Skip to main content

EphA2: A Novel Target in Renal Cell Carcinoma

  • Chapter
Renal Cell Carcinoma

Abstract

Eph receptors and their ligands, ephrins, are known to play important roles in organ development (formation of tissue boundaries, neural crest cell migration, axon guidance) and angiogenesis. In particular, EphA2 has recently attracted interest in the field of cancer research. Many observations, including our own, have demonstrated that most cancers, such as renal cell carcinoma (RCC), overexpress the EphA2 protein. EphA2 overexpression/dysregulation is associated with carcinogenesis, metastasis, and poor clinical prognosis. Indeed EphA2 is not just a marker of metastatic potential, but its overexpression is directly linked to an aggressive tumor phenotype. As a consequence, EphA2 represents a potential target for therapeutic intervention in the setting of EphA2+ cancer histologies, with several agents being developed with clinical intent. Several strategies can be contemplated in this regard, including: (1) selected promotion of EphA2 degradation or to reduce EphA2 expression and signaling (via the application of agonistic antibody, ephrin-A1 Fc fusion protein, siRNA against EphA2, or protein tyrosine phosphatases (PTP) that regulate EphA2 expression or specific EphA2 kinase inhibitors); (2) antagonism of EphA2 receptor-ligand binding (by provision of mimetic peptides or EphA2 Fc fusion protein); and/or (3) vaccination against EphA2 (using specific peptide-, protein-, or gene-based methods) to elicit specific T-cell- or Ig-mediated immunity. In this chapter, we will discuss the basic immunobiology of tumor-associated EphA2 and potential therapeutic interventions directed against EphA2 that may yield clinical benefit in the setting of (renal cell) cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ivanov AI, Romanovsky AA. Putative dual role of ephrin-Eph receptor interactions in inflammation. IUBMB Life 2006;58(7):389–394.

    PubMed  CAS  Google Scholar 

  2. Himanen JP, Chumley MJ, Lackmann M, et al. Repelling class discrimination: ephrin-A5 binds to and activates EphB2 receptor signaling. Nat Neurosci 2004;7(5):501–509.

    PubMed  CAS  Google Scholar 

  3. Gale NW, Holland SJ, Valenzuela DM, et al. Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis. Neuron 1996;17(1):9–19.

    PubMed  CAS  Google Scholar 

  4. Himanen JP, Nikolov DB. Eph signaling: a structural view. Trends Neurosci 2003;26(1): 46–51.

    PubMed  CAS  Google Scholar 

  5. Kalo MS, Pasquale EB. Multiple in vivo tyrosine phosphorylation sites in EphB receptors. Biochemistry 1999;38(43):14396–408.

    PubMed  CAS  Google Scholar 

  6. Thanos CD, Goodwill KE, Bowie JU. Oligomeric structure of the human EphB2 receptor SAM domain. Science 1999;283(5403):833–6.

    PubMed  CAS  Google Scholar 

  7. Stapleton D, Balan I, Pawson T, Sicheri F. The crystal structure of an Eph receptor SAM domain reveals a mechanism for modular dimerization. Nat Struct Biol 1999;6(1):44–9.

    PubMed  CAS  Google Scholar 

  8. Himanen JP, Rajashankar KR, Lackmann M, Cowan CA, Henkemeyer M, Nikolov DB. Crystal structure of an Eph receptor-ephrin complex. Nature 2001;414(6866):933–8.

    PubMed  CAS  Google Scholar 

  9. Coulthard MG, Duffy S, Down M, et al. The role of the Eph-ephrin signalling system in the regulation of developmental patterning. Int J Dev Biol 2002;46(4):375–84.

    PubMed  CAS  Google Scholar 

  10. Wilkinson DG. Multiple roles of EPH receptors and ephrins in neural development. Nat Rev Neurosci 2001;2(3):155–64.

    PubMed  CAS  Google Scholar 

  11. Mellitzer G, Xu Q, Wilkinson DG. Control of cell behaviour by signalling through Eph receptors and ephrins. Curr Opin Neurobiol 2000;10(3):400–8.

    PubMed  CAS  Google Scholar 

  12. McBride JL, Ruiz JC. Ephrin-A1 is expressed at sites of vascular development in the mouse. Mech Dev 1998;77(2):201–4.

    PubMed  CAS  Google Scholar 

  13. Durbin L, Brennan C, Shiomi K, et al. Eph signaling is required for segmentation and differentiation of the somites. Genes Dev 1998;12(19):3096–109.

    PubMed  CAS  Google Scholar 

  14. Wang HU, Chen ZF, Anderson DJ. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 1998;93(5):741–53.

    PubMed  CAS  Google Scholar 

  15. Noren NK, Pasquale EB. Eph receptor-ephrin bidirectional signals that target Ras and Rho proteins. Cell Signal 2004;16(6):655–66.

    PubMed  CAS  Google Scholar 

  16. Huynh-Do U, Vindis C, Liu H, et al. Ephrin-B1 transduces signals to activate integrin-mediated migration, attachment and angiogenesis. J Cell Sci 2002;115(Pt 15):3073–81.

    PubMed  CAS  Google Scholar 

  17. Winning RS, Wyman TL, Walker GK. EphA4 activity causes cell shape change and a loss of cell polarity in Xenopus laevis embryos. Differentiation 2001;68(2–3):126–32.

    PubMed  CAS  Google Scholar 

  18. Klein R. Excitatory Eph receptors and adhesive ephrin ligands. Curr Opin Cell Biol 2001;13(2):196–203.

    PubMed  CAS  Google Scholar 

  19. Davy A, Robbins SM. Ephrin-A5 modulates cell adhesion and morphology in an integrin-dependent manner. Embo J 2000;19(20):5396–5405.

    PubMed  CAS  Google Scholar 

  20. Wahl S, Barth H, Ciossek T, Aktories K, Mueller BK. Ephrin-A5 induces collapse of growth cones by activating Rho and Rho kinase. J Cell Biol 2000;149(2):263–270.

    PubMed  CAS  Google Scholar 

  21. Miao H, Burnett E, Kinch M, Simon E, Wang B. Activation of EphA2 kinase suppresses integrin function and causes focal-adhesion-kinase dephosphorylation. Nat Cell Biol 2000;2(2):62–69.

    PubMed  CAS  Google Scholar 

  22. Zantek ND, Azimi M, Fedor-Chaiken M, Wang B, Brackenbury R, Kinch MS. E-cadherin regulates the function of the EphA2 receptor tyrosine kinase. Cell Growth Differ 1999;10(9):629–638.

    PubMed  CAS  Google Scholar 

  23. Cheng N, Brantley DM, Chen J. The ephrins and Eph receptors in angiogenesis. Cytokine Growth Factor Rev 2002;13(1):75–85.

    PubMed  CAS  Google Scholar 

  24. Heroult M, Schaffner F, Augustin HG. Eph receptor and ephrin ligand-mediated interactions during angiogenesis and tumor progression. Exp Cell Res 2006;312(5):642–650.

    PubMed  CAS  Google Scholar 

  25. Surawska H, Ma PC, Salgia R. The role of ephrins and Eph receptors in cancer. Cytokine Growth Factor Rev 2004;15(6):419–433.

    PubMed  CAS  Google Scholar 

  26. Walker-Daniels J, Hess AR, Hendrix MJ, Kinch MS. Differential regulation of EphA2 in normal and malignant cells. Am J Pathol 2003;162(4):1037–1042.

    PubMed  CAS  Google Scholar 

  27. Wimmer-Kleikamp SH, Lackmann M. Eph-modulated cell morphology, adhesion and motility in carcinogenesis. IUBMB Life 2005;57(6):421–431.

    PubMed  CAS  Google Scholar 

  28. Ganju P, Shigemoto K, Brennan J, Entwistle A, Reith AD. The Eck receptor tyrosine kinase is implicated in pattern formation during gastrulation, hindbrain segmentation and limb development. Oncogene 1994;9(6):1613–24.

    PubMed  CAS  Google Scholar 

  29. Bovenkamp DE, Greer PA. Degenerate PCR-based cloning method for Eph receptors and analysis of their expression in the developing murine central nervous system and vasculature. DNA Cell Biol 2001;20(4):203–213.

    PubMed  CAS  Google Scholar 

  30. Lickliter JD, Smith FM, Olsson JE, Mackwell KL, Boyd AW. Embryonic stem cells express multiple Eph-subfamily receptor tyrosine kinases. Proc Natl Acad Sci USA 1996; 93(1):145–150.

    PubMed  CAS  Google Scholar 

  31. Lindberg RA, Hunter T. cDNA cloning and characterization of eck, an epithelial cell receptor protein-tyrosine kinase in the eph/elk family of protein kinases. Mol Cell Biol 1990;10(12): 6316–6324.

    PubMed  CAS  Google Scholar 

  32. Potla L, Boghaert ER, Armellino D, Frost P, Damle NK. Reduced expression of EphrinA1 (EFNA1) inhibits three-dimensional growth of HT29 colon carcinoma cells. Cancer Lett 2002;175(2):187–195.

    PubMed  CAS  Google Scholar 

  33. Munthe E, Finne EF, Aasheim HC. Expression and functional effects of Eph receptor tyrosine kinase A family members on Langerhans like dendritic cells. BMC Immunol 2004;5:9.

    PubMed  Google Scholar 

  34. de Saint-Vis B, Bouchet C, Gautier G, Valladeau J, Caux C, Garrone P. Human dendritic cells express neuronal Eph receptor tyrosine kinases: role of EphA2 in regulating adhesion to fibronectin. Blood 2003;102(13):4431–40.

    PubMed  Google Scholar 

  35. Aasheim HC, Munthe E, Funderud S, Smeland EB, Beiske K, Logtenberg T. A splice variant of human ephrin-A4 encodes a soluble molecule that is secreted by activated human B lymphocytes. Blood 2000;95(1):221–230.

    PubMed  CAS  Google Scholar 

  36. Bartley TD, Hunt RW, Welcher AA, et al. B61 is a ligand for the ECK receptor protein-tyrosine kinase. Nature 1994;368(6471):558–560.

    PubMed  CAS  Google Scholar 

  37. Shao H, Pandey A, O'Shea KS, Seldin M, Dixit VM. Characterization of B61, the ligand for the Eck receptor protein-tyrosine kinase. J Biol Chem 1995;270(10):5636–5641.

    PubMed  CAS  Google Scholar 

  38. Zelinski DP, Zantek ND, Stewart JC, Irizarry AR, Kinch MS. EphA2 overexpression causes tumorigenesis of mammary epithelial cells. Cancer Res 2001;61(5):2301–2306.

    PubMed  CAS  Google Scholar 

  39. Hatano M, Kuwashima N, Tatsumi T, et al. Vaccination with EphA2-derived T cell-epitopes promotes immunity against both EphA2-expressing and EphA2-negative tumors. J Transl Med 2004;2(1):40.

    Google Scholar 

  40. Tsygankov AY, Teckchandani AM, Feshchenko EA, Swaminathan G. Beyond the RING: CBL proteins as multivalent adapters. Oncogene 2001;20(44):6382–6402.

    PubMed  CAS  Google Scholar 

  41. Meng W, Sawasdikosol S, Burakoff SJ, Eck MJ. Structure of the amino-terminal domain of Cbl complexed to its binding site on ZAP-70 kinase. Nature 1999;398(6722):84–90.

    PubMed  CAS  Google Scholar 

  42. Peschard P, Park M. Escape from Cbl-mediated downregulation: a recurrent theme for onco-genic deregulation of receptor tyrosine kinases. Cancer Cell 2003;3(6):519–523.

    PubMed  CAS  Google Scholar 

  43. Thien CB, Langdon W Y. Cbl: many adaptations to regulate protein tyrosine kinases. Nat Rev Mol Cell Biol 2001;2(4):294–307.

    PubMed  CAS  Google Scholar 

  44. Marmor MD, Yarden Y. Role of protein ubiquitylation in regulating endocytosis of receptor tyrosine kinases. Oncogene 2004;23(11):2057–2070.

    PubMed  CAS  Google Scholar 

  45. Shtiegman K, Yarden Y. The role of ubiquitylation in signaling by growth factors: implications to cancer. Semin Cancer Biol 2003;13(1):29–40.

    PubMed  CAS  Google Scholar 

  46. Kinch MS, Carles-Kinch K. Overexpression and functional alterations of the EphA2 tyrosine kinase in cancer. Clin Exp Metastasis 2003;20(1):59–68.

    PubMed  CAS  Google Scholar 

  47. Walker-Daniels J, Riese DJ, 2nd, Kinch MS. c-Cbl-dependent EphA2 protein degradation is induced by ligand binding. Mol Cancer Res 2002;1(1):79–87.

    PubMed  CAS  Google Scholar 

  48. Carles-Kinch K, Kilpatrick KE, Stewart JC, Kinch MS. Antibody targeting of the EphA2 tyrosine kinase inhibits malignant cell behavior. Cancer Res 2002;62(10):2840–2847.

    PubMed  CAS  Google Scholar 

  49. Wang Y, Ota S, Kataoka H, et al. Negative regulation of EphA2 receptor by Cbl. Biochem Biophys Res Commun 2002;296(1):214–220.

    PubMed  CAS  Google Scholar 

  50. Zantek ND, Walker-Daniels J, Stewart J, et al. MCF-10A-NeoST: a new cell system for studying cell-ECM and cell–cell interactions in breast cancer. Clin Cancer Res 2001;7(11): 3640–3648.

    PubMed  CAS  Google Scholar 

  51. Zhang ZY. Protein tyrosine phosphatases: prospects for therapeutics. Curr Opin Chem Biol 2001;5(4):416–423.

    PubMed  CAS  Google Scholar 

  52. Parri M, Buricchi F, Taddei ML, et al. EphrinA1 repulsive response is regulated by an EphA2 tyrosine phosphatase. J Biol Chem 2005;280(40):34008–18.

    PubMed  CAS  Google Scholar 

  53. Chiarugi P, Taddei ML, Schiavone N, et al. LMW-PTP is a positive regulator of tumor onset and growth. Oncogene 2004;23(22):3905–14.

    PubMed  CAS  Google Scholar 

  54. Kikawa KD, Vidale DR, Van Etten RL, Kinch MS. Regulation of the EphA2 kinase by the low molecular weight tyrosine phosphatase induces transformation. J Biol Chem 2002;277(42):39274–9.

    PubMed  CAS  Google Scholar 

  55. Raugei G, Ramponi G, Chiarugi P. Low molecular weight protein tyrosine phosphatases: small, but smart. Cell Mol Life Sci 2002;59(6):941–9.

    PubMed  CAS  Google Scholar 

  56. Malentacchi F, Marzocchini R, Gelmini S, et al. Up-regulated expression of low molecular weight protein tyrosine phosphatases in different human cancers. Biochem Biophys Res Commun 2005;334(3):875–83.

    PubMed  CAS  Google Scholar 

  57. Zhuang G, Hunter S, Hwang Y, Chen J. Regulation of EphA2 receptor endocytosis by SHIP2 lipid phosphatase via phosphatidylinositol 3-kinase-dependent Rac1 activation. J Biol Chem 2007;282(4):2683–94.

    PubMed  CAS  Google Scholar 

  58. Jin YJ, Wang J, Qiao C, Hei TK, Brandt-Rauf PW, Yin Y. A novel mechanism for p53 to regulate its target gene ECK in signaling apoptosis. Mol Cancer Res 2006;4(10):769–78.

    PubMed  CAS  Google Scholar 

  59. Yang G, Zhang G, Pittelkow MR, Ramoni M, Tsao H. Expression profiling of UVB response in melanocytes identifies a set of p53-target genes. J Invest Dermatol 2006;126(11): 2490–506.

    PubMed  CAS  Google Scholar 

  60. Zhang W, Ramdas L, Shen W, Song SW, Hu L, Hamilton SR. Apoptotic response to 5- fluorouracil treatment is mediated by reduced polyamines, non-autocrine Fas ligand and induced tumor necrosis factor receptor 2. Cancer Biol Ther 2003;2(5):572–8.

    PubMed  CAS  Google Scholar 

  61. Dohn M, Jiang J, Chen X. Receptor tyrosine kinase EphA2 is regulated by p53-family proteins and induces apoptosis. Oncogene 2001;20(45):6503–15.

    PubMed  CAS  Google Scholar 

  62. Hainaut P, Hollstein M. p53 and human cancer: the first ten thousand mutations. Adv Cancer Res 2000;77:81–137.

    PubMed  CAS  Google Scholar 

  63. Igney FH, Krammer PH. Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2002;2(4):277–88.

    PubMed  CAS  Google Scholar 

  64. Macrae M, Neve RM, Rodriguez-Viciana P, et al. A conditional feedback loop regulates Ras activity through EphA2. Cancer Cell 2005;8(2):111–8.

    PubMed  CAS  Google Scholar 

  65. Pratt RL, Kinch MS. Activation of the EphA2 tyrosine kinase stimulates the MAP/ERK kinase signaling cascade. Oncogene 2002;21(50):7690–9.

    PubMed  CAS  Google Scholar 

  66. Rosenberg IM, Goke M, Kanai M, Reinecker HC, Podolsky DK. Epithelial cell kinase-B61: an autocrine loop modulating intestinal epithelial migration and barrier function. Am J Physiol 1997;273(4 Pt 1):G824–32.

    PubMed  CAS  Google Scholar 

  67. Li Z, Tanaka M, Kataoka H, et al. EphA2 up-regulation induced by deoxycholic acid in human colon carcinoma cells, an involvement of extracellular signal-regulated kinase and p53-independence. J Cancer Res Clin Oncol 2003;129(12):703–8.

    PubMed  CAS  Google Scholar 

  68. Tian W, Boss GR, Cohen DM. Ras signaling in the inner medullary cell response to urea and NaCl. Am J Physiol Cell Physiol 2000;278(2):C372–80.

    PubMed  CAS  Google Scholar 

  69. Xu H, Tian W, Lindsley JN, et al. EphA2: expression in the renal medulla and regulation by hypertonicity and urea stress in vitro and in vivo. Am J Physiol Renal Physiol 2005;288(4):F855–66.

    PubMed  CAS  Google Scholar 

  70. Baldwin C, Chen ZW, Bedirian A, et al. Upregulation of EphA2 during in vivo and in vitro renal ischemia-reperfusion injury: role of Src kinases. Am J Physiol Renal Physiol 2006;291(5):F960–71.

    PubMed  CAS  Google Scholar 

  71. Ivanov AI, Steiner AA, Scheck AC, Romanovsky AA. Expression of Eph receptors and their ligands, ephrins, during lipopolysaccharide fever in rats. Physiol Genomics 2005;21(2):152–60.

    PubMed  CAS  Google Scholar 

  72. Zelinski DP, Zantek ND, Walker-Daniels J, Peters MA, Taparowsky EJ, Kinch MS. Estrogen and Myc negatively regulate expression of the EphA2 tyrosine kinase. J Cell Biochem 2002;85(4):714–20.

    PubMed  CAS  Google Scholar 

  73. Pratt RL, Kinch MS. Ligand binding up-regulates EphA2 messenger RNA through the mitogen-activated protein/extracellular signal-regulated kinase pathway. Mol Cancer Res 2003;1(14):1070–6.

    PubMed  CAS  Google Scholar 

  74. Liu F, Park PJ, Lai W, et al. A genome-wide screen reveals functional gene clusters in the cancer genome and identifies EphA2 as a mitogen in glioblastoma. Cancer Res 2006;66(22): 10815–23.

    PubMed  CAS  Google Scholar 

  75. Miao H, Wei BR, Peehl DM, et al. Activation of EphA receptor tyrosine kinase inhibits the Ras/MAPK pathway. Nat Cell Biol 2001;3(5):527–30.

    PubMed  CAS  Google Scholar 

  76. Guo H, Miao H, Gerber L, et al. Disruption of EphA2 receptor tyrosine kinase leads to increased susceptibility to carcinogenesis in mouse skin. Cancer Res 2006;66(14):7050–8.

    PubMed  CAS  Google Scholar 

  77. Ojima T, Takagi H, Suzuma K, et al. EphrinA1 inhibits vascular endothelial growth factor-induced intracellular signaling and suppresses retinal neovascularization and blood-retinal barrier breakdown. Am J Pathol 2006;168(1):331–9.

    PubMed  CAS  Google Scholar 

  78. Richardson A, Parsons JT. Signal transduction through integrins: a central role for focal adhesion kinase? Bioessays 1995;17(3):229–36.

    PubMed  CAS  Google Scholar 

  79. Schwartz MA, Schaller MD, Ginsberg MH. Integrins: emerging paradigms of signal transduc-tion. Annu Rev Cell Dev Biol 1995;11:549–99.

    PubMed  CAS  Google Scholar 

  80. Schlaepfer DD, Hunter T. Integrin signalling and tyrosine phosphorylation: just the FAKs? Trends Cell Biol 1998;8(4):151–7.

    PubMed  CAS  Google Scholar 

  81. Carter N, Nakamoto T, Hirai H, Hunter T. EphrinA1-induced cytoskeletal re-organization requires FAK and p130(cas). Nat Cell Biol 2002;4(8):565–73.

    PubMed  CAS  Google Scholar 

  82. Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE. EphA2: a determinant of malignant cellular behavior and a potential therapeutic target in pancreatic adenocarcinoma. Oncogene 2004;23(7):1448–56.

    PubMed  CAS  Google Scholar 

  83. Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE. Ligation of EphA2 by Ephrin A1-Fc inhibits pancreatic adenocarcinoma cellular invasiveness. Biochem Biophys Res Commun 2004;320(4):1096–102.

    PubMed  CAS  Google Scholar 

  84. Walker-Daniels J, Coffman K, Azimi M, et al. Overexpression of the EphA2 tyrosine kinase in prostate cancer. Prostate 1999;41(4):275–80.

    PubMed  CAS  Google Scholar 

  85. Hess AR, Seftor EA, Gardner LM, et al. Molecular regulation of tumor cell vasculogenic mimicry by tyrosine phosphorylation: role of epithelial cell kinase (Eck/EphA2). Cancer Res 2001;61(8):3250–5.

    PubMed  CAS  Google Scholar 

  86. Easty DJ, Guthrie BA, Maung K, et al. Protein B61 as a new growth factor: expression of B61 and up-regulation of its receptor epithelial cell kinase during melanoma progression. Cancer Res 1995;55(12):2528–32.

    PubMed  CAS  Google Scholar 

  87. Tatsumi T, Herrem CJ, Olson WC, et al. Disease stage variation in CD4 + and CD8 + T-cell reactivity to the receptor tyrosine kinase EphA2 in patients with renal cell carcinoma. Cancer Res 2003;63(15):4481–9.

    PubMed  CAS  Google Scholar 

  88. Herrem CJ, Tatsumi T, Olson KS, et al. Expression of EphA2 is prognostic of disease-free interval and overall survival in surgically treated patients with renal cell carcinoma. Clin Cancer Res 2005;11(1):226–31.

    PubMed  CAS  Google Scholar 

  89. Kinch MS, Moore MB, Harpole DH, Jr. Predictive value of the EphA2 receptor tyrosine kinase in lung cancer recurrence and survival. Clin Cancer Res 2003;9(2):613–8.

    PubMed  CAS  Google Scholar 

  90. Miyazaki T, Kato H, Fukuchi M, Nakajima M, Kuwano H. EphA2 overexpression correlates with poor prognosis in esophageal squamous cell carcinoma. Int J Cancer 2003;103(5):657–63.

    PubMed  CAS  Google Scholar 

  91. Laprise P, Langlois MJ, Boucher MJ, Jobin C, Rivard N. Down-regulation of MEK/ERK signaling by E-cadherin-dependent PI3K/Akt pathway in differentiating intestinal epithelial cells. J Cell Physiol 2004;199(1):32–9.

    PubMed  CAS  Google Scholar 

  92. Steinberg MS, McNutt PM. Cadherins and their connections: adhesion junctions have broader functions. Curr Opin Cell Biol 1999;11(5):554–60.

    PubMed  CAS  Google Scholar 

  93. Hess AR, Seftor EA, Gruman LM, Kinch MS, Seftor RE, Hendrix MJ. VE-cadherin regulates EphA2 in aggressive melanoma cells through a novel signaling pathway: implications for vasculogenic mimicry. Cancer Biol Ther 2006;5(2):228–33.

    PubMed  CAS  Google Scholar 

  94. Abraham S, Knapp DW, Cheng L, et al. Expression of EphA2 and Ephrin A-1 in carcinoma of the urinary bladder. Clin Cancer Res 2006;12(2):353–60.

    PubMed  CAS  Google Scholar 

  95. Merritt WM, Thaker PH, Landen CN, Jr., et al. Analysis of EphA2 expression and mutant p53 in ovarian carcinoma. Cancer Biol Ther 2006;5(10):1357–60.

    PubMed  CAS  Google Scholar 

  96. Kirsch M, Schackert G, Black PM. Metastasis and angiogenesis. Cancer Treat Res 2004;117:285–304.

    PubMed  CAS  Google Scholar 

  97. Kato T, Kameoka S, Kimura T, Nishikawa T, Kobayashi M. The combination of angiogen-esis and blood vessel invasion as a prognostic indicator in primary breast cancer. Br J Cancer 2003;88(12):1900–8.

    PubMed  CAS  Google Scholar 

  98. Kuwahara K, Sasaki T, Kuwada Y, Murakami M, Yamasaki S, Chayama K. Expressions of angiogenic factors in pancreatic ductal carcinoma: a correlative study with clinicopathologic parameters and patient survival. Pancreas 2003;26(4):344–9.

    PubMed  CAS  Google Scholar 

  99. Ogawa K, Pasqualini R, Lindberg RA, Kain R, Freeman AL, Pasquale EB. The ephrin-A1 ligand and its receptor, EphA2, are expressed during tumor neovascularization. Oncogene 2000;19(52):6043–52.

    PubMed  CAS  Google Scholar 

  100. Brantley-Sieders DM, Fang WB, Hicks DJ, Zhuang G, Shyr Y, Chen J. Impaired tumor microenvironment in EphA2-deficient mice inhibits tumor angiogenesis and metastatic progression. Faseb J 2005;19(13):1884–6.

    PubMed  CAS  Google Scholar 

  101. Brantley DM, Cheng N, Thompson EJ, et al. Soluble Eph A receptors inhibit tumor angiogenesis and progression in vivo. Oncogene 2002;21(46):7011–26.

    PubMed  CAS  Google Scholar 

  102. Lin YG, Han LY, Kamat AA, et al. EphA2 overexpression is associated with angiogenesis in ovarian cancer. Cancer 2007;109(2):332–40.

    PubMed  CAS  Google Scholar 

  103. Chen J, Hicks D, Brantley-Sieders D, et al. Inhibition of retinal neovascularization by soluble EphA2 receptor. Exp Eye Res 2006;82(4):664–73.

    PubMed  CAS  Google Scholar 

  104. Cheng N, Brantley DM, Liu H, et al. Blockade of EphA receptor tyrosine kinase activation inhibits vascular endothelial cell growth factor-induced angiogenesis. Mol Cancer Res 2002;1(1):2–11.

    PubMed  CAS  Google Scholar 

  105. Cheng N, Brantley D, Fang WB, et al. Inhibition of VEGF-dependent multistage carcino-genesis by soluble EphA receptors. Neoplasia 2003;5(5):445–56.

    PubMed  CAS  Google Scholar 

  106. Dobrzanski P, Hunter K, Jones-Bolin S, et al. Antiangiogenic and antitumor efficacy of EphA2 receptor antagonist. Cancer Res 2004;64(3):910–9.

    PubMed  CAS  Google Scholar 

  107. Coffman KT, Hu M, Carles-Kinch K, et al. Differential EphA2 epitope display on normal versus malignant cells. Cancer Res 2003;63(22):7907–12.

    PubMed  CAS  Google Scholar 

  108. Hu M, Carles-Kinch KL, Zelinski DP, Kinch MS. EphA2 induction of fibronectin creates a permissive microenvironment for malignant cells. Mol Cancer Res 2004;2(10):533–40.

    PubMed  CAS  Google Scholar 

  109. Landen CN, Jr., Lu C, Han LY, et al. Efficacy and antivascular effects of EphA2 reduction with an agonistic antibody in ovarian cancer. J Natl Cancer Inst 2006;98(21):1558–70.

    PubMed  CAS  Google Scholar 

  110. Lu M, Miller KD, Gokmen-Polar Y, Jeng MH, Kinch MS. EphA2 overexpression decreases estrogen dependence and tamoxifen sensitivity. Cancer Res 2003;63(12):3425–9.

    PubMed  CAS  Google Scholar 

  111. Kiewlich D, Zhang J, Gross C, et al. Anti-EphA2 antibodies decrease EphA2 protein levels in murine CT26 colorectal and human MDA-231 breast tumors but do not inhibit tumor growth. Neoplasia 2006;8(1):18–30.

    PubMed  CAS  Google Scholar 

  112. Nakamura R, Kataoka H, Sato N, et al. EPHA2/EFNA1 expression in human gastric cancer. Cancer Sci 2005;96(1):42–7.

    PubMed  CAS  Google Scholar 

  113. Noblitt LW, Bangari DS, Shukla S, et al. Decreased tumorigenic potential of EphA2-overexpressing breast cancer cells following treatment with adenoviral vectors that express EphrinA1. Cancer Gene Ther 2004;11(11):757–66.

    PubMed  CAS  Google Scholar 

  114. Noblitt LW, Bangari DS, Shukla S, Mohammed S, Mittal SK. Immunocompetent mouse model of breast cancer for preclinical testing of EphA2-targeted therapy. Cancer Gene Ther 2005;12(1):46–53.

    PubMed  CAS  Google Scholar 

  115. Koolpe M, Dail M, Pasquale EB. An ephrin mimetic peptide that selectively targets the EphA2 receptor. J Biol Chem 2002;277(49):46974–9.

    PubMed  CAS  Google Scholar 

  116. Landen CN, Jr., Chavez-Reyes A, Bucana C, et al. Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res 2005;65(15):6910–8.

    PubMed  CAS  Google Scholar 

  117. Nasreen N, Mohammed KA, Antony VB. Silencing the receptor EphA2 suppresses the growth and haptotaxis of malignant mesothelioma cells. Cancer 2006;107(10):2425–35.

    PubMed  CAS  Google Scholar 

  118. Alves PM, Faure O, Graff-Dubois S, et al. EphA2 as target of anticancer immunotherapy: identification of HLA-A*0201-restricted epitopes. Cancer Res 2003;63(23):8476–80.

    PubMed  CAS  Google Scholar 

  119. Zhang JG, Eguchi J, Kruse CA, et al. Antigenic profiling of glioma cells to generate allogeneic vaccines or dendritic cell-based therapeutics. Clin Cancer Res 2007;13(2 Pt 1): 566–75.

    PubMed  CAS  Google Scholar 

  120. Hatano M, Eguchi J, Tatsumi T, et al. EphA2 as a glioma-associated antigen: a novel target for glioma vaccines. Neoplasia 2005;7(8):717–22.

    PubMed  CAS  Google Scholar 

  121. Ernstoff MS, Crocenzi TS, Seigne JD, et al. Developing a rational tumor vaccine therapy for renal cell carcinoma: immune yin and yang. Clin Cancer Res 2007;13(2 Pt 2):733s–40s.

    PubMed  CAS  Google Scholar 

  122. Tatsumi T, Storkus WJ. Dendritic cell-based vaccines and therapies for cancer. Expert Opin Biol Ther 2002;2(8):919–28.

    PubMed  CAS  Google Scholar 

  123. Mailliard RB, Wankowicz-Kalinska A, Cai Q, et al. alpha-type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. Cancer Res 2004;64(17):5934–7.

    PubMed  CAS  Google Scholar 

  124. Wesa A, Kalinski P, Kirkwood JM, Tatsumi T, Storkus WJ. Polarized type-1 dendritic cells (DC1) producing high levels of IL-12 family members rescue patient TH1-type antimelanoma CD4 + T cell responses in vitro. J Immunother 2007;30(1):75–82.

    PubMed  CAS  Google Scholar 

  125. Storkus WJ, Herrem C, Kawabe M, Cohen PA, Bukowski RM, Finke JH, Wesa AK. Improving immunotherapy by conditionally enhancing MHC class I presentation of tumor antigen-derived peptide epitopes. Crit Rev Immunol 2007;27(5):485–93.

    PubMed  CAS  Google Scholar 

  126. Lattouf JB, Srinivasan R, Pinto PA, Linehan WM, Neckers L. Mechanisms of disease: the role of heat-shock protein 90 in genitourinary malignancy. Nat Clin Pract Urol 2006;3(11): 590–601.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter J. Storkus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kawabe, M., Herrem, C.J., Finke, J.H., Storkus, W.J. (2009). EphA2: A Novel Target in Renal Cell Carcinoma. In: Bukowski, R.M., Figlin, R.A., Motzer, R.J. (eds) Renal Cell Carcinoma. Humana Press. https://doi.org/10.1007/978-1-59745-332-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-332-5_20

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-737-2

  • Online ISBN: 978-1-59745-332-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics