Skip to main content

Molecular Markers for Predicting Prognosis of Renal Cell Carcinoma

  • Chapter
Renal Cell Carcinoma

Abstract

Metastatic or recurrent renal cell carcinoma (RCC) carries a poor prognosis and long-term survival is rare. However, many small RCCs that are incidentally discovered have an indolent course even without treatment. The variability in clinical outcome is a reflection of the underlying tumor biology. Currently, clinical variables such as tumor stage and histological grade are widely accepted surrogates for tumor-specific cellular and molecular processes. Ongoing advances in genomic and proteomic technologies have produced an expanding list of molecular markers for predicting prognosis. Expression array studies have produced large numbers of candidate prognostic markers. Many of these markers have been validated in large groups of RCC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2007. CA Cancer J Clin 2007; 57: 43–66.

    Article  PubMed  Google Scholar 

  2. Levy DA, Slaton JW, Swanson DA, Dinney CP. Stage specific guidelines for surveillance after radical nephrectomy for local renal cell carcinoma. J Urol 1998; 159: 1163–7.

    Article  PubMed  CAS  Google Scholar 

  3. Pantuck AJ, Zisman A, Belldegrun AS. The changing natural history of renal cell carcinoma. J Urol 2001; 166: 1611–23.

    Article  PubMed  CAS  Google Scholar 

  4. Figlin RA. Renal cell carcinoma: management of advanced disease. J Urol 1999; 161: 381–6; discussion 6–7.

    Article  PubMed  CAS  Google Scholar 

  5. Young AN, Amin MB, Moreno CS, et al. Expression profiling of renal epithelial neoplasms: a method for tumor classification and discovery of diagnostic molecular markers. Am J Pathol 2001; 158: 1639–51.

    Article  PubMed  CAS  Google Scholar 

  6. Young AN, de Oliveira Salles PG, Lim SD, et al. Beta defensin-1, parvalbumin, and vimentin: a panel of diagnostic immunohistochemical markers for renal tumors derived from gene expression profiling studies using cDNA microarrays. Am J Surg Pathol 2003; 27: 199–205.

    Article  PubMed  Google Scholar 

  7. Zhou M, Roma A, Magi-Galluzzi C. The usefulness of immunohistochemical markers in the differential diagnosis of renal neoplasms. Clin Lab Med 2005; 25: 247–57.

    Article  PubMed  Google Scholar 

  8. Takahashi M, Rhodes DR, Furge KA, et al. Gene expression profiling of clear cell renal cell carcinoma: gene identification and prognostic classification. Proc Natl Acad Sci U S A 2001; 98: 9754–9.

    Article  PubMed  CAS  Google Scholar 

  9. Vasselli JR, Shih JH, Iyengar SR, et al. Predicting survival in patients with metastatic kidney cancer by gene-expression profiling in the primary tumor. Proc Natl Acad Sci U S A 2003; 100: 6958–63.

    Article  PubMed  CAS  Google Scholar 

  10. Sultmann H, von Heydebreck A, Huber W, et al. Gene expression in kidney cancer is associated with cytogenetic abnormalities, metastasis formation, and patient survival. Clin Cancer Res 2005; 11: 646–55.

    PubMed  Google Scholar 

  11. Kosari F, Parker AS, Kube DM, et al. Clear cell renal cell carcinoma: gene expression analyses identify a potential signature for tumor aggressiveness. Clin Cancer Res 2005; 11: 5128–39.

    Article  PubMed  CAS  Google Scholar 

  12. Jones J, Otu H, Spentzos D, et al. Gene signatures of progression and metastasis in renal cell cancer. Clin Cancer Res 2005; 11: 5730–9.

    Article  PubMed  CAS  Google Scholar 

  13. Zhao H, Ljungberg B, Grankvist K, et al. Gene expression profiling predicts survival in conventional renal cell carcinoma. PLoS Med 2006; 3: e13.

    Article  PubMed  CAS  Google Scholar 

  14. Ramaswamy S, Ross KN, Lander ES, Golub TR. A molecular signature of metastasis in primary solid tumors. Nat Genet 2003; 33: 49–54.

    Article  PubMed  CAS  Google Scholar 

  15. Kallio JP, Hirvikoski P, Helin H, et al. Renal cell carcinoma MIB-1, Bax and Bcl-2 expression and prognosis. J Urol 2004; 172: 2158–61.

    Article  PubMed  CAS  Google Scholar 

  16. Joo HJ, Oh DK, Kim YS, Lee KB, Kim SJ. Increased expression of caveolin-1 and microvessel density correlates with metastasis and poor prognosis in clear cell renal cell carcinoma. BJU Int 2004; 93: 291–6.

    Article  PubMed  CAS  Google Scholar 

  17. Itoi T, Yamana K, Bilim V, Takahashi K, Tomita F. Impact of frequent Bcl-2 expression on better prognosis in renal cell carcinoma patients. Br J Cancer 2004; 90: 200–5.

    Article  PubMed  CAS  Google Scholar 

  18. Campbell L, Gumbleton M, Griffiths DF. Caveolin-1 overexpression predicts poor disease-free survival of patients with clinically confined renal cell carcinoma. Br J Cancer 2003; 89: 1909–13.

    Article  PubMed  CAS  Google Scholar 

  19. Langner C, von Wasielewski R, Ratschek M, Rehak P, Zigeuner R. Biological significance of p27 and Skp2 expression in renal cell carcinoma. A systematic analysis of primary and metastatic tumour tissues using a tissue microarray technique. Virchows Arch 2004; 445: 631–6.

    CAS  Google Scholar 

  20. Parker AS, Kosari F, Lohse CM, et al. High expression levels of survivin protein independently predict a poor outcome for patients who undergo surgery for clear cell renal cell carcinoma. Cancer 2006; 107: 37–45.

    Article  PubMed  CAS  Google Scholar 

  21. Migita T, Oda Y, Naito S, Tsuneyoshi M. Low expression of p27(Kip1) is associated with tumor size and poor prognosis in patients with renal cell carcinoma. Cancer 2002; 94: 973–9.

    Article  PubMed  CAS  Google Scholar 

  22. Kurahashi T, Muramaki M, Yamanaka K, Hara I, Miyake H. Expression of the secreted form of clusterin protein in renal cell carcinoma as a predictor of disease extension. BJU Int 2005; 96: 895–9.

    Article  PubMed  CAS  Google Scholar 

  23. Haitel A, Wiener HG, Neudert B, Marberger M, Susani M. Expression of the cell cycle proteins p21, p27, and pRb in clear cell renal cell carcinoma and their prognostic significance. Urology 2001; 58: 477–81.

    Article  PubMed  CAS  Google Scholar 

  24. Merseburger AS, Hennenlotter J, Simon P, et al. Cathepsin D expression in renal cell cancer-clinical implications. Eur Urol 2005; 48: 519–26.

    Article  PubMed  CAS  Google Scholar 

  25. Merseburger AS, Hennenlotter J, Simon P, et al. Membranous expression and prognostic implications of epidermal growth factor receptor protein in human renal cell cancer. Anticancer Res 2005; 25: 1901–7.

    PubMed  CAS  Google Scholar 

  26. Mizutani Y, Nakanishi H, Yamamoto K, et al. Downregulation of Smac/DIABLO expression in renal cell carcinoma and its prognostic significance. J Clin Oncol 2005; 23: 448–54.

    Article  PubMed  CAS  Google Scholar 

  27. Dudderidge TJ, Stoeber K, Loddo M, et al. Mcm2, Geminin, and KI67 define proliferative state and are prognostic markers in renal cell carcinoma. Clin Cancer Res 2005; 11: 2510–7.

    Article  PubMed  CAS  Google Scholar 

  28. Parker A, Cheville JC, Lohse C, Cerhan JR, Blute ML. Expression of insulin-like growth factor I receptor and survival in patients with clear cell renal cell carcinoma. J Urol 2003; 170: 420–4.

    Article  PubMed  CAS  Google Scholar 

  29. Yildiz E, Gokce G, Kilicarslan H, et al. Prognostic value of the expression of Ki-67, CD44 and vascular endothelial growth factor, and microvessel invasion, in renal cell carcinoma. BJU Int 2004; 93: 1087–93.

    Article  PubMed  CAS  Google Scholar 

  30. Jacobsen J, Grankvist K, Rasmuson T, et al. Expression of vascular endothelial growth factor protein in human renal cell carcinoma. BJU Int 2004; 93: 297–302.

    Article  PubMed  CAS  Google Scholar 

  31. Bui MH, Visapaa H, Seligson D, et al. Prognostic value of carbonic anhydrase IX and KI67 as predictors of survival for renal clear cell carcinoma. J Urol 2004; 171: 2461–6.

    Article  PubMed  Google Scholar 

  32. Rioux-Leclercq N, Delcros JG, Bansard J Y, et al. Immunohistochemical analysis of tumor polyamines discriminates high-risk patients undergoing nephrectomy for renal cell carcinoma. Hum Pathol 2004; 35: 1279–84.

    Article  PubMed  CAS  Google Scholar 

  33. Kallakury B V, Karikehalli S, Haholu A, et al. Increased expression of matrix metalloproteinases 2 and 9 and tissue inhibitors of metalloproteinases 1 and 2 correlate with poor prognostic variables in renal cell carcinoma. Clin Cancer Res 2001; 7: 3113–9.

    PubMed  CAS  Google Scholar 

  34. Miyata Y, Koga S, Kanda S, et al. Expression of cyclooxygenase-2 in renal cell carcinoma: correlation with tumor cell proliferation, apoptosis, angiogenesis, expression of matrix metal-loproteinase-2, and survival. Clin Cancer Res 2003; 9: 1741–9.

    PubMed  CAS  Google Scholar 

  35. Miyata Y, Iwata T, Ohba K, et al. Expression of matrix metalloproteinase-7 on cancer cells and tissue endothelial cells in renal cell carcinoma: prognostic implications and clinical significance for invasion and metastasis. Clin Cancer Res 2006; 12: 6998–7003.

    Article  PubMed  CAS  Google Scholar 

  36. Aaltomaa S, Lipponen P, Ala-Opas M, et al. Expression of cyclins A and D and p21(waf1/ cip1) proteins in renal cell cancer and their relation to clinicopathological variables and patient survival. Br J Cancer 1999; 80: 2001–7.

    Article  PubMed  CAS  Google Scholar 

  37. Moch H, Sauter G, Gasser TC, et al. p53 protein expression but not mdm-2 protein expression is associated with rapid tumor cell proliferation and prognosis in renal cell carcinoma. Urol Res 1997; 25 Suppl 1: S25–30.

    Article  PubMed  CAS  Google Scholar 

  38. Ohba K, Miyata Y, Kanda S, et al. Expression of urokinase-type plasminogen activator, urokinase-type plasminogen activator receptor and plasminogen activator inhibitors in patients with renal cell carcinoma: correlation with tumor associated macrophage and prognosis. J Urol 2005; 174: 461–5.

    Article  PubMed  Google Scholar 

  39. Tannapfel A, Hahn HA, Katalinic A, et al. Incidence of apoptosis, cell proliferation and P53 expression in renal cell carcinomas. Anticancer Res 1997; 17: 1155–62.

    PubMed  CAS  Google Scholar 

  40. Nakagawa Y, Tsumatani K, Kurumatani N, et al. Prognostic value of nm23 protein expression in renal cell carcinomas. Oncology 1998; 55: 370–6.

    Article  PubMed  CAS  Google Scholar 

  41. Morell-Quadreny L, Clar-Blanch F, Fenollosa-Enterna B, et al. Proliferating cell nuclear antigen (PCNA) as a prognostic factor in renal cell carcinoma. Anticancer Res 1998; 18: 677–82.

    PubMed  CAS  Google Scholar 

  42. Kim HL, Seligson D, Liu X, et al. Using protein expressions to predict survival in clear cell renal carcinoma. Clin Cancer Res 2004; 10: 5464–71.

    Article  PubMed  CAS  Google Scholar 

  43. Soini Y, Kallio JP, Hirvikoski P, et al. Oxidative/nitrosative stress and peroxiredoxin 2 are associated with grade and prognosis of human renal carcinoma. Apmis 2006; 114: 329–37.

    Article  PubMed  CAS  Google Scholar 

  44. Bui MH, Seligson D, Han KR, et al. Carbonic anhydrase IX is an independent predictor of survival in advanced renal clear cell carcinoma: implications for prognosis and therapy. Clin Cancer Res 2003; 9: 802–11.

    PubMed  CAS  Google Scholar 

  45. Sandlund J, Hedberg Y, Bergh A, et al. Endoglin (CD105) expression in human renal cell carcinoma. BJU Int 2006; 97: 706–10.

    Article  PubMed  CAS  Google Scholar 

  46. Lidgren A, Hedberg Y, Grankvist K, et al. Hypoxia-inducible factor 1alpha expression in renal cell carcinoma analyzed by tissue microarray. Eur Urol 2006; 50: 1272–7.

    Article  PubMed  CAS  Google Scholar 

  47. Lidgren A, Hedberg Y, Grankvist K, et al. The expression of hypoxia-inducible factor 1alpha is a favorable independent prognostic factor in renal cell carcinoma. Clin Cancer Res 2005; 11: 1129–35.

    PubMed  CAS  Google Scholar 

  48. Kim JH, Jung CW, Cho YH, et al. Somatic VHL alteration and its impact on prognosis in patients with clear cell renal cell carcinoma. Oncol Rep 2005; 13: 859–64.

    PubMed  CAS  Google Scholar 

  49. Shvarts O, Seligson D, Lam J, et al. p53 is an independent predictor of tumor recurrence and progression after nephrectomy in patients with localized renal cell carcinoma. J Urol 2005; 173: 725–8.

    Article  PubMed  CAS  Google Scholar 

  50. Zigeuner R, Ratschek M, Rehak P, Schips L, Langner C. Value of p53 as a prognostic marker in histologic subtypes of renal cell carcinoma: a systematic analysis of primary and metastatic tumor tissue. Urology 2004; 63: 651–5.

    Article  PubMed  Google Scholar 

  51. Kondo T, Nakazawa H, Ito F, et al. Favorable prognosis of renal cell carcinoma with increased expression of chemokines associated with a Th1-type immune response. Cancer Sci 2006; 97: 780–6.

    Article  PubMed  CAS  Google Scholar 

  52. Kruger S, Thorns C, Stocker W, et al. Prognostic value of MCM2 immunoreactivity in stage T1 transitional cell carcinoma of the bladder. Eur Urol 2003; 43: 138–45.

    Article  PubMed  CAS  Google Scholar 

  53. Thompson RH, Kuntz SM, Leibovich BC, et al. Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow-up. Cancer Res 2006; 66: 3381–5.

    Article  PubMed  CAS  Google Scholar 

  54. Rioux-Leclercq N, Turlin B, Bansard J, et al. Value of immunohistochemical Ki-67 and p53 determinations as predictive factors of outcome in renal cell carcinoma. Urology 2000; 55: 501–5.

    Article  PubMed  CAS  Google Scholar 

  55. Shiina H, Igawa M, Urakami S, et al. Clinical significance of immunohistochemically detectable p53 protein in renal cell carcinoma. Eur Urol 1997; 31: 73–80.

    PubMed  CAS  Google Scholar 

  56. Matusan K, Dordevic G, Stipic D, Mozetic V, Lucin K. Osteopontin expression correlates with prognostic variables and survival in clear cell renal cell carcinoma. J Surg Oncol 2006; 94: 325–31.

    Article  PubMed  CAS  Google Scholar 

  57. Takenawa J, Kaneko Y, Kishishita M, et al. Transcript levels of aquaporin 1 and carbonic anhydrase IV as predictive indicators for prognosis of renal cell carcinoma patients after nephrectomy. Int J Cancer 1998; 79: 1–7.

    Article  PubMed  CAS  Google Scholar 

  58. Krambeck AE, Thompson RH, Dong H, et al. B7-H4 expression in renal cell carcinoma and tumor vasculature: associations with cancer progression and survival. Proc Natl Acad Sci U S A 2006; 103: 10391–6.

    Article  PubMed  CAS  Google Scholar 

  59. Yao M, Tabuchi H, Nagashima Y, et al. Gene expression analysis of renal carcinoma: adipose differentiation-related protein as a potential diagnostic and prognostic biomarker for clear-cell renal carcinoma. J Pathol 2005; 205: 377–87.

    Article  PubMed  CAS  Google Scholar 

  60. Morita T, Matsuzaki A, Tokue A. Quantitative analysis of thymidine phosphorylase and dihydropyrimidine dehydrogenase in renal cell carcinoma. Oncology 2003; 65: 125–31.

    Article  PubMed  CAS  Google Scholar 

  61. Paul R, Necknig U, Busch R, et al. Cadherin-6: a new prognostic marker for renal cell carcinoma. J Urol 2004; 171: 97–101.

    Article  PubMed  CAS  Google Scholar 

  62. Ogushi T, Takahashi S, Takeuchi T, et al. Estrogen receptor-binding fragment-associated antigen 9 is a tumor-promoting and prognostic factor for renal cell carcinoma. Cancer Res 2005; 65: 3700–6.

    Article  PubMed  CAS  Google Scholar 

  63. Lucin K, Matusan K, Dordevic G, Stipic D. Prognostic significance of CD44 molecule in renal cell carcinoma. Croat Med J 2004; 45: 703–8.

    PubMed  Google Scholar 

  64. Rioux-Leclercq N, Epstein JI, Bansard JY, et al. Clinical significance of cell proliferation, microvessel density, and CD44 adhesion molecule expression in renal cell carcinoma. Hum Pathol 2001; 32: 1209–15.

    Article  PubMed  CAS  Google Scholar 

  65. Ramp U, Caliskan E, Ebert T, et al. FHIT expression in clear cell renal carcinomas: versatility of protein levels and correlation with survival. J Pathol 2002; 196: 430–6.

    Article  PubMed  CAS  Google Scholar 

  66. Daniel L, Lechevallier E, Giorgi R, et al. CD44s and CD44v6 expression in localized T1-T2 conventional renal cell carcinomas. J Pathol 2001; 193: 345–9.

    Article  PubMed  CAS  Google Scholar 

  67. Jiang Z, Chu PG, Woda BA, et al. Analysis of RNA-binding protein IMP3 to predict metastasis and prognosis of renal-cell carcinoma: a retrospective study. Lancet Oncol 2006; 7: 556–64.

    Article  PubMed  CAS  Google Scholar 

  68. Li N, Tsuji M, Kanda K, et al. Analysis of CD44 isoform v10 expression and its prognostic value in renal cell carcinoma. BJU Int 2000; 85: 514–8.

    Article  PubMed  CAS  Google Scholar 

  69. Petraki CD, Gregorakis AK, Vaslamatzis MM, et al. Prognostic implications of the immunohistochemical expression of human kallikreins 5, 6, 10 and 11 in renal cell carcinoma. Tumour Biol 2006; 27: 1–7.

    Article  PubMed  CAS  Google Scholar 

  70. Aaltomaa S, Lipponen P, Karja V, et al. The expression and prognostic value of alpha-, beta- and gamma-catenins in renal cell carcinoma. Anticancer Res 2004; 24: 2407–13.

    PubMed  Google Scholar 

  71. Langner C, Ratschek M, Rehak P, Schips L, Zigeuner R. CD10 is a diagnostic and prognostic marker in renal malignancies. Histopathology 2004; 45: 460–7.

    Article  PubMed  CAS  Google Scholar 

  72. Shimazui T, Bringuier PP, van Berkel H, et al. Decreased expression of alpha-catenin is associated with poor prognosis of patients with localized renal cell carcinoma. Int J Cancer 1997; 74: 523–8.

    Article  PubMed  CAS  Google Scholar 

  73. Horstmann M, Merseburger AS, von der Heyde E, et al. Correlation of bFGF expression in renal cell cancer with clinical and histopathological features by tissue microarray analysis and measurement of serum levels. J Cancer Res Clin Oncol 2005; 131: 715–22.

    Article  PubMed  CAS  Google Scholar 

  74. Yao M, Yoshida M, Kishida T, et al. VHL tumor suppressor gene alterations associated with good prognosis in sporadic clear-cell renal carcinoma. J Natl Cancer Inst 2002; 94: 1569–75.

    PubMed  CAS  Google Scholar 

  75. Bamias A, Chorti M, Deliveliotis C, et al. Prognostic significance of CA 125, CD44, and epithelial membrane antigen in renal cell carcinoma. Urology 2003; 62: 368–73.

    Article  PubMed  CAS  Google Scholar 

  76. Kraus S, Abel PD, Nachtmann C, et al. MUC1 mucin and trefoil factor 1 protein expression in renal cell carcinoma: correlation with prognosis. Hum Pathol 2002; 33: 60–7.

    Article  PubMed  CAS  Google Scholar 

  77. Allory Y, Matsuoka Y, Bazille C, et al. The L1 cell adhesion molecule is induced in renal cancer cells and correlates with metastasis in clear cell carcinomas. Clin Cancer Res 2005; 11: 1190–7.

    PubMed  CAS  Google Scholar 

  78. Went P, Dirnhofer S, Salvisberg T, et al. Expression of epithelial cell adhesion molecule (EpCam) in renal epithelial tumors. Am J Surg Pathol 2005; 29: 83–8.

    Article  PubMed  Google Scholar 

  79. Seligson DB, Pantuck AJ, Liu X, et al. Epithelial cell adhesion molecule (KSA) expression: pathobiology and its role as an independent predictor of survival in renal cell carcinoma. Clin Cancer Res 2004; 10: 2659–69.

    Article  PubMed  CAS  Google Scholar 

  80. Shioi K, Komiya A, Hattori K, et al. Vascular cell adhesion molecule 1 predicts cancer-free survival in clear cell renal carcinoma patients. Clin Cancer Res 2006; 12: 7339–46.

    Article  PubMed  CAS  Google Scholar 

  81. Wain HM, Lush M, Ducluzeau F, Povey S. Genew: the human gene nomenclature database. Nucleic Acids Res 2002; 30: 169–71 (data retrieved January 2007).

    Article  PubMed  CAS  Google Scholar 

  82. Gerdes J, Lemke H, Baisch H, et al. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol 1984; 133: 1710–5.

    PubMed  CAS  Google Scholar 

  83. Zhang X, Takenaka I. Cell proliferation and apoptosis with BCL-2 expression in renal cell carcinoma. Urology 2000; 56: 510–5.

    Article  PubMed  CAS  Google Scholar 

  84. Onda H, Yasuda M, Serizawa A, Osamura RY, Kawamura N. Clinical outcome in localized renal cell carcinomas related to immunoexpression of proliferating cell nuclear antigen, Ki-67 antigen, and tumor size. Oncol Rep 1999; 6: 1039–43.

    PubMed  CAS  Google Scholar 

  85. Cheville JC, Zincke H, Lohse CM, et al. pT1 clear cell renal cell carcinoma: a study of the association between MIB-1 proliferative activity and pathologic features and cancer specific survival. Cancer 2002; 94: 2180–4.

    Article  PubMed  Google Scholar 

  86. Gelb AB, Sudilovsky D, Wu CD, Weiss LM, Medeiros LJ. Appraisal of intratumoral microvessel density, MIB-1 score, DNA content, and p53 protein expression as prognostic indicators in patients with locally confined renal cell carcinoma. Cancer 1997; 80: 1768–75.

    Article  PubMed  CAS  Google Scholar 

  87. Dimitrova DS, Prokhorova TA, Blow JJ, Todorov IT, Gilbert DM. Mammalian nuclei become licensed for DNA replication during late telophase. J Cell Sci 2002; 115: 51–9.

    Article  PubMed  CAS  Google Scholar 

  88. Blow JJ, Hodgson B. Replication licensing — defining the proliferative state? Trends Cell Biol 2002; 12: 72–8.

    Article  PubMed  CAS  Google Scholar 

  89. Mendez J, Stillman B. Chromatin association of human origin recognition complex, cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of prereplication complexes in late mitosis. Mol Cell Biol 2000; 20: 8602–12.

    Article  PubMed  CAS  Google Scholar 

  90. Wharton SB, Hibberd S, Eward KL, et al. DNA replication licensing and cell cycle kinetics of oligodendroglial tumours. Br J Cancer 2004; 91: 262–9.

    PubMed  CAS  Google Scholar 

  91. Stoeber K, Halsall I, Freeman A, et al. Immunoassay for urothelial cancers that detects DNA replication protein Mcm5 in urine. Lancet 1999; 354: 1524–5.

    Article  PubMed  CAS  Google Scholar 

  92. Stoeber K, Swinn R, Prevost AT, et al. Diagnosis of genito-urinary tract cancer by detection of minichromosome maintenance 5 protein in urine sediments. J Natl Cancer Inst 2002; 94: 1071–9.

    PubMed  CAS  Google Scholar 

  93. Williams GH, Romanowski P, Morris L, et al. Improved cervical smear assessment using antibodies against proteins that regulate DNA replication. Proc Natl Acad Sci U S A 1998; 95: 14932–7.

    Article  PubMed  CAS  Google Scholar 

  94. Meng MV, Grossfeld GD, Williams GH, et al. Minichromosome maintenance protein 2 expression in prostate: characterization and association with outcome after therapy for cancer. Clin Cancer Res 2001; 7: 2712–8.

    PubMed  CAS  Google Scholar 

  95. Wharton SB, Chan KK, Anderson JR, Stoeber K, Williams GH. Replicative Mcm2 protein as a novel proliferation marker in oligodendrogliomas and its relationship to Ki67 labelling index, histological grade and prognosis. Neuropathol Appl Neurobiol 2001; 27: 305–13.

    Article  PubMed  CAS  Google Scholar 

  96. Stoeber K, Tlsty TD, Happerfield L, et al. DNA replication licensing and human cell proliferation. J Cell Sci 2001; 114: 2027–41.

    PubMed  CAS  Google Scholar 

  97. Tabor CW, Tabor H. Polyamines. Annu Rev Biochem 1984; 53: 749–90.

    Article  PubMed  CAS  Google Scholar 

  98. Pegg AE. Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res 1988; 48: 759–74.

    PubMed  CAS  Google Scholar 

  99. Marton LJ, Pegg AE. Polyamines as targets for therapeutic intervention. Annu Rev Pharmacol Toxicol 1995; 35: 55–91.

    Article  PubMed  CAS  Google Scholar 

  100. Scalabrino G, Ferioli ME. Polyamines in mammalian tumors. Part I. Adv Cancer Res 1981; 35: 151–268.

    Article  PubMed  CAS  Google Scholar 

  101. Scalabrino G, Ferioli ME. Polyamines in mammalian tumors. Part II. Adv Cancer Res 1982; 36: 1–102.

    Article  PubMed  CAS  Google Scholar 

  102. Levine AJ, Momand J, Finlay CA. The p53 tumour suppressor gene. Nature 1991; 351: 453–6.

    Article  PubMed  CAS  Google Scholar 

  103. Greenblatt MS, Bennett WP, Hollstein M, Harris CC. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 1994; 54: 4855–78.

    PubMed  CAS  Google Scholar 

  104. Harris CC. Structure and function of the p53 tumor suppressor gene: clues for rational cancer therapeutic strategies. J Natl Cancer Inst 1996; 88: 1442–55.

    Article  PubMed  CAS  Google Scholar 

  105. Uchida T, Gao JP, Wang C, et al. Clinical significance of p53, mdm2, and bcl-2 proteins in renal cell carcinoma. Urology 2002; 59: 615–20.

    Article  PubMed  Google Scholar 

  106. Uhlman DL, Nguyen PL, Manivel JC, et al. Association of immunohistochemical staining for p53 with metastatic progression and poor survival in patients with renal cell carcinoma. J Natl Cancer Inst 1994; 86: 1470–5.

    Article  PubMed  CAS  Google Scholar 

  107. Haitel A, Wiener HG, Baethge U, Marberger M, Susani M. mdm2 expression as a prognostic indicator in clear cell renal cell carcinoma: comparison with p53 overexpression and clinico-pathological parameters. Clin Cancer Res 2000; 6: 1840–4.

    PubMed  CAS  Google Scholar 

  108. Hofmockel G, Wittmann A, Dammrich J, Bassukas ID. Expression of p53 and bcl-2 in primary locally confined renal cell carcinomas: no evidence for prognostic significance. Anticancer Res 1996; 16: 3807–11.

    PubMed  CAS  Google Scholar 

  109. Bot FJ, Godschalk JC, Krishnadath KK, van der Kwast TH, Bosman FT. Prognostic factors in renal-cell carcinoma: immunohistochemical detection of p53 protein versus clinico-pathological parameters. Int J Cancer 1994; 57: 634–7.

    Article  PubMed  CAS  Google Scholar 

  110. Lipponen P, Eskelinen M, Hietala K, Syrjanen K, Gambetta RA. Expression of proliferating cell nuclear antigen (PC10), p53 protein and c-erbB-2 in renal adenocarcinoma. Int J Cancer 1994; 57: 275–80.

    Article  PubMed  CAS  Google Scholar 

  111. Kim HL, Seligson D, Liu X, et al. Using tumor markers to predict the survival of patients with metastatic renal cell carcinoma. J Urol 2005; 173: 1496–501.

    Article  PubMed  CAS  Google Scholar 

  112. Lloyd RV, Erickson LA, Jin L, et al. p27kip1: a multifunctional cyclin-dependent kinase inhibitor with prognostic significance in human cancers. Am J Pathol 1999; 154: 313–23.

    Article  PubMed  CAS  Google Scholar 

  113. Hedberg Y, Davoodi E, Ljungberg B, Roos G, Landberg G. Cyclin E and p27 protein content in human renal cell carcinoma: clinical outcome and associations with cyclin D. Int J Cancer 2002; 102: 601–7.

    Article  PubMed  CAS  Google Scholar 

  114. Hedberg Y, Ljungberg B, Roos G, Landberg G. Expression of cyclin D1, D3, E, and p27 in human renal cell carcinoma analysed by tissue microarray. Br J Cancer 2003; 88: 1417–23.

    Article  PubMed  CAS  Google Scholar 

  115. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57–70.

    Article  PubMed  CAS  Google Scholar 

  116. Nolte C, Moos M, Schachner M. Immunolocalization of the neural cell adhesion molecule L1 in epithelia of rodents. Cell Tissue Res 1999; 298: 261–73.

    Article  PubMed  CAS  Google Scholar 

  117. Brummendorf T, Kenwrick S, Rathjen FG. Neural cell recognition molecule L1: from cell biology to human hereditary brain malformations. Curr Opin Neurobiol 1998; 8: 87–97.

    Article  PubMed  CAS  Google Scholar 

  118. Elias DJ, Kline LE, Robbins BA, et al. Monoclonal antibody KS1/4-methotrexate immu-noconjugate studies in non-small cell lung carcinoma. Am J Respir Crit Care Med 1994; 150: 1114–22.

    PubMed  CAS  Google Scholar 

  119. Pancook JD, Reisfeld RA, Varki N, et al. Expression and regulation of the neural cell adhesion molecule L1 on human cells of myelomonocytic and lymphoid origin. J Immunol 1997; 158: 4413–21.

    PubMed  CAS  Google Scholar 

  120. Kamiguchi H, Lemmon V. Neural cell adhesion molecule L1: signaling pathways and growth cone motility. J Neurosci Res 1997; 49: 1–8.

    Article  PubMed  CAS  Google Scholar 

  121. Brummendorf T, Lemmon V. Immunoglobulin superfamily receptors: cis-interactions, intracel lular adapters and alternative splicing regulate adhesion. Curr Opin Cell Biol 2001; 13: 611–8.

    Article  PubMed  CAS  Google Scholar 

  122. Fogel M, Gutwein P, Mechtersheimer S, et al. L1 expression as a predictor of progression and survival in patients with uterine and ovarian carcinomas. Lancet 2003; 362: 869–75.

    Article  PubMed  CAS  Google Scholar 

  123. Fogel M, Mechtersheimer S, Huszar M, et al. L1 adhesion molecule (CD 171) in development and progression of human malignant melanoma. Cancer Lett 2003; 189: 237–47.

    Article  PubMed  CAS  Google Scholar 

  124. Deichmann M, Kurzen H, Egner U, Altevogt P, Hartschuh W. Adhesion molecules CD171 (L1CAM) and CD24 are expressed by primary neuroendocrine carcinomas of the skin (Merkel cell carcinomas). J Cutan Pathol 2003; 30: 363–8.

    Article  PubMed  Google Scholar 

  125. Thies A, Schachner M, Moll I, et al. Overexpression of the cell adhesion molecule L1 is associated with metastasis in cutaneous malignant melanoma. Eur J Cancer 2002; 38: 1708–16.

    Article  PubMed  CAS  Google Scholar 

  126. Miyahara R, Tanaka F, Nakagawa T, et al. Expression of neural cell adhesion molecules (polysialylated form of neural cell adhesion molecule and L1-cell adhesion molecule) on resected small cell lung cancer specimens: in relation to proliferation state. J Surg Oncol 2001; 77: 49–54.

    Article  PubMed  CAS  Google Scholar 

  127. Islam R, Kristiansen LV, Romani S, Garcia-Alonso L, Hortsch M. Activation of EGF receptor kinase by L1-mediated homophilic cell interactions. Mol Biol Cell 2004; 15: 2003–12.

    Article  PubMed  CAS  Google Scholar 

  128. Balzar M, Briaire-de Bruijn IH, Rees-Bakker HA, et al. Epidermal growth factor-like repeats mediate lateral and reciprocal interactions of Ep-CAM molecules in homophilic adhesions. Mol Cell Biol 2001; 21: 2570–80.

    Article  PubMed  CAS  Google Scholar 

  129. Momburg F, Moldenhauer G, Hammerling GJ, Moller P. Immunohistochemical study of the expression of a Mr 34,000 human epithelium-specific surface glycoprotein in normal and malignant tissues. Cancer Res 1987; 47: 2883–91.

    PubMed  CAS  Google Scholar 

  130. Zorzos J, Zizi A, Bakiras A, et al. Expression of a cell surface antigen recognized by the monoclonal antibody AUA1 in bladder carcinoma: an immunohistochemical study. Eur Urol 1995; 28: 251–4.

    PubMed  CAS  Google Scholar 

  131. Tsubura A, Senzaki H, Sasaki M, Hilgers J, Morii S. Immunohistochemical demonstration of breast-derived and/or carcinoma-associated glycoproteins in normal skin appendages and their tumors. J Cutan Pathol 1992; 19: 73–9.

    Article  PubMed  CAS  Google Scholar 

  132. Litvinov SV, van Driel W, van Rhijn CM, et al. Expression of Ep-CAM in cervical squamous epithelia correlates with an increased proliferation and the disappearance of markers for terminal differentiation. Am J Pathol 1996; 148: 865–75.

    PubMed  CAS  Google Scholar 

  133. Bumol TF, Marder P, DeHerdt S V, Borowitz MJ, Apelgren LD. Characterization of the human tumor and normal tissue reactivity of the KS1/4 monoclonal antibody. Hybridoma 1988; 7: 407–15.

    Article  PubMed  CAS  Google Scholar 

  134. Edwards DP, Grzyb KT, Dressler LG, et al. Monoclonal antibody identification and char acterization of a Mr 43,000 membrane glycoprotein associated with human breast cancer. Cancer Res 1986; 46: 1306–17.

    PubMed  CAS  Google Scholar 

  135. Zhang S, Zhang HS, Cordon-Cardo C, Ragupathi G, Livingston PO. Selection of tumor antigens as targets for immune attack using immunohistochemistry: protein antigens. Clin Cancer Res 1998; 4: 2669–76.

    PubMed  CAS  Google Scholar 

  136. Shetye J, Frodin JE, Christensson B, et al. Immunohistochemical monitoring of metastatic colorectal carcinoma in patients treated with monoclonal antibodies (MAb 17–1A). Cancer Immunol Immunother 1988; 27: 154–62.

    Article  PubMed  CAS  Google Scholar 

  137. Shetye J, Christensson B, Rubio C, et al. The tumor-associated antigens BR55-2, GA73-3 and GICA 19-9 in normal and corresponding neoplastic human tissues, especially gastrointestinal tissues. Anticancer Res 1989; 9: 395–404.

    PubMed  CAS  Google Scholar 

  138. Ross AH, Herlyn D, Iliopoulos D, Koprowski H. Isolation and characterization of a carcinoma-associated antigen. Biochem Biophys Res Commun 1986; 135: 297–303.

    Article  PubMed  CAS  Google Scholar 

  139. Ragnhammar P, Fagerberg J, Frodin JE, et al. Effect of monoclonal antibody 17-1A and GM-CSF in patients with advanced colorectal carcinoma — long-lasting, complete remissions can be induced. Int J Cancer 1993; 53: 751–8.

    Article  PubMed  CAS  Google Scholar 

  140. Mellstedt H, Frodin JE, Masucci G, et al. The therapeutic use of monoclonal antibodies in colorectal carcinoma. Semin Oncol 1991; 18: 462–77.

    PubMed  CAS  Google Scholar 

  141. Weiner LM, Harvey E, Padavic-Shaller K, et al. Phase II multicenter evaluation of prolonged murine monoclonal antibody 17-1A therapy in pancreatic carcinoma. J Immunother 1993; 13: 110–6.

    Article  CAS  Google Scholar 

  142. Riethmuller G, Holz E, Schlimok G, et al. Monoclonal antibody therapy for resected Dukes' C colorectal cancer: seven-year outcome of a multicenter randomized trial. J Clin Oncol 1998; 16: 1788–94.

    PubMed  CAS  Google Scholar 

  143. Roovers RC, Henderikx P, Helfrich W, et al. High-affinity recombinant phage antibodies to the pan-carcinoma marker epithelial glycoprotein-2 for tumour targeting. Br J Cancer 1998; 78: 1407–16.

    Article  PubMed  CAS  Google Scholar 

  144. Zetter BR. Adhesion molecules in tumor metastasis. Semin Cancer Biol 1993; 4: 219–29.

    PubMed  CAS  Google Scholar 

  145. Li F. Role of survivin and its splice variants in tumorigenesis. Br J Cancer 2005; 92: 212–6.

    PubMed  CAS  Google Scholar 

  146. Verhagen AM, Coulson EJ, Vaux DL. Inhibitor of apoptosis proteins and their relatives: IAPs and other BIRPs. Genome Biol 2001; 2: REVIEWS3009.

    Google Scholar 

  147. Altieri DC. Survivin, versatile modulation of cell division and apoptosis in cancer. Oncogene 2003; 22: 8581–9.

    Article  PubMed  CAS  Google Scholar 

  148. Nagase H, Woessner JF, Jr. Matrix metalloproteinases. J Biol Chem 1999; 274: 21491–4.

    Article  PubMed  CAS  Google Scholar 

  149. Gomez DE, Alonso DF, Yoshiji H, Thorgeirsson UP. Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol 1997; 74: 111–22.

    PubMed  CAS  Google Scholar 

  150. Murray GI, Duncan ME, O'Neil P, Melvin WT, Fothergill JE. Matrix metalloproteinase-1 is associated with poor prognosis in colorectal cancer. Nat Med 1996; 2: 461–2.

    Article  PubMed  CAS  Google Scholar 

  151. Talvensaari-Mattila A, Paakko P, Hoyhtya M, Blanco-Sequeiros G, Turpeenniemi-Hujanen T. Matrix metalloproteinase-2 immunoreactive protein: a marker of aggressiveness in breast carcinoma. Cancer 1998; 83: 1153–62.

    Article  PubMed  CAS  Google Scholar 

  152. Bramhall SR, Neoptolemos JP, Stamp GW, Lemoine NR. Imbalance of expression of matrix metalloproteinases (MMPs) and tissue inhibitors of the matrix metalloproteinases (TIMPs) in human pancreatic carcinoma. J Pathol 1997; 182: 347–55.

    Article  PubMed  CAS  Google Scholar 

  153. Stearns M, Stearns ME. Evidence for increased activated metalloproteinase 2 (MMP-2a) expression associated with human prostate cancer progression. Oncol Res 1996; 8: 69–75.

    PubMed  CAS  Google Scholar 

  154. Kawano N, Osawa H, Ito T, et al. Expression of gelatinase A, tissue inhibitor of metallopro teinases-2, matrilysin, and trypsin(ogen) in lung neoplasms: an immunohistochemical study. Hum Pathol 1997; 28: 613–22.

    Article  PubMed  CAS  Google Scholar 

  155. Baker AH, Ahonen M, Kahari VM. Potential applications of tissue inhibitor of metalloprotei nase (TIMP) overexpression for cancer gene therapy. Adv Exp Med Biol 2000; 465: 469–83.

    Article  PubMed  CAS  Google Scholar 

  156. Kugler A, Hemmerlein B, Thelen P, et al. Expression of metalloproteinase 2 and 9 and their inhibitors in renal cell carcinoma. J Urol 1998; 160: 1914–8.

    Article  PubMed  CAS  Google Scholar 

  157. Nemeth JA, Rafe A, Steiner M, Goolsby CL. TIMP-2 growth-stimulatory activity: a concentra tion- and cell type-specific response in the presence of insulin. Exp Cell Res 1996; 224: 110–5.

    Article  PubMed  CAS  Google Scholar 

  158. Murashige M, Miyahara M, Shiraishi N, et al. Enhanced expression of tissue inhibitors of metalloproteinases in human colorectal tumors. Jpn J Clin Oncol 1996; 26: 303–9.

    PubMed  CAS  Google Scholar 

  159. Ree AH, Florenes VA , Berg JP, et al. High levels of messenger RNAs for tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) in primary breast carcinomas are associated with development of distant metastases. Clin Cancer Res 1997; 3: 1623–8.

    PubMed  CAS  Google Scholar 

  160. Grignon DJ, Sakr W, Toth M, et al. High levels of tissue inhibitor of metalloproteinase-2 (TIMP-2) expression are associated with poor outcome in invasive bladder cancer. Cancer Res 1996; 56: 1654–9.

    PubMed  CAS  Google Scholar 

  161. Andreasen PA, Egelund R, Petersen HH. The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Mol Life Sci 2000; 57: 25–40.

    Article  PubMed  CAS  Google Scholar 

  162. Yang JL, Seetoo D, Wang Y, et al. Urokinase-type plasminogen activator and its receptor in colorectal cancer: independent prognostic factors of metastasis and cancer-specific survival and potential therapeutic targets. Int J Cancer 2000; 89: 431–9.

    Article  PubMed  CAS  Google Scholar 

  163. Hofmann R, Lehmer A, Buresch M, Hartung R, Ulm K. Clinical relevance of urokinase plasminogen activator, its receptor, and its inhibitor in patients with renal cell carcinoma. Cancer 1996; 78: 487–92.

    Article  PubMed  CAS  Google Scholar 

  164. Andreasen PA, Nielsen LS, Kristensen P, et al. Plasminogen activator inhibitor from human fibrosarcoma cells binds urokinase-type plasminogen activator, but not its proenzyme. J Biol Chem 1986; 261: 7644–51.

    PubMed  CAS  Google Scholar 

  165. Rayman P, Wesa AK, Richmond AL, et al. Effect of renal cell carcinomas on the development of type 1 T-cell responses. Clin Cancer Res 2004; 10: 6360S–6S.

    Article  PubMed  CAS  Google Scholar 

  166. Uzzo RG, Rayman P, Kolenko V, et al. Mechanisms of apoptosis in T cells from patients with renal cell carcinoma. Clin Cancer Res 1999; 5: 1219–29.

    PubMed  CAS  Google Scholar 

  167. Kudo D, Rayman P, Horton C, et al. Gangliosides expressed by the renal cell carcinoma cell line SK-RC-45 are involved in tumor-induced apoptosis of T cells. Cancer Res 2003; 63: 1676–83.

    PubMed  CAS  Google Scholar 

  168. Latchman YE, Liang SC, Wu Y, et al. PD-L1-deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells. Proc Natl Acad Sci U S A 2004; 101: 10691–6.

    Article  PubMed  CAS  Google Scholar 

  169. Dong H, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 2002; 8: 793–800.

    PubMed  CAS  Google Scholar 

  170. Dong H, Zhu G, Tamada K, Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 1999; 5: 1365–9.

    Article  PubMed  CAS  Google Scholar 

  171. Iwai Y, Ishida M, Tanaka Y, et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A 2002; 99: 12293–7.

    Article  PubMed  CAS  Google Scholar 

  172. Wintterle S, Schreiner B, Mitsdoerffer M, et al. Expression of the B7-related molecule B7-H1 by glioma cells: a potential mechanism of immune paralysis. Cancer Res 2003; 63: 7462–7.

    PubMed  CAS  Google Scholar 

  173. Blank C, Brown I, Peterson AC, et al. PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res 2004; 64: 1140–5.

    Article  PubMed  CAS  Google Scholar 

  174. Ivan M, Kondo K, Yang H, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 2001; 292: 464–8.

    Article  PubMed  CAS  Google Scholar 

  175. Jaakkola P, Mole DR, Tian YM, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001; 292: 468–72.

    Article  PubMed  CAS  Google Scholar 

  176. Yu F, White SB, Zhao Q, Lee FS. HIF-1alpha binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc Natl Acad Sci U S A 2001; 98: 9630–5.

    Article  PubMed  CAS  Google Scholar 

  177. Ivanov S, Liao SY, Ivanova A, et al. Expression of hypoxia-inducible cell-surface transmembrane carbonic anhydrases in human cancer. Am J Pathol 2001; 158: 905–19.

    Article  PubMed  CAS  Google Scholar 

  178. Gnarra JR, Tory K, Weng Y, et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat Genet 1994; 7: 85–90.

    Article  PubMed  CAS  Google Scholar 

  179. Raval RR, Lau KW, Tran MG, et al. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol 2005; 25: 5675–86.

    Article  PubMed  CAS  Google Scholar 

  180. Carroll VA, Ashcroft M. Role of hypoxia-inducible factor (HIF)-1alpha versus HIF-2alpha in the regulation of HIF target genes in response to hypoxia, insulin-like growth factor-I, or loss of von Hippel-Lindau function: implications for targeting the HIF pathway. Cancer Res 2006; 66: 6264–70.

    Article  PubMed  CAS  Google Scholar 

  181. Covello KL, Simon MC, Keith B. Targeted replacement of hypoxia-inducible factor-1alpha by a hypoxia-inducible factor-2alpha knock-in allele promotes tumor growth. Cancer Res 2005; 65: 2277–86.

    Article  PubMed  CAS  Google Scholar 

  182. Kondo K, Kim W Y, Lechpammer M, Kaelin WG, Jr. Inhibition of HIF2alpha is sufficient to suppress pVHL-defective tumor growth. PLoS Biol 2003; 1: E83.

    Article  PubMed  Google Scholar 

  183. Kondo K, Klco J, Nakamura E, Lechpammer M, Kaelin WG, Jr. Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell 2002; 1: 237–46.

    Article  PubMed  CAS  Google Scholar 

  184. Kim HL, Seligson D, Liu X, et al. Using tumor markers to predict survival of metastatic renal cell carinoma patients. J Urol 2005; 173(5): 1496–1501.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung L. Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nogueira, M., Kim, H.L. (2009). Molecular Markers for Predicting Prognosis of Renal Cell Carcinoma. In: Bukowski, R.M., Figlin, R.A., Motzer, R.J. (eds) Renal Cell Carcinoma. Humana Press. https://doi.org/10.1007/978-1-59745-332-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-332-5_24

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-737-2

  • Online ISBN: 978-1-59745-332-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics