Skip to main content

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1892 Accesses

Abstract

Numerous peptides bind to tubulin and inhibit the function of microtubules. The molecular classes discussed in this chapter are dolastatins, cryptophycins, hemiasterlins, phomopsin, ustiloxins, diazonamides, tubulysins, and vitilevuamide. These natural product agents bind to tubulin at a site that is similar but distinct compared with vinblastine and depolymerize microtubules. Many of these agents are potent inhibitors of cell division that have been tested in clinical trials as antitumor agents. These agents are excellent research tools to understand the molecular basis of tubulin function. Further exploration is needed to define their optimal utility in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jordan MA. Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr Med Chem Anti-Cancer Agents 2002;2:1–17.

    CAS  Google Scholar 

  2. Rowinsky EK, Tolcher AW. Antimicrotubule agents, In: Devita VT Jr, Hellman S, Rosenberg SA, eds. Cancer Principles and Practice. Lippincott, Philadelphia: Williams and Wilkins; 2001; 431–452.

    Google Scholar 

  3. Kavallaris M, Verrills NM, Hill BT. Anticancer therapy with novel tubulin-interacting drugs. Drug Resist Updat 2001;4:392–401.

    PubMed  CAS  Google Scholar 

  4. van Loo G, Saelens X, van Gurp M, MacFarlane M, Martin SJ, Vandenabeele P. The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. Cell Death Differ 2002;9:1031–1042.

    PubMed  Google Scholar 

  5. Altieri DC. Survivin, versatile modulation of cell division and apoptosis in cancer. Oncogene 2003;22:8581–8589.

    PubMed  CAS  Google Scholar 

  6. He L, Orr GA, Horwitz SB. Novel molecules that interact with microtubules and have functional activity similar to Taxol. Drug Discov Today 2001;6:1153–1164.

    PubMed  CAS  Google Scholar 

  7. Hamel E, Covell DG. Antimitotic peptides and depsipeptides. Curr Med Chem Anti-Cancer Agents 2002;2:19–53.

    CAS  Google Scholar 

  8. Andersen RJ, Roberge M. HTI-286. A synthetic analog of the antimitotic natural product hemiasterlin, In: Cragg GM, Kingston DGI, Newman DJ, eds. Natural Products. Philadelphia: CRC Press; 267–280.

    Google Scholar 

  9. Loganzo F, Hari M, Annable T, et al. Cells resistant to HTI-286 do not overexpress P-glycoprotein but have reduced drug accumulation and a point mutation in α-tubulin. Mol Cancer Ther 2004;3:1319–1327.

    PubMed  CAS  Google Scholar 

  10. Giannakakou P, Sackett DL, Kang YK, et al. Paclitaxel-resistant human ovarian cancer cells have mutant beta-tubulins that exhibit impaired paclitaxel-driven polymerization. J Biol Chem 1997;272:17,118–17,125.

    PubMed  CAS  Google Scholar 

  11. Dumontet C. Mechanisms of action and resistance to tubulin-binding agents. Expert Opin Invest Drugs 2000;9:779–788.

    CAS  Google Scholar 

  12. Orr GA, Verdier-Pinard P, McDaid H, Horwitz SB. Mechanisms of taxol resistance related to microtubules. Oncogene 2003;22:7280–7295.

    PubMed  CAS  Google Scholar 

  13. Bradshaw DM, Arceci RJ. Clinical relevance of transmembrane drug efflux as a mechanism of multidrug resistance. J Clin Oncol 1998;16:3674–3690.

    PubMed  CAS  Google Scholar 

  14. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2002;2:48–58.

    PubMed  CAS  Google Scholar 

  15. Loganzo F, Discafani CM, Annable T, et al. HTI-286, a synthetic analogue of the tripeptide hemiasterlin, is a potent antimicrotubule agent that circumvents P-glycoprotein-mediated resistance in vitro and in vivo. Cancer Res 2003;63:1838–1845.

    PubMed  CAS  Google Scholar 

  16. Schabel FM. Animal models as predictive systems in cancer chemotherapy, In: Nineteenth Annual Clinical Conference on Cancer, 1974, M D Anderson Hospital and Tumor Institute, ed. Year Book Medical Publishers: Chicago. 1975;325–355.

    Google Scholar 

  17. Ovejera A. The use of human tumor xenografts in large-scale drug screening, In: Kalimann RF, ed. Rodent Tumor Model in Experimental Cancer Therapy. NY: Pergamon Press;1987;218–220.

    Google Scholar 

  18. Rose WC. Taxol: a review of its preclinical in vivo antitumor activity. Anticancer Drugs 1992;3: 311–321.

    PubMed  CAS  Google Scholar 

  19. Dykes DJ, Bissery MC, Harrison SD Jr, Waud WR. Response of human tumor xenografts in athymic nude mice to docetaxel (RP 56976, Taxotere). Invest N Drugs 1995;13:1–11.

    CAS  Google Scholar 

  20. Johnson JI, Decker S, Zaharevitz D, et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer 2001;84:1424–1431.

    PubMed  CAS  Google Scholar 

  21. Van Dyke T, Jacks T. Cancer modeling in the modern era: progress and challenges. Cell 2002; 108:135–144.

    PubMed  Google Scholar 

  22. Hoffman RM. Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Invest N Drugs 1999; 17:343–359.

    CAS  Google Scholar 

  23. Killion JJ, Radinsky R, Fidler IJ. Orthotopic models are necessary to predict therapy of transplantable tumors in mice. Cancer Metastasis Rev 1998;17:279–284.

    PubMed  Google Scholar 

  24. Onn A, Isobe T, Itaska S, et al. Development of an orthotopic model to study the biology and therapy of primary human lung cancer in nude mice. Clin Cancer Res 2003;9:5532–5539.

    PubMed  CAS  Google Scholar 

  25. Kerbel RS. Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans: better than commonly perceived-but they can be improved. Cancer Biol Ther 2003;2: S134–S139.

    PubMed  CAS  Google Scholar 

  26. Pettit GR, Kamano Y, Herald CL, et al. The isolation and structure of a remarkable marine animal antineoplastic constituent: dolastatin 10. J Am Chem Soc 1987;109:6883–6885.

    CAS  Google Scholar 

  27. Pettit GR, Kamano Y, Dufresne C, Cerny RL, Herald CL, Schmidt JM. et al. Isolation and structure of the cytostatic linear depsipeptide dolastatin 15. J Org Chem 1989;54:6005–6006.

    CAS  Google Scholar 

  28. Sone H, Shibata T, Fujita T, Ojika M, Yamada K. Dolastatin H and Isodolastatin H, potent cytotoxic peptides from the sea hare Dolabella auricularia: isolation, stereostructures, and synthesis. J Am Chem Soc 1996;118:1874–1880.

    CAS  Google Scholar 

  29. Li Y, Kobayashi H, Hashimoto Y, et al. Interaction of marine toxin dolastatin 10 with porcine brain tubulin: competitive inhibition of rhizoxin and phomopsin A binding. Chem Biol Interact 1994;93:175–183.

    PubMed  Google Scholar 

  30. Harrigan GG, Luesch H, Yoshida WY, et al. Symplostatin 1: A dolastatin 10 analogue from the marine cyanobacterium Symploca hydnoides. J Nat Prod 1998;61:1075–1077.

    PubMed  CAS  Google Scholar 

  31. Luesch H, Moore RE, Paul VJ, Mooberry SL, Corbett TH. Symplostatin 3, a new dolastatin 10 analogue from the marine cyanobacterium Symploca sp. VP452. J Nat Prod 2002;65:16–20.

    PubMed  CAS  Google Scholar 

  32. Luesch H, Moore RE, Paul VJ, Mooberry SL, Corbett TH. Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J Nat Prod 2001;64:907–910.

    PubMed  CAS  Google Scholar 

  33. Pettit GR, Singh SB, Hogan F, et al. The absolute configuration and snythesis of natural (−) dolastatin 10. J Am Chem Soc 1990;111:5463–5465.

    Google Scholar 

  34. Pettit GR, Herald DL, Singh SB, Thornton TJ, Mullaney JT. Antineoplastic agents. 220. Synthesis of natural (−)-dolastatin 15. J Am Chem Soc 1991;113:6692–6693.

    CAS  Google Scholar 

  35. Pettit GR, Sirirangan JK, Barkoczy J, et al. Antineoplastic agents 337. Synthesis of dolastatin 10 structural modifications. Anti-cancer Drug Des 1995;10:529–544.

    CAS  Google Scholar 

  36. Miyazaki K, Kobayashi M, Natsume T, et al. Synthesis and antitumor activity of novel dolastatin 10 analogs. Chem Pharm Bull (Tokyo) 1995;43:1706–1718.

    CAS  Google Scholar 

  37. Kobayashi M, Natsume T, Tamaoki S, et al. Antitumor activity of TZT-1027, a novel dolastatin 10 derivative. Jpn J Cancer Res 1997;88:316–327.

    PubMed  CAS  Google Scholar 

  38. de Arruda M, Cocchiaro CA, Nelson CM, et al. LU103793 (NSC D-669356): a synthetic peptide that interacts with microtubules and inhibits mitosis. Cancer Res 1995;55:3085–3092.

    PubMed  Google Scholar 

  39. Mita AC, Hammond LA, Bonate PL, et al. Phase I and pharmacokinetic study of the tasidotin (ILX651), a third-generation dolastatin-15 analogue, administered weekly for 3 weeks every 28 days in patients with advanced solid tumors. Clin Cancer Res 2006;12:5207–5215.

    PubMed  CAS  Google Scholar 

  40. Natsume T, Watanabe J, Tamaoki S, Fujio N, Miyaska K, Kobayashi M. Characterization of the interaction of TZT-1027, a potent antitumor agent, with tubulin. Jpn J Cancer Res 2000;91:737–747.

    PubMed  CAS  Google Scholar 

  41. Bai R, Pettit GR, Hamel E. Dolastatin 10, a powerful cytostatic peptide derived from a marine animal. Inhibition of tubulin polymerization mediated through the vinca alkaloid binding domain. Biochem Pharmacol 1990;39:1941–1949.

    PubMed  CAS  Google Scholar 

  42. Mooberry SL, Leal RM, Tinley TL, Luesch H, Moore RE, Corbett TH. et al. The molecular pharmacology of symplostatin 1: a new antimitotic dolastatin 10 analog. Int J Cancer 2003;104:512–521.

    PubMed  CAS  Google Scholar 

  43. Bai R, Friedman SJ, Pettit GR, Hamel E. Dolastatin 15, a potent antimitotic depsipeptide derived from Dolabella auricularia. Interaction with tubulin and effects of cellular microtubules. Biochem Pharmacol 1992;43:2637–2645.

    PubMed  CAS  Google Scholar 

  44. Jordan MA, Walker D, de Arruda M, Barlozzari T, Panda D. Suppression of microtubule dynamics by binding of cemadotin to tubulin: possible mechanism for its antitumor action. Biochemistry 1998;37:17,571–17,578.

    PubMed  CAS  Google Scholar 

  45. Bai RL, Pettit GR, Hamel E. Binding of dolastatin 10 to tubulin at a distinct site for peptide antimitotic agents near the exchangeable nucleotide and vinca alkaloid sites. J Biol Chem 1990;265: 17,141–17,149.

    PubMed  CAS  Google Scholar 

  46. Bai R, Durso NA, Sackett DL, Hamel E. Interactions of the sponge-derived antimitotic tripeptide hemiasterlin with tubulin: comparison with dolastatin 10 and cryptophycin 1. Biochemistry 1999;38: 14,302–14,310.

    PubMed  CAS  Google Scholar 

  47. Bai R, Taylor GF, Schmidt JM, et al. Interaction of dolastatin 10 with tubulin: induction of aggregation and binding and dissociation reactions. Mol Pharmacol 1995;47:965–976.

    PubMed  CAS  Google Scholar 

  48. Cruz-Monserrate Z, Mullaney JT, Harran PG, Pettit GR, Hamel E. Dolastatin 15 binds in the vinca domain of tubulin as demonstrated by Hummel-Dreyer chromatography. Eur J Biochem 2003;270: 3822–3828.

    PubMed  CAS  Google Scholar 

  49. Cruz-Monserrate Z, Mullaney JT, Harran PG, Pettit GR, Hamel E. Diazonamide A and a synthetic structural analog: disruptive effects on mitosis and cellular microtubules and analysis of their interactions with tubulin. Mol Pharmacol 2003;63:1273–1280.

    PubMed  CAS  Google Scholar 

  50. Edler MC, Fernandez AM, Lassota P, Ireland CM, Barrows LR. Inhibition of tubulin polymerization by vitilevuamide, a bicyclic marine peptide, at a site distinct from colchicine, the vinca alkaloids, and dolastatin 10. Biochem Pharmacol 2002;63:707–715.

    PubMed  CAS  Google Scholar 

  51. Watts NR, Cheng N, West W, Steven AC, Sackett DL. The cryptophycin-tubulin ring structure indicates two points of curvature in the tubulin dimer. Biochemistry 2002;41:12,662–12,669.

    PubMed  CAS  Google Scholar 

  52. Boukari H, Nossal R, Sackett DL. Stability of drug-induced tubulin rings by fluorescence correlation spectroscopy. Biochemistry 2003;42:1292–1300.

    PubMed  CAS  Google Scholar 

  53. Steube KG, Grunicke D, Pietsch T, Gignac SM, Pettit GR, Drexler HG. Dolastatin 10 and dolastatin 15: effects of two natural peptides on growth and differentiation of leukemia cells. Leukemia 1992;6:1048–1053.

    PubMed  CAS  Google Scholar 

  54. Verdier-Pinard P, Kepler JA, Pettit GR, Hamel E. Sustained intracellular retention of dolastatin 10 causes its potent antimitotic activity. Mol Pharmacol 2000;57:180–187.

    PubMed  CAS  Google Scholar 

  55. Toppmeyer DL, Slapak CA, Croop J, Kufe DW. Role of P-glycoprotein in dolastatin 10 resistance. Biochem Pharmacol 1994;48:609–612.

    PubMed  CAS  Google Scholar 

  56. Kalemkerian GP, Ou X, Adil MR, et al. Activity of dolastatin 10 against small-cell lung cancer in vitro and in vivo: induction of apoptosis and bcl-2 modification. Cancer Chemother Pharmacol 1999;43:507–515.

    PubMed  CAS  Google Scholar 

  57. Aherne GW, Hardcastle A, Valenti M, et al. Antitumour evaluation of dolastatins 10 and 15 and their measurement in plasma by radioimmunoassay. Cancer Chemother Pharmacol 1996;38:225–232.

    PubMed  CAS  Google Scholar 

  58. Mohammad RM. Bryostatin 1 induces differentiation and potentiates the antitumor effect of Auristatin PE in a human pancreatic tumor (PANC-1) xenograft model. Anti-Cancer Drugs 2001;12:735–740.

    PubMed  CAS  Google Scholar 

  59. Mohammad RM, Limvarapuss C, Wall NR, et al. A new tubulin polymerization inhibitor, auristatin PE, induces tumor regression in a human Waidenstrom’s macroglobulinemia xenograft model. Int J Oncol 1999; 15:367–372.

    PubMed  CAS  Google Scholar 

  60. Mohammad RM, Pettit GR, Almatchy VP, Wall N, Varterasian M, Al-Kabit A. Synergistic interaction of selected marine animal anticancer drugs against human diffuse large cell lymphoma. Anticancer Drugs 1998;9:149–156.

    PubMed  CAS  Google Scholar 

  61. Francisco JA, Cerveny CG, Meyer DL, et al. cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood 2003; 102:1458–1465.

    PubMed  CAS  Google Scholar 

  62. Doronina SO, Toki BE, Torgov MY, et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 2003;21:778–784.

    PubMed  CAS  Google Scholar 

  63. Otani M, Natsume T, Watanabe JI, et al. TZT-1027, an antimicrotubule agent, attacks tumor vasculature and induces tumor cell death. Jpn J Cancer Res 2000;91:837–844.

    PubMed  CAS  Google Scholar 

  64. Natsume T, Nakamura T, Koh Y, Kobayashi M, Sajio N, Nishio K. Gene expression profiling of exposure to TZT-1027, a novel microtubule-interfering agent, in non-small cell lung cancer PC-14 cells and astrocytes. Invest New Drugs 2001;19:293–302.

    PubMed  CAS  Google Scholar 

  65. Dang LH, Bettegowda C, Huso DL, Kinzler KW, Vogelstein B. Combination bacteriolytic therapy for the treatment of experimental tumors. Proc Natl Acad Sci USA 2001;98:15,155–15,160.

    PubMed  CAS  Google Scholar 

  66. Madden T, Tran HT, Beck D, et al. Novel marine-derived anticancer agents: a phase I clinical, pharmacological, and pharmacodynamic study of dolastatin 10 (NSC 376128) in patients with advanced solid tumors. Clin Cancer Res 2000;6:1293–1301.

    PubMed  CAS  Google Scholar 

  67. Pitot HC, McElroy EA Jr, Reid JM, et al. Phase I trial of dolastatin-10 (NSC 376128) in patients with advanced solid tumors. Clin Cancer Res 1999;5:525–531.

    PubMed  CAS  Google Scholar 

  68. Wolff I, Bruntsch U, Cavalli F, de Jonk J, von Broen IM, Sessa C. Phase I clinical and pharmacokinetic study of the dolastatin analogue LU 103793 on a weekly x 4 schedule. Ann Oncol 1996;7(suppl 5): 124.

    Google Scholar 

  69. Mross K, Berdel WE, Fiebig HH, Velagapudi R, von Broen IM, Unger, C. Clinical and pharmacologic phase I study of Cemadotin-HCl (LU103793), a novel antimitotic peptide, given as 24-hour infusion in patients with advanced cancer. Ann Oncol 1998;9:1323–1330.

    PubMed  CAS  Google Scholar 

  70. Supko JG, Lynch TJ, Clark JW, et al. A phase I clinical and pharmacokinetic study of the dolastatin analogue cemadotin administered as a 5-day continuous intravenous infusion. Cancer Chemother Pharmacol 2000;46: 319–328.

    PubMed  CAS  Google Scholar 

  71. Villalona-Calero MA, Baker SD, Hammond L, et al. Phase I and pharmacokinetic study of the water-soluble dolastatin 15 analog LU103793 in patients with advanced solid malignancies. J Clin Oncol 1998;16:2770–2779.

    PubMed  CAS  Google Scholar 

  72. Kerbrat P, Dieras V, Pavlidis N, Ravaud A, Wanders J, Fumoleau P. Phase II study of LU 103793 (dolastatin analogue) in patients with metastatic breast cancer. Eur J Cancer 2003;39:317–320.

    PubMed  CAS  Google Scholar 

  73. Smyth J, Boneterre ME, Schellens J, et al. Activity of the dolastatin analogue, LU103793, in malignant melanoma. Ann Oncol 2001;12:509–511.

    PubMed  CAS  Google Scholar 

  74. De Jonge MJ, Madretsma S, Van der Gaast A, et al. TZT-1027, a novel dolastatin 10 derivative: Phase I and pharmacologic study of day 1 and 8 IV administration every 3 weeks in patients (pts) with advanced solid tumors. Proc Am Soc Clin Oncol 2003;22:153.

    Google Scholar 

  75. Schoffski P, Thate B, Beutel G, et al. Phase I evaluation of the 3-weekly administration of TZT-1027 in patients with solid tumors. Proc Am Soc Clin Oncol 2003;22:211.

    Google Scholar 

  76. Yamamoto N, Andoh Kawahara M, Fukuokam M, Niitani H. Phase I study of TZT-1027, an inhibitor of tubulin polymerization, given weekly × 3 as a 1-hour intravenous infusion in patients (pts) with solid tumors. Proc Am Soc Clin Oncol 2002;21, abstract 420.

    Google Scholar 

  77. Eder J, Schwartz RE, Hirsch CF, et al. ILX651, a third generation dolastatin 15: Results of a phase I dose escalating and pharmacokinetic study of ILX-651 administered as a 30 minute IV infusion every other day for 3 days every three weeks. Proc Am Soc Clin Oncol 2003;22:205.

    Google Scholar 

  78. Ebbinghaus S, Rubin E, Hersh E, et al. A phase I study of ILX-651 administered intravenously daily for five days every three weeks in patients with advanced solid tumo. Proc Am Soc Clin Oncol 2003;22:129.

    Google Scholar 

  79. Schwartz RE, Hirsch CF, Sesin DF, et al. Pharmaceuticals from cultured algae. J Ind Microbiol 1994;1990:5.

    Google Scholar 

  80. Trimurtulu G, Ohtani I, Patterson GML, et al. Total structures of cryptophycins, potent antitumor depsipeptides from the blue-green alga Nostoc sp. strain GSV 224. J Am Chem Soc 1994;116:4729–4737.

    CAS  Google Scholar 

  81. Kobayashi H, Aoki S, Ohyabu N, Kurosu M, Wang W, Kitagawa I. Arenastatin A, a potent cytotoxic depsipeptide from the Okinawan marine sponge Dysidea arenaria. Tetrahedron Lett 1994;35:7969–7972.

    CAS  Google Scholar 

  82. Kobayashi H, Kurosu M, Ohyabu N, Wang W, Fujii S, Kitagawa I. The absolute stereostructure of arenastatin A, a potent cytotoxic depsipeptide from the Okinawan marine sponge Dysidea arenaria. Chem Pharm Bull (Tokyo) 1994;10:2196–2198.

    Google Scholar 

  83. Golakoti T, Ogino J, Heltzel CE, et al. Structure determination, conformational analysis, chemical stability studies, and antitumor evaluation of the cryptophycins. Isolation of 18 new analogs from Nostoc sp. strain GSV 224. J Am Chem Soc 1995;117:12,030–12,049.

    CAS  Google Scholar 

  84. Wagner MM, Paul DC, Shih C, Jordan MA, Wilson L, Williams DC. In vitro pharmacology of cryptophycin 52 (LY355703) in human tumor cell lines. Cancer Chemother Pharmacol 1999;43:115–125.

    PubMed  CAS  Google Scholar 

  85. Rej R, Nguyen D, Go B, Fortin S, Lavallee JE Total synthesis of cryptophycins and their 16-(3-phenylacryloyl) derivatives. J Org Chem 1996;61:6289–6295.

    PubMed  CAS  Google Scholar 

  86. Salamonczyk GM, Han K, Guo Zw Z, Sih CJ. Total synthesis of cryptophycins via a chemoenzymatic approach. J Org Chem 1996;61:6893–6900.

    PubMed  CAS  Google Scholar 

  87. Subbaraju GV, Golakoti T, Patterson GML, Moore RE Three new cryptophycins from Nostoc sp. GSV 224. J Nat Prod 1997;60:302–305.

    PubMed  CAS  Google Scholar 

  88. Eggen M, Georg GI. The cryptophycins: their synthesis and anticancer activity. Med Res Rev 2002; 22:85–101.

    PubMed  CAS  Google Scholar 

  89. Kerksiek K, Mejillano MR, Schwartz RE, Georg GI, Himes RH. Interaction of cryptophycin 1 with tubulin and microtubules. FEBS Lett 1995;377:59–61.

    PubMed  CAS  Google Scholar 

  90. Bai R, Schwartz RE, Kepler JA, Pettit GR, Hamel E. Characterization of the interaction of cryptophycin 1 with tubulin: binding in the Vinca domain, competitive inhibition of dolastatin 10 binding, and an unusual aggregation reaction. Cancer Res 1996;56:4398–4406.

    PubMed  CAS  Google Scholar 

  91. Smith CD, Zhang X, Mooberry SL, Patterson GM, Moore RE. Cryptophycin: a new antimicrotubule agent active against drug-resistant cells. Cancer Res 1994;54:3779–3784.

    PubMed  CAS  Google Scholar 

  92. Mooberry SL, Taoka CR, Busquets L. Cryptophycin 1 binds to tubulin at a site distinct from the colchicine binding site and at a site that may overlap the vinca binding site. Cancer Lett 1996;107: 53–57.

    PubMed  CAS  Google Scholar 

  93. Panda D, Ananthnarayan V, Larson G, Shih C, Jordan MA, Wilson L. Interaction of the antitumor compound cryptophycin 52 with tubulin. Biochemistry 2000;39:14,121–14,127.

    PubMed  CAS  Google Scholar 

  94. Panda D, DeLuca K, Williams D, Jordan MA, Wilson L. Antiproliferative mechanism of action of cryptophycin 52: kinetic stabilization of microtubule dynamics by high-affinity binding to microtubule ends. Proc Natl Acad Sci USA 1998;95:9313–9318.

    PubMed  CAS  Google Scholar 

  95. Barbier P, Gregoire C, Devred F, Sarrazin M, Peyrot V. In vitro effect of cryptophycin 52 on microtubule assembly and tubulin: molecular modeling of the mechanism of action of a new antimitotic drug. Biochemistry 2001;40:13,510–13,519.

    PubMed  CAS  Google Scholar 

  96. Smith CD, Zhang X. Mechanism of action cryptophycin. Interaction with the Vinca alkaloid domain of tubulin. J Biol Chem 1996;271:6192–6198.

    PubMed  CAS  Google Scholar 

  97. Panda D, Himes RH, Moore RE, Wilson L, Jordan MA. Mechanism of action of the unusually potent microtubule inhibitor cryptophycin 1. Biochemistry 1997;36:12,948–12,953.

    PubMed  CAS  Google Scholar 

  98. Himes RH, Kersey RN, Heller-Bettinger I, Sampson FE. Action of the vinca alkaloids vincristine, vinblastine, and desacetyl vinblastine amide on microtubules in vitro. Cancer Res 1976;36: 3798–3802.

    PubMed  CAS  Google Scholar 

  99. Andreu JM, Wagenknecht T, Timasheff SN. Polymerization of the tubulin-colchicine complex: relation to microtubule assembly. Biochemistry 1983;22:1556–1566.

    PubMed  CAS  Google Scholar 

  100. Chen BD, Nakeff A, Valeriote F. Cellular uptake of a novel cytotoxic agent, cryptophycin 52, by human THP-1 leukemia cells and H-125 lung tumor cells. Int J Cancer 1998;77:869–873.

    PubMed  CAS  Google Scholar 

  101. Mooberry SL, Busquets L, Tien G. Induction of apoptosis by cryptophycin 1, a new antimicrotubule agent. Int J Cancer 1997;73:440–448.

    PubMed  CAS  Google Scholar 

  102. Drew L, Fine RL, Do TN, Douglas GP, Petrylak DP. The novel antimicrotubule agent cryptophycin 52 (LY355703) induces apoptosis via multiple pathways in human prostate cancer cells. Clin Cancer Res 2002;8:3922–3932.

    PubMed  CAS  Google Scholar 

  103. Corbett TH, Valeriote FA, Demchik L, et al. Discovery of cryptophycin-1 and BCN-183577: examples of strategies and problems in the detection of antitumor activity in mice. Invest N Drugs 1997;15:207–218.

    CAS  Google Scholar 

  104. Menon K, Alvarez E, Forler P, et al. Antitumor activity of cryptophycins: effect of infusion time and combination studies. Cancer Chemother Pharmacol 2000;46:142–149.

    PubMed  CAS  Google Scholar 

  105. Teicher BA, Forler P, Menon K, Phares V, Amsrud T, Shih C. Cryptophycin 52 and cryptophycin 55 in sequential and simultaneous combination treatment regimens in human tumor xenografts. In Vivo 2000;14:471–480.

    PubMed  CAS  Google Scholar 

  106. Sessa C, Weigang-Korler K, Pagani O, et al. Phase I and pharmacological studies of the cryptophycin analogue LY355703 administered on a single intermittent or weekly schedule. Eur J Cancer 2002;38:2388–2396.

    PubMed  CAS  Google Scholar 

  107. Stevenson JP, Sun W, Gallagher M, et al. Phase I trial of the cryptophycin analogue LY355703 administered as an intravenous infusion on a day 1 and 8 schedule every 21 days. Clin Cancer Res 2002;8:2524–2529.

    PubMed  CAS  Google Scholar 

  108. Edelman MJ, Gandara DR, Hausner P, et al. Phase 2 study of cryptophycin 52 (LY355703) in patients previously treated with platinum based chemotherapy for advanced non-small cell lung cancer. Lung Cancer 2003;39:197–199.

    PubMed  Google Scholar 

  109. Talpir R, Benayahu Y, Kashman Y, Pannell L, Schleyer M. Hemiasterlin and geodiamolide TA; two new cytotoxic peptides from the marine sponge hemiasterella minor (Kirkpatrick). Tetrahedron Lett 1994;35:4453–4456.

    CAS  Google Scholar 

  110. Coleman JE, Dilip De Silva E, Kong F, Andersen RJ, Allen TM. Cytotoxic peptides from the marine sponge Cymbastela sp. Tetrahedron 1995;51:10,653–10,662.

    CAS  Google Scholar 

  111. Gamble WR, Durso NA, Fuller RW, et al. Cytotoxic and tubulin-interactive hemiasterlins from Auletta sp. and Siphonochalina spp. sponges. Bioorg Med Chem 1999;7:1611–1615.

    PubMed  CAS  Google Scholar 

  112. Crews P, Farias JJ, Emrich R, Keifer PA. Milnamide A, an unusual cytotoxic tripeptide from the marine sponge Auletta cf. constricta. J Org Chem 1994;59:2932–2934.

    CAS  Google Scholar 

  113. Chevallier C, Richardson AD, Edler MC, Hamel E, Harper MK, Ireland CM. A new cytotoxic and tubulin-interactive milnamide derivative from a marine sponge Cymbastela sp. Org Lett 2003;5:3737–3739.

    PubMed  CAS  Google Scholar 

  114. deSilva ED, Andersen RJ, Allen TM. Geodimolides C to F, new cytotoxic cyclodepsipeptides from the marine sponge Pseudaxinyssa Sp. Tetrahedron Lett 1990;31:489–492.

    Google Scholar 

  115. Coleman JE, Van Soest R, Andersen RJ. New geodiamolides from the sponge Cymbastela sp. collected in Papua New Guinea. J Nat Prod 1999;62:1137–1141.

    PubMed  CAS  Google Scholar 

  116. Zabriskie TM, Klocke JA, Ireland CM, et al. Jaspamide, a modified peptide from a Japis sponge, with insecticidal and antifungal activity. J Am Chem Soc 1986;108:3123–3124.

    CAS  Google Scholar 

  117. Crews P, Manes LV, Boehler M. Jasplakinolide a cyclodepsipeptide from the marine sponge Jaspis Sp. Tetrahedron Lett 1986;27:2797–2800.

    CAS  Google Scholar 

  118. Senderowicz AM, Kaur G, Sainz E, et al. Jasplakinolide’s inhibition of the growth of prostate carcinoma cells in vitro with disruption of the actin cytoskeleton. J Natl Cancer Inst 1995;87:46–51.

    PubMed  CAS  Google Scholar 

  119. Sasse F, Kunze B, Gronewold TM, Reichenbach H. The chondramides: cytostatic agents from myxobacteria acting on the actin cytoskeleton. J Natl Cancer Inst 1998;90:1559–1563.

    PubMed  CAS  Google Scholar 

  120. Andersen RJ, Coleman JE, Piers E, Wallace DJ. Total synthesis of (−)-hemiasterlin, a structurally novel tripeptide that exhibits potent cytotoxic activity. Tetrahedron Lettt 1997;38:317–320.

    Google Scholar 

  121. Reddy R, Jaquith JB, Neelagiri VR, Saleh-Hanna S, Durst T. Asymmetric synthesis of the highly methylated tryptophan portion of the hemiasterlin tripeptides. Org Lett 2002;4:695–697.

    PubMed  CAS  Google Scholar 

  122. Vedejs E, Kongkittingam C. A total synthesis of (−)-hemiasterlin using N-Bts methodology. J Org Chem 2001;66:7355–7364.

    PubMed  CAS  Google Scholar 

  123. Nieman J, Coleman J, Wallace D, et al. Synthesis and antimitotic / cytotoxic activity of hemiasterlin analogs. J Nat Prod 2003;66:183–199.

    PubMed  CAS  Google Scholar 

  124. Zask A, Birnberg G, Cheung K, et al. Synthesis and biological activity of analogs of the antimicrotubule agent HTI-286. Proc Am Assoc Cancer Res 2002;43:737.

    Google Scholar 

  125. Anderson HJ, Coleman JE, Andersen RJ, Roberge M. Cytotoxic peptides hemiasterlin, hemiasterlin A and hemiasterlin B induce mitotic arrest and abnormal spindle formation. Cancer Chemother Pharmacol 1997;39:223–226.

    PubMed  CAS  Google Scholar 

  126. Krishnamurthy G, Cheng W, Lo MC, et al. Biophysical characterization of the interactions of HTI-286 with tubulin heterodimer and microtubules. Biochemistry 2003;42:13,484–13,495.

    PubMed  CAS  Google Scholar 

  127. Nunes M, Kaplan J, Wooters J, et al. Two photoaffinity analogues of the tripeptide, hemiasterlin, exclusively label alpha-tubulin. Biochemistry 2005;44:6844–6857.

    PubMed  CAS  Google Scholar 

  128. Hari M, Nunes M, Zask A, et al. Hemiasterlin analogs exclusively label α-tubulin at the interdimerface and specifically block subtilisin digestion of α-tubulin. Proc Am Assoc Cancer Res 2004;45:359.

    Google Scholar 

  129. Lowe J, Li H, Downing KH, Nogales E. Refined structure of alpha beta-tubulin at 3.5 Å resolution. J Mol Biol 2001;313:1045–1057.

    PubMed  CAS  Google Scholar 

  130. Nogales E, Whittaker M, Milligan RA, Downing KH. High-resolution model of the microtubule. Cell 1999;96:79–88.

    PubMed  CAS  Google Scholar 

  131. Rai SS, Wolff J. Localization of the vinblastine-binding site on beta-tubulin. J Biol Chem 1996;271: 14,707–14,711.

    PubMed  CAS  Google Scholar 

  132. Muller DR, Schindler P, Towbin H, et al. Isotope-tagged cross-linking reagents. A new tool in mass spectrometric protein interaction analysis. Anal Chem 2001;73:1927–1934.

    PubMed  CAS  Google Scholar 

  133. Wallon G, Rappsilber J, Mann M, Serrano L. Model for stathmin/OP18 binding to tubulin. EMBO J 2000;19:213–222.

    PubMed  CAS  Google Scholar 

  134. Cassimeris L. The oncoprotein 18/stathmin family of microtubule destabilizers. Curr Opin Cell Biol 2002;14:18–24.

    PubMed  CAS  Google Scholar 

  135. Larsson N, Marklund U, Gradin HM, Brattsand G, Gullberg M. Control of microtubule dynamics by oncoprotein 18: dissection of the regulatory role of multisite phosphorylation during mitosis. Mol Cell Biol 1997; 17:5530–5539.

    PubMed  CAS  Google Scholar 

  136. Gigant B, Curmi PA, Martin-Barbey C, et al. The 4 Å X-ray structure of a tubulin:stathmin-like domain complex. Cell 2000;102:809–816.

    PubMed  CAS  Google Scholar 

  137. Steinmetz MO, Kammerer RA, Jahnke W, Goldie KN, Lustig A, van Oostrum J. Opl8/stathmin caps a kinked protofilament-like tubulin tetramer. EMBO J 2000; 19:572–580.

    PubMed  CAS  Google Scholar 

  138. Nunes M, Kaplan J, Loganzo F, Zask A, Ayral-Kaloustial S, Greenberger LM. Two photoaffinity analogs of HTI-286, a synthetic analog of hemiasterlin, interact with alpha-tubulin. Eur J Cancer 2002;38:S119.

    Google Scholar 

  139. Poruchynsky MS, Kim JH, Nogales E, Loganzo F, Greenberger LM. Tumor cells resistant to a microtubule-depolymerizing hemiasterlin analog, HTI-286, have mutations in α-or β-tubulin and increased microtubule stability. Proc Am Assoc Cancer Res 2003;44:2nd ed., 535.

    Google Scholar 

  140. Borst P, Elferink RO. Mammalian ABC transporters in health and disease. Annu Rev Biochem 2002;71:537–592.

    PubMed  CAS  Google Scholar 

  141. Ratain MJ, Undevia S, Janisch L, et al. Phase I and pharmacological study of HTI-286, a novel antimicrotubule agent: correlation of neutropenia with time above theshold plasma concentration. Proc Am Soc Clin Oncol 2003; abstract 516.

    Google Scholar 

  142. Culvenor CC, Beck AB, Clarke M, et al. Isolation of toxic metabolites of Phomopsis leptostromiformis which produce lupinosis. Aust J Biol Sci 1977;30:269–278.

    PubMed  CAS  Google Scholar 

  143. Jago MV, Peterson JE, Payne AL, Campbell DG. Lupinosis: response of sheep to different doses of phomopsin. Aust J Exp Bio Med Sci 1982;60:239–251.

    CAS  Google Scholar 

  144. Tonsing EM, Steyn PS, Osborn M, Weber K. Phomopsin A, the causitive agent of lupinosis, interacts with microtubules in vivo and in vitro. Eur J Cell Biol 1984;35:156–164.

    Google Scholar 

  145. Mackay MF, Van Donkelaar A, Culvenor CJ. The X-ray structure of phomopsin A, a hexapeptide mycotoxin. J Chem Soc Chem Commun 1986;1219–1221.

    Google Scholar 

  146. Koiso Y, Li Y, Iwasaki S, et al. Ustiloxins, antimitotic cyclic peptides from false smut balls on rice panicles caused by Ustilaginoidea virens. J Antibiot (Tokyo) 1994;47:765–773.

    CAS  Google Scholar 

  147. Koiso Y, Morisaki N, Yamashita Y, et al. Isolation and structure of an antimitotic cyclic peptide, ustiloxin F: chemical interrelation with a homologous peptide, ustiloxin B. J Antibiot (Tokyo) 1998;51:418–422.

    CAS  Google Scholar 

  148. Nakamura K, Izumiyama N, Ohtsubo K, et al. Lupinosis-like lesions in mice caused by ustiloxin, produced by Ustilaginoieda virens: a morphological study. Nat Toxins 1994;2:22–28.

    PubMed  CAS  Google Scholar 

  149. Tanaka H, Sawayama AM, Wandless TJ. Enantioselective total synthesis of ustiloxin D. J Am Chem Soc 2003;125:6864–6865.

    PubMed  CAS  Google Scholar 

  150. Cao B, Park H, Joullie MM. Total synthesis of ustiloxin D. J Am Chem Soc 2002; 124:520–521.

    PubMed  CAS  Google Scholar 

  151. Li Y, Koiso Y, Kobayashi H, Hashimoto Y, Iwasaki S. Ustiloxins, new antimitotic cyclic peptides: interaction with porcine brain tubulin. Biochem Pharmacol 1995;49:1367–1372.

    PubMed  CAS  Google Scholar 

  152. Lacey E, Edgar JA, Culvenor CC. Interaction of phomopsin A and related compounds with purified sheep brain tubulin. Biochem Pharmacol 1987;36:2133–2138.

    PubMed  CAS  Google Scholar 

  153. Lindquist N, Fenical W, van Duyne GD, Clardy J. Isolation and structure determination of diazonamides A and B, unusual cytotoxic metabolites from the marine ascidian Diazona chinesis. J Am Chem Soc 1991;113:2303–2304.

    CAS  Google Scholar 

  154. Li J, Burgett WG, Esser L, Amezcua C, Harran PG. Synthesis of nominal diazoniamides-part 2: on the true structure and origin of natural isolates. Angew Chem Int Ed 2001;40:4765–4770.

    CAS  Google Scholar 

  155. Li J, Jeong S, Esser L, Harran PG. Total synthesis of nominal diazonamides — part 1: convergent preparation of the structure proposed for (−) — diazonamide A. Agnew Chem Int Ed 2001;40: 4765–4770.

    CAS  Google Scholar 

  156. Nicolaou KC, Bella M, Chen DY, Huang X, Ling T, Snyder SA. Total synthesis of diazonamide A. Angew Chem Int Ed 2002;41:3495–3499.

    CAS  Google Scholar 

  157. Nicolaou KC, Bheema Rao P, Hao J, et al. The Second Total Synthesis of Diazonamide A. Angew Chem Int Ed 2003;42: 1753–1758.

    CAS  Google Scholar 

  158. Ritter T, Carreira EM. The diazonamides: the plot thickens. Angew Chem Int Ed 2002;41:2489–2495.

    CAS  Google Scholar 

  159. Leung TW, Williams DH, Barna JCJ, Foti S, Oelrichs PB. Structural studies on the peptide morisin from Laportea moroides. Tetrahedron 1986;42:3333–3348.

    CAS  Google Scholar 

  160. Morita H, Shimbo K, Shigemori H, Kobayashi J. Antimitotic activity of moroidin, a bicyclic peptide from the seeds of Celosia argentea. Bio Med Chem Lett 2000; 10:469–471.

    CAS  Google Scholar 

  161. Kobayashi J, Suzuki H, Shimbo K, Takeya K, Morita H. Celogentins A-C, new antimitotic bicyclic peptides from the seeds of Celosia argentea. J Org Chem 2001;66:6626–6633.

    PubMed  CAS  Google Scholar 

  162. Sasse F, Steinmetz H, Heil J, Hofle G, Reichenbach H. Tubulysins, new cytostatic peptides from myxobacteria acting on microtubuli. Production, isolation, physico-chemical and biological properties. J Antibiot (Tokyo) 2000;53:879–885.

    CAS  Google Scholar 

  163. Chaudhary PM, Roninson IB. Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell 1991;66:85–94.

    PubMed  CAS  Google Scholar 

  164. Kerbel RS, Klement G, Pritchard KI, Kamen B. Continuous low-dose anti-angiogenic/ metronomic chemotherapy: from the research laboratory into the oncology clinic. Ann Oncol 2002;13:12–15.

    PubMed  CAS  Google Scholar 

  165. Dubowchik GM, Walker MA. Receptor-mediated and enzyme-dependent targeting of cytotoxic anti-cancer drugs. Pharmacol Ther 1999;83:67–123.

    PubMed  CAS  Google Scholar 

  166. Shih C, Teicher BA. Cryptophycins: a novel class of potent antimitotic antitumor depsipeptides. Curr Pharm Des 2001;7:1259–1276.

    PubMed  CAS  Google Scholar 

  167. Hoffman MA, Blessing JA, Lentz SS, Gynecologic Oncology Group S. A phase II trial of dolastatin-10 in recurrent platinum-sensitive ovarian carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol 2003;89:95–98.

    PubMed  CAS  Google Scholar 

  168. Saad ED, Kraut EH, Hoff PM, et al. Phase II study of dolastatin-10 as first-line treatment for advanced colorectal cancer. Am J Clin Oncol 2002;25:451–453.

    PubMed  Google Scholar 

  169. Krug LM, Miller VA, Kalemkerian GP, et al. Phase II study of dolastatin-10 in patients with advanced non-small-cell lung cancer. Ann Oncol 2000;11:227–228.

    PubMed  CAS  Google Scholar 

  170. Margolin K, Longmate J, Synold TW, et al. Dolastatin-10 in metastatic melanoma: a phase II and pharmokinetic trial of the California Cancer Consortium. Invest N Drugs 2001;19:335–340.

    CAS  Google Scholar 

  171. Vaishampayan U, Glode M, Du W, et al. Phase II study of dolastatin-10 in patients with hormone-refractory metastatic prostate adenocarcinoma. Clin Cancer Res 2000;6:4205–4208.

    PubMed  CAS  Google Scholar 

  172. Sampath D, Discafani CM, Loganzo F, et al. MAC-321, A novel taxane with greater efficacy than paclitaxel and docetaxel in vitro and in vivo. Mol Cancer Ther 2003;2:873–994.

    PubMed  CAS  Google Scholar 

  173. Ray A, Okauneva T, Manna T, et al. Mechanism of action of the microtubule-targeted antimitotic depsipeptide tasidotin (formerly ILX651) and is major metabolite tasidotin C-carboxylate. Cancer Res 2007;67:3767–3776.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, Totowa, NJ

About this chapter

Cite this chapter

Greenberger, L.M., Loganzo, F. (2008). Destabilizing Agents. In: Fojo, T. (eds) The Role of Microtubules in Cell Biology, Neurobiology, and Oncology. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-336-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-336-3_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-294-0

  • Online ISBN: 978-1-59745-336-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics