Skip to main content

Evaluating the Biological Activity and Effects on Human Health of Fish Oil and Its Omega-3 Fatty Acids

  • Chapter
Book cover Wild-Type Food in Health Promotion and Disease Prevention

Abstract

This chapter reviews the background, chemistry and specific efficacy of fish oils, specifically ω-3 fatty acids in the treatment and prevention of disease. Epidemiologic evidence appears strong showing its protective effects, although clinical trials with definitive data are still deficient. The mechanism by which ω-3 fatty acids may work on the nervous system and its anti-inflammatory effects are presented. Efforts should be made to ensure dietary intakes should provide sufficient amounts of these essential fatty acids through moderate intake of cold water fatty fish.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Corcoran AC, Rabinowitch IM. A study of the blood lipids and blood proteins in canadian eastern arctic eskimos. Biochemistry 1937;31:343–348.

    CAS  Google Scholar 

  2. Bang HO, Dyerberg J, Hjoorne N. The composition of food consumed by greenland eskimos. Acta Med Scand 1976;200:69–73.

    CAS  Google Scholar 

  3. Dyerberg J, Bang HO, Hjorne N. Fatty acid composition of the plasma lipids in greenland eskimos. Am J Clin Nutr 1975;28:958–966.

    CAS  Google Scholar 

  4. Dyerberg J, Bang HO, Stoffersen E, Moncada S, Vane JR. Eicosapentaenoic acid and prevention of thrombosis and atherosclerosis? Lancet 1978;2:117–119.

    CAS  Google Scholar 

  5. Simonsen T, Vartun A, Lyngmo V, Nordoy A. Coronary heart disease, serum lipids, platelets and dietary fish in two communities in northern norway. Acta Med Scand 1987;222:237–245.

    CAS  Google Scholar 

  6. Marckmann P, Gronbaek M. Fish consumption and coronary heart disease mortality. A systematic review of prospective cohort studies. Eur J Clin Nutr 1999;53:585–590.

    CAS  Google Scholar 

  7. Duke JA. Handbook of Phytochemical Constituents of GRAS Herbs and Other Economic Plants. 1st ed. Boca Raton, FL, CRC Press, 1992.

    Google Scholar 

  8. Yazawa K. Production of eicosapentaenoic acid from marine bacteria. Lipids 1996;31 Suppl:S297–S300.

    CAS  Google Scholar 

  9. Hites RA, Foran JA, Carpenter DO, Hamilton MC, Knuth BA, Schwager SJ. Global assessment of organic contaminants in farmed salmon. Science 2004;303:226–229.

    CAS  Google Scholar 

  10. Jacobs MN, Covaci A, Schepens P. Investigation of selected persistent organic pollutants in farmed atlantic salmon (salmo salar), salmon aquaculture feed, and fish oil components of the feed. Environ Sci Technol 2002;36:2797–2805.

    CAS  Google Scholar 

  11. Sinclair AJ, Attar-Bashi NM, Li D. What is the role of alpha-linolenic acid for mammals? Lipids 2002;37:1113–1123.

    CAS  Google Scholar 

  12. Emken EA, Adlof RO, Gulley RM. Dietary linoleic acid influences desaturation and acylation of deuterium-labeled linoleic and linolenic acids in young adult males. Biochim Biophys Acta 1994;1213:277–288.

    CAS  Google Scholar 

  13. Burdge GC, Jones AE, Wootton SA. Eicosapentaenoic and docosapentaenoic acids are the principal products of alpha-linolenic acid metabolism in young men*. Br J Nutr 2002;88:355–363.

    CAS  Google Scholar 

  14. Chan JK, McDonald BE, Gerrard JM, Bruce VM, Weaver BJ, Holub BJ. Effect of dietary alphalinolenic acid and its ratio to linoleic acid on platelet and plasma fatty acids and thrombogenesis. Lipids 1993;28:811–817.

    CAS  Google Scholar 

  15. Gerster H. Can adults adequately convert alpha-linolenic acid (18:3n-3) to eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3)? Int J Vitam Nutr Res 1998;68:159–173.

    CAS  Google Scholar 

  16. Ghafoorunissa. Requirements of dietary fats to meet nutritional needs & prevent the risk of atherosclerosis-an indian perspective. Indian J Med Res 1998;108:191–202.

    CAS  Google Scholar 

  17. Indu M, Ghafoorunissa. n-3 fatty acids in indian diets-comparison of the effects of precursor (alpha-linolenic acid) vs product (long chain n-3 polyunsaturated fatty acids). Nutr Res 1992; 12:569–582.

    CAS  Google Scholar 

  18. Burdge GC, Wootton SA. Conversion of alpha-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women. Br J Nutr 2002;88:411–420.

    CAS  Google Scholar 

  19. Burdge GC, Calder PC. Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reprod Nutr Dev 2005;45:581–597.

    CAS  Google Scholar 

  20. Food and Nutrition Board, Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients). A Report of the Panel on Macronutrients, Subcommittees on Upper Reference Levels of Nutrients and Interpretation and Uses of Dietary Reference Intakes, and the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. 1st ed. Washington, DC, The National Academies Press, 2002.

    Google Scholar 

  21. Renaud S. Linoleic acid, platelet aggregation and myocardial infarction. Atherosclerosis 1990;80: 255–256.

    CAS  Google Scholar 

  22. Renaud S, Morazain R, Godsey F, et al. Nutrients, platelet function and composition in nine groups of french and british farmers. Atherosclerosis 1986;60:37–48.

    CAS  Google Scholar 

  23. Berry EM, Hirsch J. Does dietary linolenic acid influence blood pressure? Am J Clin Nutr 1986; 44:336–340.

    CAS  Google Scholar 

  24. Ascherio A, Rimm EB, Giovannucci EL, Spiegelman D, Stampfer M, Willett WC. Dietary fat and risk of coronary heart disease in men: Cohort follow up study in the united states. BMJ 1996;313:84–90.

    CAS  Google Scholar 

  25. de Lorgeril M, Renaud S, Mamelle N, et al. Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet 1994;343:1454–1459.

    Google Scholar 

  26. Anderson GJ, Connor WE, Corliss JD. Docosahexaenoic acid is the preferred dietary n-3 fatty acid for the development of the brain and retina. Pediatr Res 1990;27:89–97.

    CAS  Google Scholar 

  27. Lopez GH, Ilincheta de Boschero MG, Castagnet PI, Giusto NM. Age-associated changes in the content and fatty acid composition of brain glycerophospholipids. Comp Biochem Physiol B Biochem Mol Biol 1995;112:331–343.

    CAS  Google Scholar 

  28. Sastry PS. Lipids of nervous tissue: Composition and metabolism. Prog Lipid Res 1985;24:69–176.

    CAS  Google Scholar 

  29. Innis SM. Perinatal biochemistry and physiology of long-chain polyunsaturated fatty acids. J Pediatr 2003;143:S1–S8.

    CAS  Google Scholar 

  30. Innis SM. Polyunsaturated fatty acids in human milk: An essential role in infant development. Adv Exp Med Biol 2004;554:27–43.

    CAS  Google Scholar 

  31. Al MD, van Houwelingen AC, Kester AD, Hasaart TH, de Jong AE, Hornstra G. Maternal essential fatty acid patterns during normal pregnancy and their relationship to the neonatal essential fatty acid status. Br J Nutr 1995;74:55–68.

    CAS  Google Scholar 

  32. Simopoulos AP, Leaf A, Salem N, Jr. Workshop on the essentiality of and recommended dietary intakes for omega-6 and omega-3 fatty acids. J Am Coll Nutr 1999;18:487–489.

    CAS  Google Scholar 

  33. Connor WE, Lowensohn R, Hatcher L. Increased docosahexaenoic acid levels in human newborn infants by administration of sardines and fish oil during pregnancy. Lipids 1996;31 Suppl:S183–S187.

    CAS  Google Scholar 

  34. Uauy R, Mena P. Requirements for long-chain polyunsaturated fatty acids in the preterm infant. Curr OpinPediatr 1999;11:115–120.

    CAS  Google Scholar 

  35. van Houwelingen AC, Sorensen JD, Hornstra G, et al. Essential fatty acid status in neonates after fish-oil supplementation during late pregnancy. Br J Nutr 1995;74:723–731.

    Google Scholar 

  36. Smuts CM, Huang M, Mundy D, Plasse T, Major S, Carlson SE. A randomized trial of docosahexaenoic acid supplementation during the third trimester of pregnancy. Obstet Gynecol 2003;101:469–479.

    CAS  Google Scholar 

  37. Olsen SF, Secher NJ, Tabor A, Weber T, Walker JJ, Gluud C. Randomised clinical trials of fish oil supplementation in high risk pregnancies. fish oil trials in pregnancy (FOTIP) team. BJOG 2000; 107:382–395.

    CAS  Google Scholar 

  38. Rossi E, Costa M. Fish oil derivatives as a prophylaxis of recurrent miscarriage associated with antiphospholipid antibodies (APL): A pilot study. Lupus 1993;2:319–323.

    CAS  Google Scholar 

  39. Daniels JL, Longnecker MP, Rowland AS, Golding J, ALSPAC Study Team. University of Bristol Institute of Child Health. Fish intake during pregnancy and early cognitive development of offspring. Epidemiology 2004;15:394–402.

    Google Scholar 

  40. Birch EE, Garfield S, Hoffman DR, Uauy R, Birch DG. A randomized controlled trial of early dietary supply of long-chain polyunsaturated fatty acids and mental development in term infants. Dev Med Child Neurol 2000;42:174–181.

    CAS  Google Scholar 

  41. Hoffman DR, Birch EE, Castaneda YS, et al. Visual function in breast-fed term infants weaned to formula with or without long-chain polyunsaturates at 4 to 6 months: A randomized clinical trial. J Pediatr 2003; 142:669–677.

    CAS  Google Scholar 

  42. Jensen CL, Voigt RG, Prager TC, et al. Effects of maternal docosahexaenoic acid intake on visual function and neurodevelopment in breastfed term infants. Am J Clin Nutr 2005;82:125–132.

    CAS  Google Scholar 

  43. Auestad N, Scott DT, Janowsky JS, et al. Visual, cognitive, and language assessments at 39 months: A follow-up study of children fed formulas containing long-chain polyunsaturated fatty acids to 1 year of age. Pediatrics 2003;112:E177–E183.

    Google Scholar 

  44. Helland IB, Smith L, Saarem K, Saugstad OD, Drevon CA. Maternal supplementation with verylong-chain n-3 fatty acids during pregnancy and lactation augments children’s IQ at 4 years of age. Pediatrics 2003;111:E39–E44.

    Google Scholar 

  45. Gustafsson PA, Duchen K, Birberg U, Karlsson T. Breastfeeding, very long polyunsaturated fatty acids (PUFA) and IQ at 61/2 years of age. Acta Paediatr 2004;93:1280–1287.

    CAS  Google Scholar 

  46. Heird WC, Lapillonne A. The role of essential fatty acids in development. Annu Rev Nutr 2005; 25:549–571.

    CAS  Google Scholar 

  47. Hibbeln JR. Fish consumption and major depression. Lancet 1998;351:1213.

    CAS  Google Scholar 

  48. Hibbeln JR, Salem N, Jr. Dietary polyunsaturated fatty acids and depression: When cholesterol does not satisfy. Am J Clin Nutr 1995;62:1–9.

    CAS  Google Scholar 

  49. Noaghiul S, Hibbeln JR. Cross-national comparisons of seafood consumption and rates of bipolar disorders. Am J Psychiatry 2003; 160:2222–2227.

    Google Scholar 

  50. Suzuki S, Akechi T, Kobayashi M, et al. Daily omega-3 fatty acid intake and depression in japanese patients with newly diagnosed lung cancer. Br J Cancer 2004;90:787–793.

    CAS  Google Scholar 

  51. Frasure-Smith N, Lesperance F, Julien P. Major depression is associated with lower omega-3 fatty acid levels in patients with recent acute coronary syndromes. Biol Psychiatry 2004;55:891–896.

    CAS  Google Scholar 

  52. Assies J, Lok A, Bockting CL, et al. Fatty acids and homocysteine levels in patients with recurrent depression: An explorative pilot study. Prostaglandins Leukot Essent Fatty Acids 2004;70:349–356.

    CAS  Google Scholar 

  53. Edwards R, Peet M, Shay J, Horrobin D. Omega-3 polyunsaturated fatty acid levels in the diet and in red blood cell membranes of depressed patients. J Affect Disord 1998;48:149–155.

    CAS  Google Scholar 

  54. Peet M, Murphy B, Shay J, Horrobin D. Depletion of omega-3 fatty acid levels in red blood cell membranes of depressive patients. Biol Psychiatry 1998;43:315–319.

    CAS  Google Scholar 

  55. Tiemeier H, van Tuijl HR, Hofman A, Kiliaan AJ, Breteler MM. Plasma fatty acid composition and depression are associated in the elderly: The rotterdam study. Am J Clin Nutr 2003;78:40–46.

    CAS  Google Scholar 

  56. Adams PB, Lawson S, Sanigorski A, Sinclair AJ. Arachidonic acid to eicosapentaenoic acid ratio in blood correlates positively with clinical symptoms of depression. Lipids 1996;31 Suppl:S157–61.

    CAS  Google Scholar 

  57. Marangell LB, Martinez JM, Zboyan HA, Kertz B, Kim HF, Puryear LJ. A double-blind, placebocontrolled study of the omega-3 fatty acid docosahexaenoic acid in the treatment of major depression. Am J Psychiatry 2003;160:996–998.

    Google Scholar 

  58. Peet M, Horrobin DF. A dose-ranging study of the effects of ethyl-eicosapentaenoate in patients with ongoing depression despite apparently adequate treatment with standard drugs. Arch Gen Psychiatry 2002;59:913–919.

    CAS  Google Scholar 

  59. Nemets B, Stahl Z, Belmaker RH. Addition of omega-3 fatty acid to maintenance medication treatment for recurrent unipolar depressive disorder. Am J Psychiatry 2002; 159:477–479.

    Google Scholar 

  60. Puri BK, Counsell SJ, Hamilton G, Richardson AJ, Horrobin DF. Eicosapentaenoic acid in treatmentresistant depression associated with symptom remission, structural brain changes and reduced neuronal phospholipid turnover. Int J Clin Pract 2001;55:560–563.

    CAS  Google Scholar 

  61. Su KP, Huang SY, Chiu CC, Shen WW. Omega-3 fatty acids in major depressive disorder. A preliminary double-blind, placebo-controlled trial. Eur Neuropsychopharmacol 2003; 13:267–271.

    CAS  Google Scholar 

  62. Stoll AL, Severus WE, Freeman MP, et al. Omega 3 fatty acids in bipolar disorder: A preliminary double-blind, placebo-controlled trial. Arch Gen Psychiatry 1999;56:407–412.

    CAS  Google Scholar 

  63. Kris-Etherton PM, Harris WS, Appel LJ, American Heart Association. Nutrition Committee. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 2002;106:2747–2757.

    Google Scholar 

  64. Marchioli R, Barzi F, Bomba E, et al. Early protection against sudden death by n-3 polyunsaturated fatty acids after myocardial infarction: Time-course analysis of the results of the gruppo italiano per lo studio della sopravvivenza nell’infarto miocardico (GISSI)-prevenzione. Circulation 2002;105:1897–1903.

    CAS  Google Scholar 

  65. Marchioli R, Schweiger C, Tavazzi L, Valagussa F. Efficacy of n-3 polyunsaturated fatty acids after myocardial infarction: Results of GISSI-prevenzione trial. gruppo italiano per lo studio della sopravvivenza nell’infarto miocardico. Lipids 2001;36 Suppl: S119–26.

    CAS  Google Scholar 

  66. Calon F, Lim GP, Yang F, et al. Docosahexaenoic acid protects from dendritic pathology in an alzheimer’s disease mouse model. Neuron 2004;43:633–645.

    CAS  Google Scholar 

  67. Itokazu N, Ikegaya Y, Nishikawa M, Matsuki N. Bidirectional actions of docosahexaenoic acid on hippocampal neurotransmissions in vivo. Brain Res 2000;862:211–216.

    CAS  Google Scholar 

  68. Young C, Gean PW, Chiou LC, Shen YZ. Docosahexaenoic acid inhibits synaptic transmission and epileptiform activity in the rat hippocampus. Synapse 2000;37:90–94.

    CAS  Google Scholar 

  69. Barberger-Gateau P, Letenneur L, Deschamps V, Peres K, Dartigues JF, Renaud S. Fish, meat, and risk of dementia: Cohort study. BMJ 2002;325:932–933.

    Google Scholar 

  70. Farrer LA, Bowirrat A, Friedland RP, Waraska K, Korczyn AD, Baldwin CT. Identification of multiple loci for alzheimer disease in a consanguineous israeli-arab community. Hum Mol Genet 2003;12:415–422.

    CAS  Google Scholar 

  71. Grant WB. Diet and risk of dementia: Does fat matter? the rotterdam study. Neurology 2003; 60:2020–2021.

    Google Scholar 

  72. Kalmijn S, Feskens EJ, Launer LJ, Kromhout D. Polyunsaturated fatty acids, antioxidants, and cognitive function in very old men. Am J Epidemiol 1997;145:33–41.

    CAS  Google Scholar 

  73. Larrieu S, Letenneur L, Helmer C, Dartigues JF, Barberger-Gateau P. Nutritional factors and risk of incident dementia in the PAQUID longitudinal cohort. J Nutr Health Aging 2004;8:150–154.

    CAS  Google Scholar 

  74. Conquer JA, Tierney MC, Zecevic J, Bettger WJ, Fisher RH. Fatty acid analysis of blood plasma of patients with alzheimer’s disease, other types of dementia, and cognitive impairment. Lipids 2000;35:1305–1312.

    CAS  Google Scholar 

  75. Morris MC, Evans DA, Bienias JL, et al. Consumption offish and n-3 fatty acids and risk of incident alzheimer disease. Arch Neurol 2003;60:940–946.

    Google Scholar 

  76. Hamilton L, Greiner R, Salem N, Jr, Kim HY. n-3 fatty acid deficiency decreases phosphatidylserine accumulation selectively in neuronal tissues. Lipids 2000;35:863–869.

    CAS  Google Scholar 

  77. Otsuka M, Yamaguchi K, Ueki A. Similarities and differences between alzheimer’s disease and vascular dementia from the viewpoint of nutrition. Ann N Y Acad Sci 2002;977:155–161.

    CAS  Google Scholar 

  78. Suzuki H, Morikawa Y, Takahashi H. Effect of DHA oil supplementation on intelligence and visual acuity in the elderly. World Rev Nutr Diet 2001;88:68–71.

    CAS  Google Scholar 

  79. Terano T, Fujishiro S, Ban T, et al. Docosahexaenoic acid supplementation improves the moderately severe dementia from thrombotic cerebrovascular diseases. Lipids 1999;34 Suppl:S345–S346.

    CAS  Google Scholar 

  80. Friedland RP. Fish consumption and the risk of alzheimer disease: Is it time to make dietary recommendations? Arch Neurol 2003;60:923–924.

    Google Scholar 

  81. Adler AI, Boyko EJ, Schraer CD, Murphy NJ. Lower prevalence of impaired glucose tolerance and diabetes associated with daily seal oil or salmon consumption among alaska natives. Diabetes Care 1994;17:1498–1501.

    CAS  Google Scholar 

  82. Naylor JL, Schraer CD, Mayer AM, Lanier AP, Treat CA, Murphy NJ. Diabetes among alaska natives: A review. Int J Circumpolar Health 2003;62:363–387.

    CAS  Google Scholar 

  83. Schraer CD, Risica PM, Ebbesson SO, Go OT, Howard BV, Mayer AM. Low fasting insulin levels in eskimos compared to american indians: Are eskimos less insulin resistant? Int J Circumpolar Health 1999;58:272–280.

    CAS  Google Scholar 

  84. Ebbesson SO, Kennish J, Ebbesson L, Go O, Yeh J. Diabetes is related to fatty acid imbalance in eskimos. Int J Circumpolar Health 1999;58:108–119.

    CAS  Google Scholar 

  85. Murphy NJ, Schraer CD, Thiele MC, et al. Dietary change and obesity associated with glucose intolerance in alaska natives. J Am Diet Assoc 1995; 95:676–682.

    CAS  Google Scholar 

  86. Schraer CD, Mayer AM, Vogt AM, et al. The alaska native diabetes program. Int J Circumpolar Health 2001; 60:487–494.

    CAS  Google Scholar 

  87. Kagawa Y, Nishizawa M, Suzuki M, et al. Eicosapolyenoic acids of serum lipids of japanese islanders with low incidence of cardiovascular diseases. J Nutr Sci Vitaminol (Tokyo) 1982;28:441–453.

    CAS  Google Scholar 

  88. Farmer A, Montori V, Dinneen S, Clar C. Fish oil in people with type 2 diabetes mellitus. Cochrane Database Syst Rev 2001;(3):CD003205.

    Google Scholar 

  89. Sirtori CR, Galli C. N-3 fatty acids and diabetes. Biomed Pharmacother 2002;56:397–406.

    CAS  Google Scholar 

  90. Delarue J, LeFoll C, Corporeau C, Lucas D. N-3 long chain polyunsaturated fatty acids: A nutritional tool to prevent insulin resistance associated to type 2 diabetes and obesity? Reprod Nutr Dev 2004;44:289–299.

    CAS  Google Scholar 

  91. Goguen JM, Leiter LA. Lipids and diabetes mellitus: A review of therapeutic options. Curr Med Res Opin 2002;18Suppl 1:S58–S74.

    Google Scholar 

  92. Montori VM, Farmer A, Wollan PC, Dinneen SF. Fish oil supplementation in type 2 diabetes: A quantitative systematic review. Diabetes Care 2000;23:1407–1415.

    CAS  Google Scholar 

  93. Nettleton JA, Katz R. n-3 long-chain polyunsaturated fatty acids in type 2 diabetes: A review. J Am Diet Assoc 2005;105:428–440.

    CAS  Google Scholar 

  94. Fortin PR, Lew RA, Liang MH, et al. Validation of a meta-analysis: The effects of fish oil in rheumatoid arthritis. J Clin Epidemiol 1995;48:1379–1390.

    CAS  Google Scholar 

  95. MacLean CH, Mojica WA, Morton SC, et al. Effects of omega-3 fatty acids on lipids and glycemic control in type II diabetes and the metabolic syndrome and on inflammatory bowel disease, rheumatoid arthritis, renal disease, systemic lupus erythematosus, and osteoporosis. Evid Rep Technol Assess (Summ) 2004;(89):1–4.

    Google Scholar 

  96. Kremer JM, Lawrence DA, Petrillo GF, et al. Effects of high-dose fish oil on rheumatoid arthritis after stopping nonsteroidal antiinflammatory drugs. clinical and immune correlates. Arthritis Rheum 1995;38:1107–1114.

    CAS  Google Scholar 

  97. Lau CS, Morley KD, Belch JJ. Effects of fish oil supplementation on non-steroidal anti-inflammatory drug requirement in patients with mild rheumatoid arthritis-a double-blind placebo controlled study. Br J Rheumatol 1993;32:982–989.

    CAS  Google Scholar 

  98. Geusens P, Wouters C, Nijs J, Jiang Y, Dequeker J. Long-term effect of omega-3 fatty acid supplementation in active rheumatoid arthritis. A 12-month, double-blind, controlled study. Arthritis Rheum 1994;37:824–829.

    CAS  Google Scholar 

  99. Barber MD, Ross JA, Voss AC, Tisdale MJ, Fearon KC. The effect of an oral nutritional supplement enriched with fish oil on weight-loss in patients with pancreatic cancer. Br J Cancer 1999;81:80–86.

    CAS  Google Scholar 

  100. Hardman WE, Moyer MP, Cameron IL. Consumption of an omega-3 fatty acids product, INCELL AAFA, reduced side-effects of CPT-11 (irinotecan) in mice. Br J Cancer 2002;86:983–988.

    CAS  Google Scholar 

  101. Hardman WE, Moyer MP, Cameron IL. Dietary fish oil sensitizes A549 lung xenografts to doxorubicin chemotherapy. Cancer Lett 2000;151:145–151.

    CAS  Google Scholar 

  102. Hardman WE, Moyer MP, Cameron IL. Fish oil supplementation enhanced CPT-11 (irinotecan) efficacy against MCF7 breast carcinoma xenografts and ameliorated intestinal side-effects. Br J Cancer 1999;81:440–448.

    CAS  Google Scholar 

  103. Rose DP, Connolly JM. Omega-3 fatty acids as cancer chemopreventive agents. Pharmacol Ther 1999;83:217–244.

    CAS  Google Scholar 

  104. Chajes V, Hulten K, Van Kappel AL, et al. Fatty-acid composition in serum phospholipids and risk of breast cancer: An incident case-control study in sweden. Int J Cancer 1999;83:585–590.

    CAS  Google Scholar 

  105. Hursting SD, Thornquist M, Henderson MM. Types of dietary fat and the incidence of cancer at five sites. Prev Med 1990; 19:242–253.

    CAS  Google Scholar 

  106. Prener A, Storm HH, Nielsen NH. Cancer of the male genital tract in circumpolar inuit. Acta Oncol 1996;35:589–593.

    CAS  Google Scholar 

  107. Hughes-Fulford M, Li CF, Boonyaratanakornkit J, Sayyah S. Arachidonic acid activates phosphatidylinositol 3-kinase signaling and induces gene expression in prostate cancer. Cancer Res 2006;66:1427–1433.

    CAS  Google Scholar 

  108. Kobayashi M, Tsubono Y, Otani T, et al. Fish, long-chain n-3 polyunsaturated fatty acids, and risk of colorectal cancer in middle-aged japanese: The JPHC study. Nutr Cancer 2004;49:32–40.

    CAS  Google Scholar 

  109. MacLean CH, Newberry SJ, Mojica WA, et al. Effects of omega-3 fatty acids on cancer risk: A systematic review. JAMA 2006;295:403–415.

    CAS  Google Scholar 

  110. Laviano A, Meguid MM, Rossi-Fanelli F. Improving food intake in anorectic cancer patients. Curr Opin Clin Nutr Metab Care 2003;6:421–426.

    Google Scholar 

  111. Laviano A, Meguid MM, Rossi-Fanelli F. Cancer anorexia: Clinical implications, pathogenesis, and therapeutic strategies. Lancet Oncol 2003;4:686–694.

    CAS  Google Scholar 

  112. Dewys WD, Begg C, Lavin PT, et al. Prognostic effect of weight loss prior to chemotherapy in cancer patients. eastern cooperative oncology group. Am J Med 1980;69:491–497.

    CAS  Google Scholar 

  113. Fearon KC, Barber MD, Falconer JS, McMillan DC, Ross JA, Preston T. Pancreatic cancer as a model: Inflammatory mediators, acute-phase response, and cancer cachexia. World J Surg 1999;23:584–588.

    CAS  Google Scholar 

  114. Meydani SN, Lichtenstein AH, Cornwall S, et al. Immunologic effects of national cholesterol education panel step-2 diets with and without fish-derived N-3 fatty acid enrichment. J Clin Invest 1993; 92:105–113.

    CAS  Google Scholar 

  115. Wigmore SJ, Fearon KC, Maingay JP, Ross JA. Down-regulation of the acute-phase response in patients with pancreatic cancer cachexia receiving oral eicosapentaenoic acid is mediated via suppression of interleukin-6. Clin Sci (Lond) 1997;92:215–221.

    CAS  Google Scholar 

  116. Salem N, Jr, Litman B, Kim HY, Gawrisch K. Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids 2001;36:945–959.

    CAS  Google Scholar 

  117. Pepe S, McLennan PL. Cardiac membrane fatty acid composition modulates myocardial oxygen consumption and postischemic recovery of contractile function. Circulation 2002;105:2303–2308.

    CAS  Google Scholar 

  118. Kang JX, Xiao YF, Leaf A. Free, long-chain, polyunsaturated fatty acids reduce membrane electrical excitability in neonatal rat cardiac myocytes. Proc Natl Acad Sci USA 1995;92:3997–4001.

    CAS  Google Scholar 

  119. Leaf A. The electrophysiologic basis for the antiarrhythmic and anticonvulsant effects of n-3 polyunsaturated fatty acids: Heart and brain. Lipids 2001;36 Suppl:S107–S110.

    CAS  Google Scholar 

  120. Leigh-Firbank EC, Minihane AM, Leake DS, et al. Eicosapentaenoic acid and docosahexaenoic acid from fish oils: Differential associations with lipid responses. Br J Nutr 2002;87:435–445.

    CAS  Google Scholar 

  121. Tapiero H, Ba GN, Couvreur P, Tew KD. Polyunsaturated fatty acids (PUFA) and eicosanoids in human health and pathologies. Biomed Pharmacother 2002;56:215–222.

    CAS  Google Scholar 

  122. Moyad MA. An introduction to dietary/supplemental omega-3 fatty acids for general health and prevention: Part I. Urol Oncol 2005;23:28–35.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Dobs, A.S., Edelstein, D. (2008). Evaluating the Biological Activity and Effects on Human Health of Fish Oil and Its Omega-3 Fatty Acids. In: De Meester, F., Watson, R.R. (eds) Wild-Type Food in Health Promotion and Disease Prevention. Humana Press. https://doi.org/10.1007/978-1-59745-330-1_15

Download citation

Publish with us

Policies and ethics