Skip to main content

Smac/DIABLO: A Proapoptotic Molecular Target in Renal Cell Cancer

  • Chapter
  • 626 Accesses

Abstract

Renal cell carcinoma (RCC) accounts for about 2% of all cancer cases worldwide. Metastatic disease is often present at time of diagnosis of RCC, and its poor prognosis is determined by its poor response to chemotherapy and radiotherapy. Immunotherapy including interleukin-2 and interferon-α is relatively effective against metastatic RCC; however, the response rate is 15–20%. Chemotherapy, immunotherapy and radiotherapy have been shown to mediate their cytotoxic and antitumor effects by inducing cell death by apoptosis. The poor response of RCC to conventional therapies may be due in large part to the development of resistance to cell death by apoptosis through the modification of apoptosis regulatory gene products. Such genes and their products may also have important utility as diagnostic/ prognostic markers and therapeutic targets in this disease. However, few genes of this nature have been found to date in RCC.

This chapter introduces second mitochondria-derived activator of caspase/direct inhibitor of apoptosis-binding protein with low pl (Smac/DIABLO), a gene product of significant prognostic and therapeutic significance in RCC. Smac/DIABLO was recently identified as a protein that is released from mitochondria in response to apoptotic stimuli and promotes apoptosis by antagonizing inhibitor of apoptosis proteins. Smac/DIABLO is a new biomarker for RCC. The level of expression of Smac/DIABLO and its biological activity determine in large part the pathogenesis and fate of RCC and its response to antitumor cytotoxic agents, including chemotherapy, immunotherapy, etc. In addition, Smac/DIABLO offers a promising target for therapy by agents that regulate its expression and stabilization. Such agents, when used in combination with subtoxic doses of chemotherapy and/or immuno-therapy, may be very effective in killing the resistant RCC cells and improve survival. Thus, the level of expression of Smac/DIABLO in RCC has implications in the pathogenesis, diagnosis, and the development of new treatment modalities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Yagoda A. Chemotherapy of renal cell carcinoma: 1983–1989. Semin Urol 1989; 7: 199–206.

    PubMed  CAS  Google Scholar 

  2. Pantuck AJ, Zeng G, Belldegrun AS. Figlin RA. Pathobiology, prognosis, and targeted therapy for renal cell carcinoma: exploiting the hypoxia-induced pathway. Clin Cancer Res 2003; 9: 4641–4652.

    PubMed  CAS  Google Scholar 

  3. Delahunt B, Beckner RL, Bethwaite PB, Ribas JL. Computerized nuclear morphometry and survival in renal cell carcinoma: comparison with other prognostic indicators. Pathology 1994; 26: 353–360.

    Article  PubMed  CAS  Google Scholar 

  4. van der Poel HG, Mulders PF, Oosterhof GO, Schaafsma HE, Hendricks JC, Schalken JA. Prognostic value of karyometric and clinical characteristics in renal cell carcinoma. Quantitative assessment of tumor heterogeneity. Cancer 1993; 72: 2667–2672.

    Article  PubMed  CAS  Google Scholar 

  5. Ruiz JL, Hernandez M, Martinez J, Vera C, Jimenez-Cruz JF. Value of morphometry as an independent prognostic factor in renal cell carcinoma. Eur Urol 1995; 27: 54–60.

    PubMed  CAS  Google Scholar 

  6. Hofmockel G, Tsatalpas P, Muller H, Dammrich J, Poot M, Maurer-Schultze B. Significance of conventional and new prognostic factors for locally confined renal cell carcinoma. Cancer 1995; 76: 296–301.

    Article  PubMed  CAS  Google Scholar 

  7. Cronin KJ, Williams NN, Kerin MJ, Creagh TA, Dervan PA, Smith JM. Proliferating cell nuclear antigen: a new prognostic indicator in renal cell carcinoma. J Urol 1994; 152: 834–839.

    PubMed  CAS  Google Scholar 

  8. Rini BI, Vogelzang NJ. Prognostic factors in renal carcinoma. Semin Oncol 2000; 27: 213–220.

    PubMed  CAS  Google Scholar 

  9. Tannapfel A, Hahn HA, Katalinic A, Fietkau RJ, Kuhn R, Wittekind CW. Prognostic values of ploidy and proliferation markers in renal cell carcinoma. Cancer 1996; 77: 164–170.

    Article  PubMed  CAS  Google Scholar 

  10. Hofmockel G, Bassukas ID, Wittman A, Dammrich J. Is the expression of multidrug resistance gene product a prognostic indicator for the clinical outcome of patients with renal cancer? Br J Urol 1997; 80: 11–16.

    PubMed  CAS  Google Scholar 

  11. Duensing S, Dallmann I, Grosse J, Buer J, Lopez Hannimen E, Deckert M. Immunocytochemical detection of P-glycoprotein: initial expression correlates with survival in renal cell carcinoma patients. Oncology 1994; 51: 309–315.

    Article  PubMed  CAS  Google Scholar 

  12. Imai Y, Strohmeyer TG, Fleischhacker M, Slamon DJ, Koeffler HP. p53 mutations and MDM-2 amplification in renal cell cancers. Mod Pathol 1994; 7: 766–771.

    PubMed  CAS  Google Scholar 

  13. Gelb AB, Sudilovsky D, Wu CD, Weiss LM, Medeiros LJ. Appraisal of intratumoral micro-vessel density, MIB-1 score, DNA content, and p53 protein expression as prognostic indicators in patients with locally confined renal cell carcinoma. Cancer 1997; 80: 1768–1773.

    Article  PubMed  CAS  Google Scholar 

  14. Yoshino S, Kato M, Okada K. Prognostic significance of microvessel count in low stage renal cell carcinoma. Int J Urol 1995; 2: 156–161.

    Article  PubMed  CAS  Google Scholar 

  15. MacLennan GT, Bostwick DG. Microvessel density in renal cell carcinoma: lack of prognostic significance. Urology 1995; 46: 27–32.

    Article  PubMed  CAS  Google Scholar 

  16. Mejean A, Oudard S, Thiounn N. Prognostic factors of renal cell carcinoma. J Urol 2003; 163: 821–827.

    Article  Google Scholar 

  17. Saelens X, Festjens N, Walle LV, van Gurp M, van Loo G, Vandenabeele P. Toxic proteins released from mitochondria in cell death. Oncogene 2004; 23: 2861–2874.

    Article  PubMed  CAS  Google Scholar 

  18. Ekert PG, Silke J, Hawkins CJ, Verhagen AM, Vaux DL. DIABLO promotes apoptosis by removing MIHA/XIAP from processed caspase 9. J Cell Biol 2001; 152: 483–490.

    Article  PubMed  CAS  Google Scholar 

  19. Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by elimination IAP inhibition. Cell 2000; 102: 33–42.

    Article  PubMed  CAS  Google Scholar 

  20. Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE, Moritz RL, Simpson RJ, Vaux DL. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 2000; 102: 43–53.

    Article  PubMed  CAS  Google Scholar 

  21. Fu J, Jin Y, Arend LJ. Smac3, a novel Smac/DIABLO splicing variant, attenuates the stability and apoptosis-inhibiting activity of X-linked inhibitor of apoptosis protein. J Biol Chem 2003; 278: 52660–52672.

    Article  PubMed  CAS  Google Scholar 

  22. Roberts DL, Merrison W, MacFarlane M, Cohen GM. The inhibitor of apoptosis protein-binding domain of Smac is not essential for its proapoptotic activity. J Cell Biol 2001; 153: 221–228.

    Article  PubMed  CAS  Google Scholar 

  23. Mizutani Y, Nakanishi H, Yamamoto K, Li YN, Matsubara H, Mikami K, Okihara K, Kawauchi A, Bonavida B, Miki T. Downregulation of Smac/DIABLO expression in renal cell carcinoma and its prognostic significance. J Clin Oncol 2005; 23: 448–454.

    Article  PubMed  CAS  Google Scholar 

  24. Yoo NJ, Kim HS, Kim SY, Park CH, Jeon HM, Jung ES, Lee JY, Lee SH. Immunohistochemical analysis of Smac/DIABLO expression in human carcinomas and sarcomas. APMIS 2003; 111: 382–388.

    Article  PubMed  CAS  Google Scholar 

  25. Kolenko V, Uzzo RG, Bukowski R, Bander NH, Novick AC, Hsi ED, Finke JH. Dead or dying: necrosis versus apoptosis in caspase-deficient human renal cell carcinoma. Cancer Res 1999; 59: 2838–2842.

    PubMed  CAS  Google Scholar 

  26. Gerhard MC, Zantl N, Weirich G, Schliep S, Seiffert B, Hacker G. Functional evaluation of the apoptosome in renal cell carcinoma. Br J Cancer 2003; 89: 2147–2154.

    Article  PubMed  CAS  Google Scholar 

  27. Ng CP, Bonavida B. X-linked inhibitor of apoptosis (XIAP) blocks Apo-2 ligand/tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis of prostate cancer cells in the presence of mitochondrial activation: sensitization by overexpression of second mitochondria-derived activator of caspase/direct IAP-binding protein with low pl (Smac/DIABLO). Mol Cancer Ther 2002; 1: 1051–1058.

    PubMed  CAS  Google Scholar 

  28. c.

    PubMed  CAS  Google Scholar 

  29. Arnt CR, Chiorean MV, Heldebrant MP, Gores GJ, Kaufmann SH. Synthetic Smac/DIABLO peptides enhance the effects of chemotherapeutic agents by binding XIAP and cIAP1 in situ. J Biol Chem 2002; 277: 44236–44243.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoichi Mizutani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mizutani, Y., Kawauchi, A., Bonavida, B., Miki, T. (2009). Smac/DIABLO: A Proapoptotic Molecular Target in Renal Cell Cancer. In: Bukowski, R.M., Figlin, R.A., Motzer, R.J. (eds) Renal Cell Carcinoma. Humana Press. https://doi.org/10.1007/978-1-59745-332-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-332-5_19

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-737-2

  • Online ISBN: 978-1-59745-332-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics