Skip to main content

Antimicrotubule Agents That Bind Covalently to Tubulin

  • Chapter

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

The binding of most microtubule inhibitors (MTI) is reversible. Most of these inhibit the polymerization of tubulin to microtubules (MT), but an important group promotes polymerization and stabilizes MT. A subset of MTI are not reversible due to covalent adduct formation with tubulin. Some of these agents are quite specific in the amino acid residue targeted for reaction, while others are less specific, though still targeting MT function in cells. Almost all reactive MTI cause loss of MT, but one reactive agent is known that stabilizes MT. Many reactive MTI target cysteines in tubulin, especially in β-tubulin, although MTI are known that target lysine and other residues. Reactive MTI include organic, inorganic, natural, and synthetic compounds, environmental toxicants as well as potential therapeutics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lundblad RL. Techniques in Protein Modification. 169–173. Boca Raton, CRC Press, 2000.

    Google Scholar 

  2. Han KK, Delacourte A, Hemon B, Chemical modification of thiol group(s) in protein: application to the study of anti-microtubular drugs binding. Comp Biochem Physiol B 1987;88:1057–1065.

    PubMed  CAS  Google Scholar 

  3. Izbicka E, Tolcher AW. Development of novel alkylating drugs as anticancer agents. Curr Opin Invest Drugs 2004;5:587–591.

    CAS  Google Scholar 

  4. Casini A, Scozzafava A, Supuran CT. Cysteine-modifying agents: a possible approach for effective anticancer and antiviral drugs. Environ Health Perspect 2002;110(suppl 5):801–806.

    PubMed  CAS  Google Scholar 

  5. Britto PJ, Knipling L, Wolff J. The local electrostatic environment determines cysteine reactivity of tubulin. J Biol Chem 2002;277:29,018–29,027.

    PubMed  CAS  Google Scholar 

  6. Roychowdhury M, Sarkar N, Manna T, et al. Sulfhydryls of tubulin. A probe to detect conformational changes of tubulin. Eur J Biochem 2000;267:3469–3476.

    PubMed  CAS  Google Scholar 

  7. Sackett, unpublished results.

    Google Scholar 

  8. Chaudhuri AR, Seetharamalu P, Schwarz PM, Hausheer FH, Luduena RF. The interaction of the B-ring of colchicine with α-tubulin: a novel footprinting approach. J Mol Biol 2000;303:679–692.

    PubMed  CAS  Google Scholar 

  9. Luduena RF, Roach MC. Tubulin sulfhydryl groups as probes and targets for antimitotic and antimicrotubule agents. Pharmacol Ther 1991;49:133–152.

    PubMed  Google Scholar 

  10. Kim YJ, Pannell LK, Sackett DL. Mass spectrometric measurement of differential reactivity of cysteine to localize protein-ligand binding sites. Application to tubulin-binding drugs. Anal Biochem 2004;332:376–383.

    PubMed  CAS  Google Scholar 

  11. Mellon MG, Rebhun LI. Sulfhydryls and the in vitro polymerization of tubulin. J Cell Biol 1976;70:226–238.

    PubMed  CAS  Google Scholar 

  12. Kuriyama R, Sakai H. Role of tubulin-SH groups in polymerization to microtubules. Functional-SH groups in tubulin for polymerization. J Biochem (Tokyo) 1974;76:651–654.

    CAS  Google Scholar 

  13. Lee YC, Yaple RA, Baldridge R, Kirsch M, Hirnes RH. Inhibition of tubulin self-assembly in vitro by fluorodinitrobenzene. Biochim Biophys Acta 1981;671:1–77.

    Google Scholar 

  14. Phelps KK, Walker RA. NEM tubulin inhibits microtubule minus end assembly by a reversible capping mechanism. Biochemistry 2000;39:3877–3885.

    PubMed  CAS  Google Scholar 

  15. Lowe J, Li H, Downing KH, Nogales E. Refined structure of αβ-tubulin at 3.5 A resolution. J Mol Biol 2001;313:1045–1057.

    PubMed  CAS  Google Scholar 

  16. Shan B, Medina JC, Santha E, et al. Selective, covalent modification of β-tubulin residue Cys-239 by T138067, an antitumor agent with in vivo efficacy against multidrug-resistant tumors. Proc Natl Acad Sci USA 1999;96:5686–5691.

    PubMed  CAS  Google Scholar 

  17. Ziegelbauer J, Shan B, Yager D, Larabell C, Hoffmann B, Tjian R. Transcription factor MIZ-1 is regulated via microtubule association. Mol Cell 2001;8:339–349.

    PubMed  CAS  Google Scholar 

  18. Abraham I, Dion RL, Duanmu C, Gottesman MM, Hamel E. 2,4-dichlorobenzyl thiocyanate, an antimitotic agent that alters microtubule morphology. Proc Natl Acad Sci USA 1986;83:6839–6843.

    PubMed  CAS  Google Scholar 

  19. Bai R, Duanmu C, Hamel E. Mechanism of action of the antimitotic drug 2,4-dichlorobenzyl thiocyanate: alkylation of sulfhydryl group(s) of β-tubulin. Biochim Biophys Acta 1989a;994:12–20.

    PubMed  CAS  Google Scholar 

  20. Bai RL, Lin CM, Nguyen NY, Liu TY, Hamel E. Identification of the cysteine residue of β-tubulin alkylated by the antimitotic agent 2,4-dichlorobenzyl thiocyanate, facilitated by separation of the protein subunits of tubulin by hydrophobic column chromatography. Biochemistry 1989b;28:5606–5612.

    PubMed  CAS  Google Scholar 

  21. Gills JP, Roberts BC, Epstein DL. Microtubule disruption leads to cellular contraction in human trabecular meshwork cells. Invest Ophthalmol Vis Sci 1998;39:653–658.

    PubMed  CAS  Google Scholar 

  22. Shimazaki A, Suhara H, Ichikawa M, et al. New ethacrynic acid derivatives as potent cytoskeletal modulators in trabecular meshwork cells. Biol Pharm Bull 2004;27:846–850.

    PubMed  CAS  Google Scholar 

  23. Mallevais ML, Delacourte A, Luyckx M, Cazin M, Brunet C, Lesieur D. Antimicrotubular effects of ethacrynic acid. Methods Find Exp Clin Pharmacol 1984;6:675–677.

    PubMed  CAS  Google Scholar 

  24. Xu S, Roychowdhury S, Gaskin F, Epstein DL. Ethacrynic acid inhibition of microtubule assembly in vitro. Arch Biochem Biophys 1992;296:462–467.

    PubMed  CAS  Google Scholar 

  25. Luduena RF, Roach MC, Epstein DL. Interaction of ethacrynic acid with bovine brain tubulin. Biochem Pharmacol 1994;47:1677–1681.

    PubMed  CAS  Google Scholar 

  26. O’Brien ET, Lee RE 3rd, Epstein DL. Ethacrynic acid disrupts steady state microtubules in vitro. Curr Eye Res 1996;15:985–990.

    PubMed  CAS  Google Scholar 

  27. Jiang JD, Wang Y, Roboz J, Strauchen J, Holland JF, Bekesi JG. Inhibition of microtubule assembly in tumor cells by 3-bromoacetylamino benzoylurea, a new cancericidal compound. Cancer Res 1998a;58:2126–2133.

    PubMed  CAS  Google Scholar 

  28. Jiang JD, Davis AS, Middleton K, et al. 3-(Iodoacetamido)-benzoylurea: a novel cancericidal tubulin ligand that inhibits microtubule polymerization, phosphorylates bcl-2, and induces apoptosis in tumor cells. Cancer Res 1998b;58:5389–5395.

    PubMed  CAS  Google Scholar 

  29. Davis A, Jiang JD, Middleton KM, et al. Novel suicide ligands of tubulin arrest cancer cells in S-phase. Neoplasia 1999;1:498–507.

    PubMed  CAS  Google Scholar 

  30. Jiang JD, Denner L, Ling YH, et al. Double blockade of cell cycle at G1-S transition and M phase by 3-Iodoacetamido benzoyl ethyl ester, a new type of tubulin ligand. Cancer Res 2002;62: 6080–6088.

    PubMed  CAS  Google Scholar 

  31. Donaldson KL, Goolsby GL, Wahl AR Cytotoxicity of the anticancer agents cisplatin and taxol during cell proliferation and the cell cycle. Int J Cancer 1994;57:847–855.

    PubMed  CAS  Google Scholar 

  32. Trielli MO, Andreassen PR, Lacroix FB, Margolis RL. Differential Taxol-dependent arrest of transformed and nontransformed cells in the G1 phase of the cell cycle, and specific-related mortality of transformed cells. J Cell Biol 1996;135:689–700.

    PubMed  CAS  Google Scholar 

  33. Blagosklonny MV, Darzynkiewicz Z, Halicka HD, et al. Paclitaxel induces primary and postmitotic G1 arrest in human arterial smooth muscle cells. Cell Cycle 2004;3:1050–1056.

    PubMed  CAS  Google Scholar 

  34. Graff RD, Reuhl KR. Cytoskeletal Toxicity of Heavy Metals in Toxicology of Metals (Ed.: Liu Chang), pp. 639–658 Boca Raton: Lewis Pub. 1996.

    Google Scholar 

  35. Macdonald TL, Humphreys WG, Martin RB. Promotion of tubulin assembly by aluminum ion in vitro. Science 1987;236:183–186.

    CAS  Google Scholar 

  36. Stoiber T, Bonacker D, Bohm KJ, et al. Disturbed microtubule function and induction of micronuclei by chelate complexes of mercury(II). Mutat Res 2004;563:97–106.

    PubMed  CAS  Google Scholar 

  37. Bonacker D, Stoiber T, Wang M, et al. Genotoxicity of inorganic mercury salts based on disturbed microtubule function. Arch Toxicol 2004;78:575–583.

    PubMed  CAS  Google Scholar 

  38. Keates RA, Yott B. Inhibition of microtubule polymerization by micromolar concentrations of mercury (II). Can J Biochem Cell Biol 1984;62:814–818.

    PubMed  CAS  Google Scholar 

  39. Duhr EF, Pendergrass JC, Slevin JT, Haley BE. HgEDTA complex inhibits GTP interactions with the E-site of brain β-tubulin. Toxicol Appl Pharmacol 1993;122:273–280.

    PubMed  CAS  Google Scholar 

  40. Miura K, Inokawa M, Imura N. Effects of methylmercury and some metal ions on microtubule networks in mouse glioma cells and in vitro tubulin polymerization. Toxicol Appl Pharmacol 1984;73:218–231.

    PubMed  CAS  Google Scholar 

  41. Hoffman RD, Lane MD. Iodophenylarsine oxide and arsenical affinity chromatography: new probes for dithiol proteins. Application to tubulins and to components of the insulin receptor-glucose transporter signal transduction pathway J Biol Chem 1992;267:14,005–14,011.

    PubMed  CAS  Google Scholar 

  42. Larochette N, Decaudin D, Jacotot E, et al. Arsenite induces apoptosis via a direct effect on the mitochondrial permeability transition pore. Exp Cell Res 1999;249:413–421.

    PubMed  CAS  Google Scholar 

  43. Fojo T, Bates S. Arsenic trioxide (As(2)O(3)): still a mystery. Cell Cycle 2002;1:183–186.

    PubMed  CAS  Google Scholar 

  44. Karlsson J, ORa I, Porn-Ares I, Pahlman S. Arsenic trioxide-induced death of neuroblastoma cells involves activation of Bax and does not require p53. Clin Cancer Res 2004;10:3179–3188.

    PubMed  CAS  Google Scholar 

  45. Li W, Chou IN. Effects of sodium arsenite on the cytoskeleton and cellular glutathione levels in cultured cells. Toxicol Appl Pharmacol 1992;114:132–139.

    PubMed  CAS  Google Scholar 

  46. Li YM, Broome JD. Arsenic targets tubulins to induce apoptosis in myeloid leukemia cells. Cancer Res 1999;59:776–780.

    PubMed  CAS  Google Scholar 

  47. Ling YH, Jiang JD, Holland JF, Perez-Soler R. Arsenic trioxide produces polymerization of microtubules and mitotic arrest before apoptosis in human tumor cell lines. Mol Pharmacol 2002;62: 529–538.

    PubMed  CAS  Google Scholar 

  48. Halicka HD, Smolewski P, Darzynkiewicz Z, Dai W, Traganos F. Arsenic trioxide arrests cells early in mitosis leading to apoptosis. Cell Cycle 2002;1:201–209.

    PubMed  CAS  Google Scholar 

  49. Carre M, Carles G, Andre N, et al. Involvement of microtubules and mitochondria in the antagonism of arsenic trioxide on paclitaxel-induced apoptosis. Biochem Pharmacol 2002;63:1831–1842.

    PubMed  CAS  Google Scholar 

  50. Umeda M, Saito K, Hirose K, Saito M. Cytotoxic effect of inorganic, phenyl, and alkyl mercuric compounds on HeLa cells. Jpn J Exp Med 1969;39:47–58.

    PubMed  CAS  Google Scholar 

  51. Miura K, Suzuki K, Imura N. Effects of methylmercury on mitotic mouse glioma cells. Environ Res 1978;17:453–471.

    PubMed  CAS  Google Scholar 

  52. Elhassain SB. The many faces of methylmercury poisoning. J Toxicol Clin Toxicol 1983;19:875–906.

    Google Scholar 

  53. Sager PR. Selectivity of methyl mercury effects on cytoskeleton and mitotic progression in cultured cells. Toxicol Appl Pharmacol 1988;94:473–486.

    PubMed  CAS  Google Scholar 

  54. Sager PR, Doherty RA, Olmsted JB. Interaction of methylmercury with microtubules in cultured cells and in vitro. Exp Cell Res 1983;146:127–137.

    PubMed  CAS  Google Scholar 

  55. Graff RD, Falconer MM, Brown DL, Reuhl KR. Altered sensitivity of posttranslationally modified microtubules to methylmercury in differentiating embryonal carcinoma-derived neurons. Toxicol Appl Pharmacol 1997;144:215–224.

    PubMed  CAS  Google Scholar 

  56. Durham HD, Minotti S, Caporicci E, Chakrabarti S, Panisset JC. Sensitivity of platelet microtubules to disassembly by methylmercury. J Toxicol Environ Health 1996;48:57–69.

    PubMed  CAS  Google Scholar 

  57. Luduena RF, Roach MC, Jordan MA, Murphy DB. Different reactivities of brain and erythrocyte tubulins toward a sulfhydryl group-directed reagent that inhibits microtubule assembly. J Biol Chem 1985;260:1257–1264.

    PubMed  CAS  Google Scholar 

  58. Miura K, Koide N, Himeno S, Nakagawa I, Imura N. The involvement of microtubular disruption in methylmercury-induced apoptosis in neuronal and nonneuronal cell lines. Toxicol Appl Pharmacol 1999;160:279–288.

    PubMed  CAS  Google Scholar 

  59. Hunter AM, Brown DL. Effects of microtubule-associated protein (MAP) expression on methylmercury-induced microtubule disassembly. Toxicol Appl Pharmacol 2000;166:203–213.

    PubMed  CAS  Google Scholar 

  60. Vogel DG, Margolis RL, Mottet NK. Analysis of methyl mercury binding sites on tubulin subunits and microtubules. Pharmacol Toxicol 1989;64:196–201.

    PubMed  CAS  Google Scholar 

  61. Vogel DG, Margolis RL, Mottet NK. The effects of methyl mercury binding to microtubules. Toxicol Appl Pharmacol 1985;80:473–486.

    PubMed  CAS  Google Scholar 

  62. Zimmermann HP, Faulstich H, Hansch GM, Doenges KH, Stournaras C. The interaction of triethyl lead with tubulin and microtubules. Mutat Res 1988;201:293–302.

    PubMed  CAS  Google Scholar 

  63. Stiakaki E, Stournaras C, Dimitriou H, Kalmanti M. High sensitivity of leukemic peripheral blood lymphocytes to triethyllead action. Biochem Pharmacol 1997;54:1371–1376.

    PubMed  CAS  Google Scholar 

  64. Faulstich H, Stournaras C, Doenges KH, Zimmermann HP. The molecular mechanism of interaction of Et3Pb+ with tubulin. FEBS Lett 1984;174:128–131.

    PubMed  CAS  Google Scholar 

  65. Maccioni RB, Seeds NW. Involvement of tryptophan residues in colchicine binding and the assembly of tubulin. Biochem Biophys Res Commun 1982;108:896–903.

    PubMed  CAS  Google Scholar 

  66. Mellado W, Slebe JC, Maccioni RB. Tubulin carbamoylation. Functional amino groups in microtubule assembly. Biochem J 1982;203:675–681.

    PubMed  CAS  Google Scholar 

  67. Maccioni RB, Vera JC, Siebe JC. Arginyl residues involvement in the microtubule assembly. Arch Biochem Biophys 1981;207:248–255.

    PubMed  CAS  Google Scholar 

  68. Lee YC, Houston LL, Himes RH. Inhibition of the self-assembly of tubulin by diethylpyrocarbonate and photooxidation. Biochem Biophys Res Commun 1976;70:50–57.

    PubMed  CAS  Google Scholar 

  69. Levison BS, Wiemels J, Szasz J, Sternlicht H. Ethoxyformylation of tubulin with [3H]diethyl pyrocarbonate: a reexamination of the mechanism of assembly inhibition. Biochemistry 1989;28: 8877–8884.

    PubMed  CAS  Google Scholar 

  70. Legault J, Gaulin JF, Mounetou E, et al. Microtubule disruption induced in vivo by alkylation of β-tubulin by l-aryl-3-(2-chloroethyl)ureas, a novel class of soft alkylating agents. Cancer Res 2000; 60:985–992.

    PubMed  CAS  Google Scholar 

  71. Mounetou E, Legault J, Lacroix J, C-Gaudreault R. Antimitotic antitumor agents: synthesis, structure-activity relationships, and biological characterization of N-aryl-N′-(2-chloroethyl)ureas as new selective alkylating agents. J Med Chem 2001;44:694–702.

    PubMed  CAS  Google Scholar 

  72. Bouchon B, Chambon C, Mounetou E, et al. Alkylation of β-tubulin on Glu 198 by a microtubule disrupter. Mol Pharmacol 2005;68:1415–1422.

    PubMed  CAS  Google Scholar 

  73. Harris RB, Wilson IB. Irreversible inhibition of bovine lung angiotensin I-converting enzyme with p-[N,N-bis(chloroethyl)amino]phenylbutyric acid (chlorambucil) and chlorambucyl L-proline and with evidence that an active site carboxyl group is labeled J Biol Chem 1982;257:811–815.

    PubMed  CAS  Google Scholar 

  74. Petitclerc E, Deschesnes RG, Cote MF, et al. Antiangiogenic and antitumoral activity of phenyl-3-(2-chloroethyl) ureas: a class of soft alkylating agents disrupting microtubules that are unaffected by cell adhesion-mediated drug resistance. Cancer Res 2004;64:4654–4663.

    PubMed  CAS  Google Scholar 

  75. Mounetou E, Legault J, Lacroix J, C-Gaudreault R. A new generation of N-aryl-N′-(l-alkyl-2-chloroethyl)ureas as microtubule disrupters: synthesis, antiproliferative activity, and β-tubulin alkylation kinetics. J Med Chem 2003;46:5055–5063.

    PubMed  CAS  Google Scholar 

  76. Kobayashi S, Tsuchiya K, Harada T, et al. Pironetin, a novel plant growth regulator produced by Streptomyces spp. NK10958. I. Taxonomy, production, isolation and preliminary characterization. J Antibiot (Tokyo) 1994;47:697–702.

    CAS  Google Scholar 

  77. Kondoh M, Usui T, Kobayashi S, et al. Cell cycle arrest and antitumor activity of pironetin and its derivatives. Cancer Lett 1998;126:29–32.

    PubMed  CAS  Google Scholar 

  78. Kondoh M, Usui T, Nishikiori T, Mayumi T, Osada H. Apoptosis induction via microtubule disassembly by an antitumour compound, pironetin Biochem J 1999;340:411–416.

    PubMed  CAS  Google Scholar 

  79. Keck GE, Knutson CE, Wiles SA. Total synthesis of the immunosupressant (-)-pironetin (PA48153C). Org Lett 2001;3:707–710.

    PubMed  CAS  Google Scholar 

  80. Watanabe H, Watanabe H, Usui T, Kondoh M, Osada H, Kitahara T. Synthesis of pironetin and related analogs: studies on structure-activityrelationships as tubulin assembly inhibitors. J Antibiot (Tokyo) 2000;53:540–545.

    CAS  Google Scholar 

  81. Usui T, Watanabe H, Nakayama H, et al. The anticancer natural product pironetin selectively targets Lys352 of α-tubulin. Chem Biol 2004;11:799–806.

    PubMed  CAS  Google Scholar 

  82. Sentein P. Action of glutaraldehyde and formaldehyde on segmentation mitoses. Inhibition of spindle and astral fibres, centrospheres blocked. Exp Cell Res 1975;95:233–246.

    PubMed  CAS  Google Scholar 

  83. Israel Y. Covalent binding of acetaldehyde to liver tubulin: a step in the right direction. Hepatology 1989;9:161–162.

    PubMed  CAS  Google Scholar 

  84. Kawahara H, Matsuda Y, Takada A. Effects of ethanol on the microtubules of cultured rat hepatocytes. Alcohol Alcohol 1987;1(suppl):307–311.

    CAS  Google Scholar 

  85. Poggi P, Rota MT, Boratto R. The volatile fraction of cigarette smoke induces alterations in the human gingival fibroblast cytoskeleton. J Periodontal Res 2002;37:230–235.

    PubMed  CAS  Google Scholar 

  86. Nakamura Y, Romberger DJ, Tatel, et al. Cigarette smoke inhibits fibroblast proliferation and chemotaxis. Am J Respir Crit Care Med 1995;151:1497–1503.

    PubMed  CAS  Google Scholar 

  87. McKinnon G, Davidson M, De Jersey J, Shanley B, Ward L. Effects of acetaldehyde on polymerization of microtubule proteins. Brain Res 1987;416:90–99.

    PubMed  CAS  Google Scholar 

  88. Jennett RB, Sorrell MF, Johnson EL, Tuma DJ. Covalent binding of acetaldehyde to tubulin: evidence for preferential binding to theα-chain. Arch Biochem Biophys 1987;256:10–18.

    PubMed  CAS  Google Scholar 

  89. Jennett RB, Sorrell MF, Saffari-Fard A, Ockner JL, Tuma DJ. Preferential covalent binding of acetaldehyde to the α-chain of purified rat liver tubulin. Hepatology 1989;9:57–62.

    PubMed  CAS  Google Scholar 

  90. Szasz J, Burns R, Sternlicht H. Effects of reductive methylation on microtubule assembly. Evidence for an essential amino group in the α-chain. J Biol Chem 1982;257:3697–3704.

    PubMed  CAS  Google Scholar 

  91. Sherman G, Rosenberry TL, Sternlicht H. Identification of lysine residues essential for microtubule assembly. Demonstration of enhanced reactivity during reductive methylation J Biol Chem 1983;258:2148–2156.

    PubMed  CAS  Google Scholar 

  92. Szasz J, Yaffe MB, Elzinga M, Blank GS, Sternlicht H. Microtubule assembly is dependent on a cluster of basic residues in a-tubulin. Biochemistry 1986;25:4572–4582.

    PubMed  CAS  Google Scholar 

  93. Pal D, Mahapatra P, Manna T, et al. Conformational properties of α-tubulin tail peptide: implications for tail-body interaction. Biochemistry 2001;40:15,512–15,519.

    PubMed  CAS  Google Scholar 

  94. Sackett DL, Bhattacharyya B, Wolff J. Tubulin subunit carboxyl termini determine polymerization efficiency. J Biol Chem 1985;260:43–45.

    PubMed  CAS  Google Scholar 

  95. Sackett DL. Structure and function in the tubulin dimer and the role of the acidic carboxyl terminus. Subcell Biochem 1995;24:255–302.

    PubMed  CAS  Google Scholar 

  96. Smith SL, Jennett RB, Sorrell MF, Tuma DJ. Acetaldehyde substoichiometrically inhibits bovine neurotubulin polymerization. J Clin Invest 1989;84:337–341.

    PubMed  CAS  Google Scholar 

  97. Smith SL, Jennett RB, Sorrell MF, Tuma DJ. Substoichiometric inhibition of microtubule formation by acetaldehyde-tubulin adducts. Biochem Pharmacol 1992;44:65–72.

    PubMed  CAS  Google Scholar 

  98. Xu DS, Jennett RB, Smith SL, Sorrell MF, Tuma DJ. Covalent interactions of acetaldehyde with the actin/microfilament system. Alcohol Alcohol 1989;24:281–289.

    PubMed  CAS  Google Scholar 

  99. Miglietta A, Olivero A, Gadoni E, Gabriel L. Effects of some aldehydes on brain microtubular protein. Chem Biol Interact 1991;78:183–191.

    PubMed  CAS  Google Scholar 

  100. Olivero A, Miglietta A, Gadoni E, Gabriel L. 4-Hydroxynonenal interacts with tubulin by reacting with its functional-SH groups. Cell Biochem Funct 1990;8:99–105.

    PubMed  CAS  Google Scholar 

  101. Olivero A, Miglietta A, Gadoni E, Gabriel L. Aldehyde-induced modifications of the microtubular system in 3T3 fibroblasts. Cell Biochem Funct 1992;10:19–26.

    PubMed  CAS  Google Scholar 

  102. Young DH, Lewandowski VT. Covalent binding of the benzamide RH-4032 to tubulin in suspensioncultured tobacco cells and its application in a cell-based competitive-binding assay. Plant Physiol 2000;124:115–124.

    PubMed  CAS  Google Scholar 

  103. Anthony RG, Hussey PJ. Double mutation in eleusine indica α-tubulin increases the resistance of transgenic maize calli to dinitroaniline and phosphorothioamidate herbicides. Plant J 1999; 18:669–674.

    PubMed  CAS  Google Scholar 

  104. Morrissette NS, Mitra A, Sept D, Sibley LD. Dini troanilines bind alpha-tubulin to disrupt microtubules. Mol Biol Cell 2004;15:1960–1968.

    PubMed  CAS  Google Scholar 

  105. Berg K, Moan J. Lysosomes and microtubules as targets for photochemotherapy of cancer. Photochem Photobiol 1997;65:403–409.

    PubMed  CAS  Google Scholar 

  106. Sporn LA, Foster TH. Photofrin and light induces microtubule depolymerization in cultured human endothelial cells. Cancer Res 1992;52:3443–3448.

    PubMed  CAS  Google Scholar 

  107. Berg K, Moan J. Mitotic inhibition by phenylporphines and tetrasulfonated aluminium phthalocyanine in combination with light. Photochem Photobiol 1992;56:333–339.

    PubMed  CAS  Google Scholar 

  108. Berg K. The unpolymerized form of tubulin is the target for microtubule inhibition by photoactivated tetra(4-sulfonatophenyl)porphine. Biochim Biophys Acta 1992;1135:147–153.

    PubMed  CAS  Google Scholar 

  109. Berg K, Steen HB, Winkelman JW, Moan J. Synergistic effects of photoactivated tetra(4-sulfonatophenyl)porphine and nocodazole on microtubule assembly, accumulation of cells in mitosis and cell survival. J Photochem Photobiol B 1992;13:59–70.

    PubMed  CAS  Google Scholar 

  110. Ma LW, Berg K, Danielsen HE, Kaalhus O, Iani V, Moan J. Enhanced antitumour effect of photodynamic therapy by microtubule inhibitors. Cancer Lett 1996;109:129–139.

    PubMed  CAS  Google Scholar 

  111. Winkelman JW, Arad D, Kimel S. Stereochemical factors in the transport and binding of photosensitizers in biological systems and in photodynamic therapy. J Photochem Photobiol B 1993;18: 181–189.

    PubMed  CAS  Google Scholar 

  112. Boekelheide K, Eveleth J, Tatum AH, Winkelman JW. Microtubule assembly inhibition by porphyrins and related compounds. Photochem Photobiol 1987;46:657–661.

    PubMed  CAS  Google Scholar 

  113. Juarranz A, Villanueva A, Diaz V, Canete M. Photodynamic effects of the cationic porphyrin, mesotetra(4N-methylpyridyl)porphine, on microtubules of HeLa cells. J Photochem Photobiol B 1995;27:47–53.

    PubMed  CAS  Google Scholar 

  114. Stockert JC, Juarranz A, Villanueva A, Canete M. Photodynamic damage to HeLa cell microtubules induced by thiazine dyes. Cancer Chemother Pharmacol 1996;39:167–169.

    PubMed  CAS  Google Scholar 

  115. Lee C, Wu SS, Chen LB. Photosensitization by 3,3′-dihexyloxacarbocyanine iodide: specific disruption of microtubules and inactivation of organelle motility. Cancer Res 1995;55:2063–2069.

    PubMed  CAS  Google Scholar 

  116. Sakharov DV, Bunschoten A, van Weelden H, Wirtz KW. Photodynamic treatment and H2O2-induced oxidative stress result in different patterns of cellular protein oxidation. Eur J Biochem 2003;270: 4859–4865.

    PubMed  CAS  Google Scholar 

  117. Magi B, Ettorre A, Liberatori S, et al. Selectivity of protein carbonylation in the apoptotic response to oxidative stress associated with photodynamic therapy: a cell biochemical and proteomic investigation. Cell Death Differ 2004;11:842–852.

    PubMed  CAS  Google Scholar 

  118. Peyrot V, Briand C, Momburg R, Sari JC. In vitro mechanism study of microtubule assembly inhibition by cis-dichlorodiammine-platinum(II). Biochem Pharmacol 1986;35:371–375.

    PubMed  CAS  Google Scholar 

  119. Boekelheide K, Arcila ME, Eveleth J. cis-diamminedichloroplatinum (II) (cisplatin) alters microtubule assembly dynamics. Toxicol Appl Pharmacol 1992;116:146–151.

    PubMed  CAS  Google Scholar 

  120. Tulub AA, Stefanov VE. Cisplatin stops tubulin assembly into microtubules. A new insight into the mechanism of antitumor activity of platinum complexes. Int J Biol Macromol 2001;28:191–198.

    PubMed  CAS  Google Scholar 

  121. Buey RM, Calvo E, Barasoain I, et al. Cyclostreptin binds covalently to microtubule pores and lumenal taxoid binding sites. Nature Chem Biol 2007;3:117–125.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, Totowa, NJ

About this chapter

Cite this chapter

Sackett, D.L. (2008). Antimicrotubule Agents That Bind Covalently to Tubulin. In: Fojo, T. (eds) The Role of Microtubules in Cell Biology, Neurobiology, and Oncology. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-336-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-336-3_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-294-0

  • Online ISBN: 978-1-59745-336-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics