et al. A phase I and pharmacokinetic study of HMN-214 administered orally for 21 consecutive days, repeated every 28 days to patients with advanced solid tumors. Proc Am Soc Clin Oncol 2002;21: A419.

    Google Scholar 

  163. Von Hoff DD, Taylor C, Rubin S, et al. A phase I and pharmacokinetic study of HMN-214, a novel oral polo-like kinase inhibitor, in patients with advanced solid tumors. Proc Am Soc Clin Oncol 2005;23:A3034.

    Google Scholar 

  164. Towle MJ, Salvato KA, Budrow J, et al. In vitro and in vivo anticancer activities of synthetic macrocyclic ketone analogues of halichondrin B. Cancer Res 2001;61:1013–1021.

    PubMed  CAS  Google Scholar 

  165. Bai RL, Pauli KD, Herald CL, et al. Halichondrin B and homohalichondrin B, marine natural products binding in the vinca domain of tubulin. Discovery of tubulin-based mechanism of action by analysis of differential cytotoxicity data. J Biol Chem 1991;266:15,882–15,889.

    PubMed  CAS  Google Scholar 

  166. Hirata Y, Uemura D. Halichondrins: antitumor polyether macrolides from a marine sponge. Pure Appl Chem 1986;58:701–710.

    CAS  Google Scholar 

  167. Pettit GR, Herald CL, Boyd MR, et al. Isolation and structure of the cell growth inhibitory constituents from the western Pacific marine sponge Axinella sp. J Med Chem 1991;34:3339–3340.

    PubMed  CAS  Google Scholar 

  168. Aicher TD, Buszek KR, Fang FG, et al. Total synthesis of halichondrin B and norhalichondrin B. J Am Chem Soc 1992;114:3162–3164.

    CAS  Google Scholar 

  169. Synold TW, Morgan RJ, Newman EM, et al. A phase I pharmacokinetic and target validation study of the novel anti-tubulin agent E7389: a California Cancer Consortium trial. Proc Am Soc Clin Oncol 2005;24:A3036.

    Google Scholar 

  170. Rubin E, Rosen L, Rajeev V, et al. Phase I study of E7389 administered by 1 hour infusion every 21 days. Proc Am Soc Clin Oncol 2005;24:A2054.

    Google Scholar 

  171. Silberman S, O’Shaughnessy J, Vahdat L, et al. E7389, a novel anti-tubulin is safe and effective in patients with refractory breast cancer. San Antonio Breast Cancer Symposium. 2005; Poster 1063.

    Google Scholar 

  172. Loganzo F, Discafani CM, Annable T, et al. HTI-286, a synthetic analogue of the tripeptide hemiasterlin, is a potent antimicrotubule agent that circumvents P-glycoprotein-mediated resistance in vitro and in vivo. Cancer Res 2003;63:1838–1845.

    PubMed  CAS  Google Scholar 

  173. Anderson HJ, Coleman JE, Andersen RJ, et al. Cytotoxic peptides hemiasterlin, hemiasterlin A and hemiasterlin B induce mitotic arrest and abnormal spindle formation. Cancer Chemother Pharmacol 1997;39:223–226.

    PubMed  CAS  Google Scholar 

  174. Bai R, Durso NA, Sackett DL, et al. Interactions of the sponge-derived antimitotic tripeptide hemiasterlin with tubulin: comparison with dolastatin 10 and cryptophycin 1. Biochemistry 1999;38: 14,302–14,310.

    PubMed  CAS  Google Scholar 

  175. Loganzo F, Annable T, Tan X, et al. Cells resistant to HTI-286 do not over-express P-glycoprotein but have low drug accumulation and a point mutation in a-tubulin. Proc Am Assoc Cancer Res 2003;44:A6535.

    Google Scholar 

  176. Poruchynsky MS, Kim JH, Nogales E, et al. Tumor cells resistant to a microtubule-depolymerizing hemiasterlin analog, HTI-286, have mutations in a-or β-tubulin and increased microtubule stability. Proc Am Assoc Cancer Res 2003;44:A2731.

    Google Scholar 

  177. Ratain MJ, Undevia S, Janisch L, et al. Phase 1 and pharmacological study of HTI-286, a novel antimicrotubule agent: Correlation of neutropenia with time above a threshold serum concentration. Proc Am Soc Clin Oncol 2003;22:A516 (Poster presentation).

    Google Scholar 

  178. Stevenson JP, Sun W, Gallagher M, et al. Phase I trial of the cryptophycin analogue LY355703 administered as an intravenous infusion on a day 1 and 8 schedule every 21 days. Clin Cancer Res 2002;8:2524–2529.

    PubMed  CAS  Google Scholar 

  179. Golakoti T, Ogino J, Heltzel CE, et al. Structure determination, conformational analysis, chemical stability studies, and antitumor evaluation of the cryptophycins. Isolation of 18 new analogs from Nostoc sp. strain GSV 224. J Am Chem Soc 1995;117:12,030–12,049.

    CAS  Google Scholar 

  180. Moore RE. Cyclic peptides and depsipeptides from cyanobacteria: a review. J Ind Microbiol 1996;16: 134–143.

    PubMed  CAS  Google Scholar 

  181. Panda D, DeLuca K, Williams D, et al. Antiproliferative mechanism of action of cryptophycin-52: kinetic stabilization of microtubule dynamics by high-affinity binding to microtubule ends. Proc Natl Acad Sci USA 1998;95:9313–9318.

    PubMed  CAS  Google Scholar 

  182. Barbier P, Gregoire C, Devred F, et al. In vitro effect of cryptophycin 52 on microtubule assembly and tubulin: molecular modeling of the mechanism of action of a new antimitotic drug. Biochemistry 2001;40:13,510–13,519.

    PubMed  CAS  Google Scholar 

  183. Panda D, Ananthnarayan V, Larson G, et al. Interaction of the antitumor compound cryptophycin-52 with tubulin. Biochemistry 2000;39:14,121–14,127.

    PubMed  CAS  Google Scholar 

  184. Wagner MM, Paul DC, Shih C, et al. In vitro pharmacology of cryptophycin 52 (LY355703) in human tumor cell lines. Cancer Chemother Pharmacol 1999;43:115–125.

    PubMed  CAS  Google Scholar 

  185. Sessa C, Weigang-Kohler K, Pagani O, et al. Phase I and pharmacological studies of the cryptophycin analogue LY355703 administered on a single intermittent or weekly schedule. Eur J Cancer 2002;38:2388–2396.

    PubMed  CAS  Google Scholar 

  186. De Pas TM, Mandala M, Curigliano G, et al. Acute vulvar vestibulitis occurring during chemotherapy with cryptophycin analogue LY355703. Obstet Gynecol 2000;95:1030.

    PubMed  Google Scholar 

  187. Groth G, Schott K, Ohnmacht U, et al. A phase II study of LY355703 (cryptophycine) as first-line therapy for stage IIIb or IV NSCLC subjects: preliminary analysis. Eur J Cancer 2001;37(suppl 6): S48(A167).

    Google Scholar 

  188. Edelman MJ, Gandara DR, Hausner P, et al. Phase 2 study of cryptophycin 52 (LY355703) in patients previously treated with platinum based chemotherapy for advanced non-small cell lung cancer. Lung Cancer 2003;39:197–199.

    PubMed  Google Scholar 

  189. D’Agostino G, del Campo J, Mellado B, et al. A multicenter phase II study of the cryptophycin analog LY355703 in patients with platinum-resistant ovarian cancer. Int J Gynecol Cancer 2006;16: 71–76.

    PubMed  CAS  Google Scholar 

  190. Iwasaki S, Kobayashi H, Furukawa J, et al. Studies on macrocyclic lactone antibiotics. VII. Structure of a phytotoxin “rhizoxin” produced by Rhizopus chinensis. J Antibiot (Tokyo) 1984;37:354–362.

    CAS  Google Scholar 

  191. Takahashi M, Iwasaki S, Kobayashi H, et al. Studies on macrocyclic lactone antibiotics. XL Antimitotic and anti-tubulin activity of new antitumor antibiotics, rhizoxin and its homologues. J Antibiot (Tokyo) 1987;40:66–72.

    CAS  Google Scholar 

  192. Takahashi M, Iwasaki S, Kobayashi H, et al. Rhizoxin binding to tubulin at the maytansine-binding site. Biochim Biophys Acta 1987;926:215–223.

    PubMed  CAS  Google Scholar 

  193. Takahashi M, Kobayashi H, Iwasaki S. Rhizoxin resistant mutants with an altered β-tubulin gene in Aspergillus nidulans. Mol Gen Genet 1989;220:53–59.

    PubMed  CAS  Google Scholar 

  194. Hendriks HR, Plowman J, Berger DP, et al. Preclinical antitumour activity and animal toxicology studies of rhizoxin, a novel tubulin-interacting agent. Ann Oncol 1992;3:755–763.

    PubMed  CAS  Google Scholar 

  195. Onozawa C, Shimamura M, Iwasaki S, et al. Inhibition of angiogenesis by rhizoxin, a microbial metabolite containing two epoxide groups. Jpn J Cancer Res 1997;88:1125–1129.

    PubMed  CAS  Google Scholar 

  196. Aoki K, Watanabe K, Sato M, et al. Effects of rhizoxin, a microbial angiogenesis inhibitor, on angiogenic endothelial cell functions. Eur J Pharmacol 2003;459:131–138.

    PubMed  CAS  Google Scholar 

  197. Bissett D, Graham MA, Setanoians A, et al. Phase I and pharmacokinetic study of rhizoxin. Cancer Res 1992;52:2894–2898.

    PubMed  CAS  Google Scholar 

  198. Graham MA, Bissett D, Setanoians A, et al. Preclinical and phase I studies with rhizoxin to apply a pharmacokinetically guided dose-escalation scheme. J Natl Cancer Inst 1992;84:494–500.

    PubMed  CAS  Google Scholar 

  199. Goh BC, Fleming GF, Janisch L, et al. Development of a schedule-dependent population pharmacodynamic model for rhizoxin without quantitation of plasma concentrations. Cancer Chemother Pharmacol 2000;45:489–494.

    PubMed  CAS  Google Scholar 

  200. Tolcher AW, Aylesworth C, Rizzo J, et al. A phase I study of rhizoxin (NSC 332598) by 72-hour continuous intravenous infusion in patients with advanced solid tumors. Ann Oncol 2000;11:333–338.

    PubMed  CAS  Google Scholar 

  201. Hanauske AR, Catimel G, Aamdal S, et al. Phase II clinical trials with rhizoxin in breast cancer and melanoma. The EORTC Early Clinical Trials Group. Br J Cancer 1996;73:397–399.

    PubMed  CAS  Google Scholar 

  202. Verweij J, Wanders J, Gil T, et al. Phase II study of rhizoxin in squamous cell head and neck cancer. The EORTC Early Clinical Trials Group. Br J Cancer 1996;73:400–402.

    PubMed  CAS  Google Scholar 

  203. Kaplan S, Hanauske AR, Pavlidis N, et al. Single agent activity of rhizoxin in non-small-cell lung cancer: a phase II trial of the EORTC Early Clinical Trials Group. Br J Cancer 1996;73:403–405.

    PubMed  CAS  Google Scholar 

  204. McLeod HL, Murray LS, Wanders J, et al. Multicentre phase II pharmacological evaluation of rhizoxin. EORTC early clinical studies (ECSG)/pharmacology and molecular mechanisms (PAMM) groups. Br J Cancer 1996;74:1944–1948.

    PubMed  CAS  Google Scholar 

  205. Kerr DJ, Rustin GJ, Kaye SB, et al. Phase II trials of rhizoxin in advanced ovarian, colorectal and renal cancer. Br J Cancer 1995;72:1267–1269.

    PubMed  CAS  Google Scholar 

  206. Rubenstein SM, Baichwal V, Beckmann H, et al. Hydrophilic, pro-drug analogues of T138067 are efficacious in controlling tumor growth in vivo and show a decreased ability to cross the blood brain barrier. J Med Chem 2001;44:3599–3605.

    PubMed  CAS  Google Scholar 

  207. Schumaker RD, Mani S, Wright M, et al. Phase I study of T900607-sodium, a novel microtubule inhibitor, in patients with advanced solid tumors. Proc Am Soc Clin Oncol 2001;20:A442 (Poster presentation).

    Google Scholar 

  208. Shan B, Medina JC, Santha E, et al. Selective, covalent modification of beta-tubulin residue Cys-239 by T138067, an antitumor agent with in vivo efficacy against multidrug-resistant tumors. Proc Natl Acad Sci USA 1999;96:5686–5691.

    PubMed  CAS  Google Scholar 

  209. Frankmoelle WP, Medina JC, Shan B, et al. Glutathione S-transferase metabolism of the antineoplastic pentafluorophenylsulfonamide in tissue culture and mice. Drug Metab Dispos 2000;28:951–958.

    PubMed  CAS  Google Scholar 

  210. Schwendner SW, Hoffman LA, Thoolen MJ, et al. Efficacy of the novel tubulin binding agent, T900607, against human tumor xenografts in mice. Proc Am Assoc Cancer Res 2000;41:A1919.

    Google Scholar 

  211. Schwendner SW, Hoffman LA, Thoolen MJ, et al. Efficacy of combination therapy with the tubulin binding agent, T900607, against MX-1 human mammary tumor xenografts in mice. Proc Am Assoc Cancer Res 2000;41:A1914.

    Google Scholar 

  212. Zhang W, Timmermans P, Rosenblum M. In vitro and in vivo studies of the novel tubulin binding agent T900607: activity against MDR and MRP expressing human tumors. Proc Am Assoc Cancer Res 2000;41:A1706.

    Google Scholar 

  213. Budman DR, Berg WB, Spriggs DR, et al. A phase I study of a novel antimicrotubule agent: T138067. Clin Cancer Res 2000;6(suppl):A563.

    Google Scholar 

  214. Donehower RC, Schwartz GH, Wolff AC, et al. A phase I pharmacokinetic study of T138067 administered as a weekly 3-hour infusion. Proc Am Soc Clin Oncol 2001;20:A438 (Poster presentation).

    Google Scholar 

  215. Venook AP, Rowinsky E, Donehower RC, et al. Safety and pharmacokinetics (PK) of T138067 (T67) administered as a weekly 3-hour infusion in subjects with hepatocellular carcinoma (HCC) in a phase 1 study. Proc Am Soc Clin Oncol 2004;23:A4087.

    Google Scholar 

  216. Molpus K, Schwartz G, O’Dwyer P, et al. A phase I study of the anti-microtubule agent T138067-sodium administered daily x 5 every 3 weeks. Proc Am Soc Clin Oncol 2002;21:A415.

    Google Scholar 

  217. Leung TW, Feun L, Posey J, et al. A phase II study of T138067-sodium in patients (pts) with unresectable hepatocellular carcinoma (HCC). Proc Am Soc Clin Oncol 2002;21:A572.

    Google Scholar 

  218. Jahan TM, Sandier A, Burns H, et al. A phase II study of T138067-sodium in prior taxane-treated patients (pts) with locally advanced or metastatic non-small cell lung cancer (NSCLC). Proc Am Soc Clin Oncol 2002;21:A1282.

    Google Scholar 

  219. Kirby S, Gertler SZ, Mason W, et al. Phase 2 study of T138067-sodium in patients with malignant glioma: Trial of the National Cancer Institute of Canada Clinical Trials Group. Neurooncology 2005;7:183–188.

    CAS  Google Scholar 

  220. Posey J, Johnson P, Mok T, et al. Results of a phase 2/3 open-label, randomized trial of T138067 versus doxorubicin (DOX) in chemotherapy-naive, unresectable hepatocellular carcinoma (HCC). Proc Am Soc Clin Oncol 2005;A4035.

    Google Scholar 

  221. Lockhart AC, Mani S, Olsen R, et al. T900607-sodium administered daily x 5 as a 60-minute infusion every 3 weeks: a phase I study of T900607-sodium in patients (pts) with refractory cancer. Proc Am Soc Clin Oncol 2002;21:A417.

    Google Scholar 

  222. Stagg RJ, Killham P, Asif-Suleman S, et al. A phase I study of T900607-sodium administered weekly in patients with refractory cancer. Proc Am Soc Clin Oncol 2002;21:A416.

    Google Scholar 

  223. Gelmon KA, Belanger K, Soulieres D, et al. A phase I study of T900607 given once every 3 weeks in patients with advanced refractory cancers; National Cancer Institute of Canada Clinical Trials Group (NCIC-CTG) IND 130. Invest New Drugs 2005;23:445–453.

    PubMed  CAS  Google Scholar 

  224. Garrett CR, Becerra CR, Chan R, et al. A phase II study of T900607 (T607) in subjects with chemotherapy-naive unresectable hepatocellular carcinoma (HCC). Proc Am Soc Clin Oncol 2004; 23:A4125.

    Google Scholar 

  225. Tolcher AW, Ochoa L, Hammond LA, et al. Cantuzumab mertansine, a maytansinoid immunoconjugate directed to the CanAg antigen: a phase I, pharmacokinetic, and biologic correlative study. J Clin Oncol 2003;21:211–222.

    PubMed  CAS  Google Scholar 

  226. Blum RH, Kahlert T. Maytansine: a phase I study of an ansa macrolide with antitumor activity. Cancer Treat Rep 1978;62:435–438.

    PubMed  CAS  Google Scholar 

  227. Blum RH, Wittenberg BK, Canellos GP, et al. A therapeutic trial of maytansine. Cancer Clin Trials 1978;1:113–117.

    PubMed  CAS  Google Scholar 

  228. Cabanillas F, Bodey GP, Burgess MA, et al. Results of a phase II study of maytansine in patients with breast carcinoma and melanoma. Cancer Treat Rep 1979;63:507–509.

    PubMed  CAS  Google Scholar 

  229. Cabanillas F, Rodriguez V, Hall SW, et al. Phase I study of maytansine using a 3-day schedule. Cancer Treat Rep 1978;62:425–428.

    PubMed  CAS  Google Scholar 

  230. Chabner BA, Levine AS, Johnson BL, et al. Initial clinical trials of maytansine, an antitumor plant alkaloid. Cancer Treat Rep 1978;62:429–433.

    PubMed  CAS  Google Scholar 

  231. Eagan RT, Creagan ET, Ingle JN, et al. Phase II evaluation of maytansine in patients with metastatic lung cancer. Cancer Treat Rep 1978;62:1577–1579.

    PubMed  CAS  Google Scholar 

  232. Eagan RT, Ingle JN, Rubin J, et al. Early clinical study of an intermittent schedule for maytansine (NSC-153858): brief communication. J Natl Cancer Inst 1978;60:93–96.

    PubMed  CAS  Google Scholar 

  233. Issell BF, Crooke ST. Maytansine. Cancer Treat Rev 1978;5:199–207.

    PubMed  CAS  Google Scholar 

  234. Chari RVJ, Derr SM, Widdison WC, et al. SB 408075: A tumor-activated prodrug with exceptional activity against colon, pancreatic and lung tumor xenografts. Clin Cancer Res 1999;5(suppl):A462.

    Google Scholar 

  235. Liu C, Tadayoni BM, Bourret LA, et al. Eradication of large colon tumor xenografts by targeted delivery of maytansinoids. Proc Natl Acad Sci USA 1996;93:8618–8623.

    PubMed  CAS  Google Scholar 

  236. Iwasaki S. Natural organic compounds that affect to microtubule functions. Yakugaku Zasshi. 1998; 118:112–126.

    PubMed  CAS  Google Scholar 

  237. Smith SV. Technology evaluation: cantuzumab mertansine, ImmunoGen. Curr Opin Mol Ther 2004; 6:666–674.

    PubMed  CAS  Google Scholar 

  238. Helft PR, Schilsky RL, Hoke FJ, et al. A phase I study of cantuzumab mertansine administered as a single intravenous infusion once weekly in patients with advanced solid tumors. Clin Cancer Res 2004; 10:4363–4368.

    PubMed  CAS  Google Scholar 

  239. Chari RVJ, Steeves RM, Xie Hongsheng, et al. Preclinical development of huN901-DM1: A tumoractivated prodrug directed against small cell lung cancer. Eur J Cancer 2000;36(suppl 6):A118.

    Google Scholar 

  240. Smith SV. Technology evaluation: huN901-DM1, ImmunoGen. Curr Opin Mol Ther 2005;7: 394–401.

    PubMed  CAS  Google Scholar 

  241. Tolcher A, Forouzesh B, McCreery H, et al. A phase I and pharmacokinetic study of BB 10901, amaytansinoid immunoconjugate, in CD56 expressing tumors. Eur J Cancer 2002;38(suppl 7):152(A509).

    Google Scholar 

  242. Fossella F, McCann J, Tolcher A, et al. Phase II trial of BB-10901 (huN901-DM1) given weekly for four consecutive weeks every 6 weeks in patients with relapsed SCLC and CD56-positive small cell carcinoma. Proc Am Soc Clin Oncol 2005;24:A7159.

    Google Scholar 

  243. Paterson I, Delgado O, Florence GJ, et al. 1,6-asymmetric induction in boron-mediated aldol reactions: application to a practical total synthesis of (+)-discodermolide. Org Lett 2003;5:35–38.

    PubMed  CAS  Google Scholar 

  244. Gunasekera SP, Gunasekera M, Longley RE, et al. Discodermolide: a new bioactive polyhydroxylated lactone from the marine sponge Discodermia dissoluta. J Org Chem 1990;55:4912.

    CAS  Google Scholar 

  245. ter Haar E, Kowalski RJ, Hamel E, et al. Discodermolide, a cytotoxic marine agent that stabilizes microtubules more potently than taxol. Biochemistry 1996;35:243–250.

    PubMed  Google Scholar 

  246. Balachandran R, ter Haar E, Welsh MJ, et al. The potent microtubule-stabilizing agent (+)-discodermolide induces apoptosis in human breast carcinoma cells — preliminary comparisons to paclitaxel. Anticancer Drugs 1998;9:67–76.

    PubMed  CAS  Google Scholar 

  247. Martello LA, McDaid HM, Regl DL, et al. Taxol and discodermolide represent a synergistic drug combination in human carcinoma cell lines. Clin Cancer Res 2000;6:1978–1987.

    PubMed  CAS  Google Scholar 

  248. Huang GS, McDaid HM, Kotla VR, et al. In vivo evaluation of combination treatment with taxol and discodermolide against ovarian carcinoma xenografts in nude mice. Proc Am Assoc Cancer Res 2003;44:LB–166.

    Google Scholar 

  249. Mita A, Lockhart AC, Chen TL, et al. A phase I pharmacokinetic (PK) trial of XAA296A (discodermolide) administered every 3 wks to adult patients with advanced solid malignancies. Proc Am Soc Clin Oncol 2004;23:A2025.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, Totowa, NJ

About this chapter

Cite this chapter

Vereshchagina, L.A., Scharf, O., Dimitrios Colevas, A. (2008). Investigational Anticancer Agents Targeting the Microtubule. In: Fojo, T. (eds) The Role of Microtubules in Cell Biology, Neurobiology, and Oncology. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-336-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-336-3_17

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-294-0

  • Online ISBN: 978-1-59745-336-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics