Skip to main content

Chia as a New Source of ω-3 Fatty Acids

Nutritional Comparison with Other Raw Materials and Its Advantages When Producing ω-3 Enriched Eggs

  • Chapter
Wild-Type Food in Health Promotion and Disease Prevention

Abstract

In pre-Columbian times chia was one of the basic foods of Central American civilizations, following corn and beans in terms of importance, but being more important than Amaranth. Tenochtitlan, the capital of the Aztec Empire, received between 5,000 and 15,000 tons of chia as an annual tribute from conquered nations. Chia seed was not used just as a food, but also offered to the Aztec gods. Today there are ω-3 enriched eggs on the market that are produced by adding flaxseed, chia seed, fish oil/meal or marine algae to the hen’s diet. The purpose of this paper is to compare chia with these other raw materials. Available information suggests that the level of ω-3 found in chia eggs could not be reached using flax, fish oil or algae based diets without negatively affecting the hens and/or one or more of the intrinsic characteristics of eggs. In all cases a limiting factor when feeding high percentages of the other ω-3 sources is flavor, smell and/or atypical texture transmitted by these products to the eggs. In the case of flax production also decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Codex Mendoza. Editon of Francisco del Paso y Troncoso. Mexico D.F., Mexico: Museo Nacional de Arqueología, Historia y Etnografía 1542, 1825.

    Google Scholar 

  2. Sahagún, B. de. Historia general de las cosas de Nueva España. Santa Fe, USA: Reprinted by School of American Research 1579, 1982.

    Google Scholar 

  3. Díaz del Castillo, B. La verdadera historia de la conquista de México. London, UK: Ed. J. Wright and J. Dead, trans. M. Keatinge 1800, 1568.

    Google Scholar 

  4. Ayerza R(h), Coates W. Chia: rediscovering a forgotten crop of the Aztecs. Tucson, Arizona, USA: The University of Arizona Press 2005.

    Google Scholar 

  5. Ayerza R(h), Coates W. New industrial crops: Northwestern Argentina Regional Project:. In: Janick JJ ed. Progress in New Crops. Alexandria, Virginia, ASHS Press, 1996, pp. 46–51.

    Google Scholar 

  6. Coates W, Ayerza R(h). Commercial production of chia in Northwestern Argentina. J Am Oil Chem Soc. 1998;10:1417–1420.

    Article  Google Scholar 

  7. Coates W, Ayerza R(h). Production potential of chia in Northwestern Argentina. Ind Crops Prod. 1996;5:229–233.

    Article  Google Scholar 

  8. Ayerza R(h). Oil Content and Fatty Acid Composition of Chia (Salvia hispanica L.) from Five Northwestern Locations in Argentina. J Am Oil Chem Soc 1995;72:1079–1081.

    Article  CAS  Google Scholar 

  9. Oomah BD, Kenaschuk EO. Cultivars and agronomic aspects. In: Cunnane SC, LU Thompson, eds. Flaxseed in Human Nutrition. Champaign, Illinois, American Oil Chemists’ Society Press 1995, pp. 43–45.

    Google Scholar 

  10. Harper CR, Edwards MJ, DeFilipis AP, Jacobson TA. Flaxseed oil increases the plasma concentrations of cardioprotective (n-3) fatty acids in humans. J Nutr 2006;136:83–87.

    CAS  Google Scholar 

  11. Brenna JT. Efficiency of conversion of α-linolenic acid to long chain n-3 fatty acids in man. Curr Opin Clin Nutr 2002;5:127–132.

    Article  CAS  Google Scholar 

  12. Billeaud C, Bouglé D, Sarda P, et al. Effects of pre term infant formula supplementation with alphalinolenic acid with a linoleate/alpha-linolenate ratio of 6:1: a multicentric study. Eur J Clin Nutr 1997;51:520–526.

    Article  CAS  Google Scholar 

  13. Ayerza R(h), Coates W. Effect of ground chia seed and chia oil on plasma total cholesterol, LDL, HDL, triglyceride content, and fatty acid composition when fed to rats. Nutr Res 2005;25:995–1003.

    Article  CAS  Google Scholar 

  14. Ayerza R(h), Coates W. Dietary levels of chia: influence on yolk cholesterol, lipid content and fatty acid composition, for two strains of hens. Poultry Sci 2000;78:724–739.

    Google Scholar 

  15. Simopoulos AP. Omega-3 fatty acids in plants, nuts and seeds. Asia Pac J Clin Nutr 2002;Suppl 6: S163–S173.

    Google Scholar 

  16. Lauritzen L, Hansen HS, Jorgensen MH, Michaelson KF. The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog Lipid Res. 2001; 40:1–94.

    Article  CAS  Google Scholar 

  17. Kwok T, Woo J, Ho S, Sham A. Vegetarianism and ischemic heart disease in older Chinese women. J Am Coll Nutr 2000;5:622–627.

    Google Scholar 

  18. Li D, Sinclair A, Wilson A, Nakkote S, Kelly F, Abedin L, Mann N, Turner A. Effect of dietary alphalinolenic acid on thrombotic risk factors in vegetarian men. Am J Clin Nutr 1999;69:872–882.

    CAS  Google Scholar 

  19. Paschos GK, Rallidis LS, Liakos GK, Pangiotakos D, Anastasiadis G, Votteas V, Zampelas A. Background diet influences the anti-inflammatory effect of α-linolenic acid in dyslipidaemic subjects. Brit J Nutr 2004;92:649–655.

    Article  CAS  Google Scholar 

  20. Albert CM, Oh K, Whang W, Manson JE, Chae CU, Stampfer MJ, Willett WC, Hu FB. Dietary α-linolenic acid intake and risk of sudden cardiac death and coronary heart disease. Circulation 2005; 112:3232–3238.

    Article  CAS  Google Scholar 

  21. Goyens PLL, Mensink RP. The dietary α-linolenic acid to linoleic acid ratio does not affect the serum lipoprotein profile in humans. J Nutr 2005;135:2799:804.

    CAS  Google Scholar 

  22. Djoussé L, Arnett DK, Carr JJ, et al. Dietary linolenic acid is inversely associated with calcified atherosclerotic plaque in coronary arteries: The National Heart Lung, and Blood Institute family heart study. Circulation 2005;111:2921–2926.

    Article  CAS  Google Scholar 

  23. Djoussé L, Arnett DK, Pankow JS, Hopkins PN, Province MA, Ellison RC. Dietary linolenic acid is associated with a lower prevalence of hypertension in the NHLBI Family Heart Study. Hypertension 2005;45:368–373.

    Article  CAS  Google Scholar 

  24. Djoussé L, Folsom AR, Province MA, Hunt SH, Ellison RC. Dietary linolenic acid and carotid atherosclerosis: The National Heart, Lung, and Blood Institute family heart study. Am J Clin Nutr 2003;77:818–825.

    Google Scholar 

  25. Mozaffarian D, Ascherio A, Hu FB, Stampfer MJ, Willett WC, Siscovick DS, Rimm EB. Interplay between different polyunsaturated fatty acids and risk of coronart heart disease in men. Circulation 2005;111:157–164.

    Article  CAS  Google Scholar 

  26. Rallidis LS, Paschos G, Papaioannou ML, et al. The effect of diet enriched with α-linolenic acid on soluble cellular adhesion molecules in dyslipidaemic patients. Atherosclerosis 2004;1:127–132.

    Article  CAS  Google Scholar 

  27. Rallidis LS, Paschos G, Liakos GK, Velissaridou AH, Anastasiadis G, Zampelas A. Dietary α-linolenic dcreases C-reactive protein, serum amylid A and interleukin-6 in dyslipidaemic patients. Atherosclerosis 2003;167:237–242.

    Article  CAS  Google Scholar 

  28. Zhao G, Etherton TD, Martin KR, West SG, Gillies PJ, Kris-Etherton PN. Dietary α-linolenic acid reduces inflammatory and lipid cardiovascular risk factors in hypercholesterolemic men and women. J Nutr 2004;134:2991–2997.

    CAS  Google Scholar 

  29. Baylin, A, Kabagambe EK, Ascherio A, Spiegelman D, Campos H. Adipose tissue α-linolenic acid and non-fatal acute myocardial infarction in Costa Rica. Circulation 2003;107:1586–1591.

    Article  CAS  Google Scholar 

  30. Bemelmans WJE, Broer J, Feskens EJM, et al. Effect of an increased intake of 18:3n-3 acid and group nutritional education on cardiovascular risk factors: the Mediterranean alpha-linolenic enriched Groningen dietary intervention (MARGARIN) study. Am J Clin Nutr 2002;75:221–227.

    CAS  Google Scholar 

  31. Singh RB, Dubnov G, Niaz MA, et al. Effect of an Indo-Mediterranean diet on progression of coronary artery disease in high risk patients (Indo-Mediterranean Diet Heart Study): a randomised singleblind trial. Lancet 2002;360:1455–1461.

    Article  Google Scholar 

  32. Okuyama H. High n-6 to n-3 ratio of dietary fatty acids rather than serum cholesterol as a major risk factor for coronary heart disease. Eur J Lipid Sci Technol 2001; 103:418–422.

    Article  CAS  Google Scholar 

  33. Mantzioris E, Cleland LG, Gibson RA, Neumann MA, Demasi M, James MJ. Biochemical effects of a diet containing foods enriched with n-3 fatty acids. Am J Clin. Nutr 2000;72:42–48.

    CAS  Google Scholar 

  34. Hu FB, Stampfer MJ, Manson JE, et al. Dietary intake of alpha-linolenic acid and risk of fatal ischemic heart disease among women. Am J Clin Nutr 1999;69:890–897.

    CAS  Google Scholar 

  35. Lorgeril Mde, Salen P, Martin JL, Monjaud I, Delaye J, Mamelle N. Mediterranean diet, traditinal risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study. Circulation 1999;99:779–785.

    Google Scholar 

  36. Lorgeril Mde, Renaud S, Mamelle N, et al. Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet 1994;343:1454–1459.

    Article  Google Scholar 

  37. Loria RM, Padgett DA. Alpha-linolenic acid prevents the hypercholesteremic effects of cholesterol addition to a corn oil diet. Nutr Biochem 1997;8:140–146.

    Article  CAS  Google Scholar 

  38. Ascherio A, Rimm EB, Giovanucci EL, Spiegelman D, Stampfer M, Willett WC. Dietary fat and risk of coronary heart disease in men:cohort follow up study in the United States. Brit Med J 1996;313: 84–90.

    CAS  Google Scholar 

  39. Indu M, Ghafoorunissa M. N-3 fatty acids in Indian diets-comparison of the effects of precursor (Alpha-linolenic acid) vs. long chain n-3 polyunsaturated fatty acids. Nutr Res 1992;12:569–582.

    Article  CAS  Google Scholar 

  40. Renaud S, Godsey F, Dumont E, Thevenson C, Ortchanian E, Martin JL. Influence of long-term diet modification on platelet function and composition in Moselle farmers. Am J Clin Nutr 1986;43:136–150.

    CAS  Google Scholar 

  41. Renaud S, Morazain R, Godsey F, et al. Nutrients, platelet function and composition in nine groups of French and British farmers. Atherosclerosis 1986;60:37–48.

    Article  CAS  Google Scholar 

  42. Sugihara N, Tsuruta Y, Date Y, Furuno K, Kohashi K. High peroxidative susceptibility of fish oil polyunsaturated fatty acid in cultured rat hepatocytes. Toxicol Appl Pharm 1994; 126:124–128.

    Article  CAS  Google Scholar 

  43. Cho SY, Mayashita K, Miyazawa T, Fujimoto K, Kaneda T. Autoxidation of ethyl eicosapentaenoate and docosahexaenoate. J Am Oil Chem Soc 1987;64:876–879.

    Article  CAS  Google Scholar 

  44. Song JH, Fujimoto K, Miyazawa T. Polyunsaturated (n-3) fatty acids suceptible to peroxidation are increased in plasma and tissue lipids of rats fed docosahexaenoic acid-containing oils. J Nutr 2000;130:3028–3033.

    CAS  Google Scholar 

  45. Okuyama H, Kobayashi T, Watanabe S. Dietary fatty acids-the n-6/n-3 balance and chronic elderly diseases excess linoleic acid and relative n-3 deficiency syndrome seen in Japan. Prog Lipid Res 1997;4:409–457.

    Google Scholar 

  46. Brown BG, Zhao XQ, Chait A, et al. Simvastatin and niacion, antioxidant vitamins, or the combination for the prevention of coronary disease. New Engl J Med. 2001; 22:1583–1592.

    Article  Google Scholar 

  47. Leeson S, Caston L, MacLaurin T. Organoleptic evaluation of eggs produced by laying hens fed diets containing graded levels of flaxseed and vitamin E. Poultry Sci 1998;77:1436–1440.

    CAS  Google Scholar 

  48. Simopoulos AP. Essential fatty acids in health and chronic disease. Am J Clin Nutr. 1999;3: 560S–569S.

    Google Scholar 

  49. Thies F, Nebe-von Caron G, Powel JR, Yagoob P, Newsholme EA, Calder P. Dietary supplementation with eiosapentaenoic acid, but not with other long-chain n-3 or n-6 polyunsaturated fatty acids, decreases natural killer ell activity in healthy subjects aged >55 y. Am J Clin Nutr 2001;73:539–548.

    CAS  Google Scholar 

  50. Lewis CE, McGee JO. Natural killer cells in tumor biology. In: Lewis CE, McGee JO, eds. The natural killer cells. Oxford, UK, Oxford University Press, 1992, pp. 175–203.

    Google Scholar 

  51. Simopoulos AP. Omega-6/Omega-3 essential fatty acid ratio and chronic diseases. Food Rev Int 2004;1:87–90.

    Google Scholar 

  52. Simopoulos AP. General recommendations on dietary fats for human consumption. In: Galli C, Simopoulos AP, eds. Dietary ω-3 and ω-6 fatty acids: biological effects and nutritional essentiality. New York, New York, NATO Scientific Affairs Division and Plenum Press, 1989, pp. 403–404.

    Google Scholar 

  53. Lorgeril Mde, Salen P. Dietary prevention of coronary heart disease: focus on omega-6/omega-3 essential fatty acid balance. In: Simopoulos AP, Cleland LG, eds. Omega-6/Omega-3 Essential Fatty Acid Ratio: The Scientific Evidence. Basel, Switzerland. Karger AG, 2003, pp. 57–73.

    Chapter  Google Scholar 

  54. Simopoulos AP, and Robinson, J. The omega plan. New York, Harper Collins Publishers, 1998.

    Google Scholar 

  55. British Nutrition Foundation. Unsaturated fatty acids: nutritional and physiological significance. London, England, British Nutrition Foundation’s Task Force 1992.

    Google Scholar 

  56. Institute of Medicine. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. Washington DC, Institute of Medicine of The National Academies, The National Academies Press, 2002.

    Google Scholar 

  57. Food and Agricultural Organization. Fats and oils in human nutrition: report of a joint expert consultation. FAO, Rome, Food and Agricultural Organization, Food and Nutrition Paper N:57, 1994.

    Google Scholar 

  58. Canada_[dept of] Health and Welfare. Nutrition recommendation. Ottawa, Canada, Canadian Government Publishing Center, 1990.

    Google Scholar 

  59. Institute of Medicine. Nutrient composition of rations for short-term, high-intensity combat operations. Washington DC, Institute of Medicine of The National Academies, The National Academies Press, 2005.

    Google Scholar 

  60. Koletzko B, Barker S, Cleghorn G, et al. Global standard for the composition of infant formula: recommendations of an ESPGHAN coordinated international expert group. J Pediatr Gastr Nutr 2005; 41: 584–599.

    Article  Google Scholar 

  61. Marin MC, Sanjurjo A, Rodrigo MA, Alaniz MJT. Long-chain polyunsaturated fatty acids in breast milk in La Plata, Argentina: relationship with maternal nutritional status. Prostag Leukotr Med 2005; 73:355–360.

    CAS  Google Scholar 

  62. Krasevec JM, Jones PJ, Cabrera-Hernandez A, Mayer DL, Connor WE. Maternal and infant fatty acid status in Havana, Cuba. Am J Clin Nutr 2002;76:834–844.

    CAS  Google Scholar 

  63. Glew RH, Huang YS, Vander-Jagt TA, et al. Fatty acid composition of the milk lipids of Nepalese women: correlation between fatty acid composition of serum phospholipids and melting point. Prostag Leukotr Med. 2001;3:147–156.

    Google Scholar 

  64. Vander-Jag DJ, Arndt CD, Okolo SN, Huang YS, Chuang LT, Glew RH. Fatty acid composition of the milk lipid of Fulani women and the serum phospholipids of their exclusivity breast-fed infants. Early Hum Dev 2000;60:73–87.

    Article  Google Scholar 

  65. Jensen RG, Lammi-Keefe CL. Current status of research on the composition of bovine and human milk lipids. In: Huang YS, Sinclair AJ. eds. Lipids in Infant Nutrition. Champaign, Illinois, American Oil Chemists’ Society Press, 1998, pp. 168–191.

    Google Scholar 

  66. Yonekubo A, Katoku Y, Kanno T, Yamada M, Kuwata T, Sawa A, Kobayashi A. Effects of cholesterol and nucleotides in infant formula on lipid composition of plasma and red blood cell membrane in early infancy. In: Huang YS, Sinclair AJ, eds. Lipids in Infant Nutrition. Champaign, Illinois, American Oil Chemists’ Society Press, 1998, pp. 156–167.

    Google Scholar 

  67. Kuipers RS, Fokkema MR, Smit EN, Meulen J, Boersma ER, Muskiet FAJ. High contents of both docosahexaenoic and arachidonic acids in milk of women consuming fish from lake Kitangiri (Tanzania) targets for infant formulae close to our ancient diet? Prostag Leukotr Med 2005;72:279–288.

    Article  CAS  Google Scholar 

  68. Jensen CL, Maude M, Anderson RE, Heird WC. Effect of docosahexaenoic acid supplementation of lactating women on the fatty acid composition of breast milk lipids and maternal and infant plasma phospholipids. Am J Clin Nutr 2000;71(suppl):292S–299S.

    CAS  Google Scholar 

  69. Nettleton JA. ω-3 fatty acids and helth. New York, New York, Chapman & Hall, 1995.

    Google Scholar 

  70. Nettleton JA. Fats and oils in human nutrition: report of a joint expert consultation. Rome, Italy: Food and Agricultural Organization, Food and Nutrition Paper, 1994, 57:pp. 2–6.

    Google Scholar 

  71. Simopoulos, AP and Salem N Jr. Egg yolk as a source of long chain polyunsaturated fatty acids in infant feeding. Am J Clin Nutr 1992;55:411–414.

    CAS  Google Scholar 

  72. Ferrier LK, Caston L, Leeson S, Squires J, Weaver BJ, Holub BJ. α-linolenic acid and docosahexaenoic acid-enriched eggs from hens fed flaxseed: influence on blood lipids and platelet phospholipid fatty acids in humans. Am J Clin Nutr 1995;62:81–86.

    CAS  Google Scholar 

  73. Sim JS, Jiang Z. Consumption of ω-3 PUFA enriched eggs and changes of plasma lipids in human subjects. In: Sim JS, Nakai S, eds. Egg uses and Processing technologies. Wallingford, England, CAB International, 1994, pp. 414–420.

    Google Scholar 

  74. Ferrier LK, Caston L, Leeson S, Squires EJ, Celi B, Thomas L, Holub BJ. Changes in serum lipids and platelet fatty acid composition following consumption of eggs enriched in alpha-linolenic acid (LnA). Food Res Int 1992;25:263–268.

    Article  CAS  Google Scholar 

  75. Oh SY, Ryue J, Hsieh CH, Bell DE. Eggs enriched in ω-3 fatty acids and alterations in lipid concentrations in plasma and lipoproteins in lipid concentrations in plasma and lipoproteins and in blood pressure. Am J Clin Nutr 1991;54:689–695.

    CAS  Google Scholar 

  76. Van Elswyk ME, Hatch SD, Stella GG, Mayo PK, Kubena KS. Eggs as functional foods alternative to fish and supplements for the consumption of DHA. In: Sim JS, Nakai S, Guenter W, eds. Egg Nutrition and Technology edited by. Wallingford, Oxon, CAB International, 2000, pp. 121–133.

    Google Scholar 

  77. Ayerza R(h), Coates W. An omega-3 fatty acid enriched chia diet: its influence on egg fatty acid composition, cholesterol and oil content. Can J Anim Sci 1999;79:53–58.

    CAS  Google Scholar 

  78. Katan M, Zock P, Mensink R. Dietary oils, serum lipoproteins, and coronary heart disease. Am J Clin Nutr 1995;suppl: 1368–1373.

    Google Scholar 

  79. Nelson GJ. Dietary Fatty Acids and Lipid Metabolism. In: Chow CK, ed. Fatty acids in foods and their health implications. New York, New York, Marcel Dekker Inc., 1992, pp. 437–471.

    Google Scholar 

  80. Groundy, SM. What is the desirable ratio of saturated, polyunsaturated, and monounsaturated fatty acids in the diet? In: Rivlin RS, ed. Fats and oil consumption in health and disease. Proceedings of a Symposium held at The Rockefeller University, April 24–25, 1995. Am J Clin Nutr 1997;66(4s): 988–990.

    Google Scholar 

  81. Bonanome A, Grundy SM. Effect of dietary stearic acid on plasma cholesterol and lipoprotein levels. New Engl J Med 1988;318:1244–1248.

    Article  CAS  Google Scholar 

  82. Ayerza R(h), Coates W, Lauria M. Chia as an ω-3 fatty acid source for broilers: influence on fatty acid composition, cholesterol and fat content of white and dark meat, on growth performance and on meat flavor. Poultry Sci 2002;81:826–837.

    CAS  Google Scholar 

  83. Ayerza R(h), Coates W. The omega-3 enriched eggs: the influence of dietary linolenic fatty acid source combination on egg production and composition. Can J Anim Sci 2001;81:355–362.

    CAS  Google Scholar 

  84. Neely E. Dietary modification of egg yolk lipids. Thesis. School of Agriculture and Food Science. Northern Ireland, The Queen’s University of Belfast, 1999.

    Google Scholar 

  85. Azcona JO, Schang MJ, Garcia P, Gallinger C, Suarez D, Lamelas K, Mallo G. Evalucion de distintas fuentes de acidos grasos omega-3 en dietas para pollos parrilleros. Pergamino, Argentina: Proyecto INTA 52-0106, INTA, 2005.

    Google Scholar 

  86. Ajuyah AO, Hardin RT, Sim JS. Effect of dietary full fat flaxseed and without antioxidant on the fatty acid composition of major lipid classes of chicken meats. Poultry Sci 1993;72:125–136.

    CAS  Google Scholar 

  87. Lessire M, Doreau M, Aumaitre A. Digestive and metabolic utilization of fats in domestic animals. In: Karleskind A, ed. in Oils and fats manual. Paris, France, Lavoisier Publishing, 1996, pp. 703–713.

    Google Scholar 

  88. Chang NW, Huang PC. Effects of the ratio of polyunsaturated and monounsaturated fatty acid to saturated fatty acid on rat plasma and liver lipid concentrations. Lipids 1998;5:481–487.

    Article  Google Scholar 

  89. Wander RC, Hall JA, Gradin JL, Du SH, Jewell DE. The ratio of dietary (n-6) to (n-3) fatty acids influences immune system function, eicosanoid metabolism, lipid peroxidation and vitamin E status in aged dogs. J Nutr 1997;127:1198–1205.

    CAS  Google Scholar 

  90. Porsgaard T, Høy CE. Lymphatic transport in rats of several dietary fats differing in fatty acid profile and triacyglycerol structure. J Nutr 2000; 130:1619–1624.

    CAS  Google Scholar 

  91. Straarup EM, Høy CE. Structured lipids improve fat absorption in normal and malabsorbing rats. J Nutr 2000;130:2802–2808.

    CAS  Google Scholar 

  92. Innis SM, Dyer R. Dietary triacygycerols with palmitic acid (16:0) in the 2-position increase 16:0 in the 2-position of plasma and chylomicron triacyglycerols, but reduce phospholipid arachidonic and docosahexaenoic acids, and alter cholesteryl ester metabolism in formula-fed piglets. J Nutr 1997; 127:1311–1319.

    CAS  Google Scholar 

  93. Ayamond WM, Van Elswyk ME. Yolk thiobarbituric acid reactive substances and n-3 fatty acids in response to whole and ground flaxseed. Poultry Sci 1995;74:1388–1394.

    Google Scholar 

  94. Botsoglou NA, Yannakopoulos AL, Fletouris DJ, Tserveni-Goussi AS, Psomas IE. Yolk fatty acid composition and cholesterol content in response to level and form of dietary flaxseed. J Agric Food Chem 1998;46:4652–4656.

    Article  CAS  Google Scholar 

  95. Okuyama H. High n-6 to n-3 ratio of dietary fatty acids rather than serum cholesterol as a major risk factor for coronary heart disease. Eur J Lipid Sci Tech 2001; 103:418–422.

    Article  CAS  Google Scholar 

  96. O’Keefe JH, Cordain, L. Cardiovascular disease resulting from a diet and lifestyle at odds with our paleolithic genome: how to become a 21st century hunter-gatherer. Mayo Clin Proc 2004;79: 101–108.

    Article  Google Scholar 

  97. Simopoulos AP. The importance of ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother. 2002;56:365–379.

    Article  CAS  Google Scholar 

  98. Rokka T, Alén K, Valaja J, Ryhönen E-L. The effect of a Camelina sativa enriched diet on the composition and sensory quality of hen eggs. Food Res Int 2002;35:253–256.

    Article  CAS  Google Scholar 

  99. Van Elswyk ME, Dawson PL, Sams AR. Dietary menhaden oil influences sensory characteristics and headspace volatiles of shell eggs. J Food Sci 1995;60:85–89.

    Article  Google Scholar 

  100. Caston LJ, Squires EJ, Leeson S. Hen performance, egg quality, and the sensory evaluation of eggs from SCWL hens fed dietary flax. Can J Anim Sci 1994;74:347–353.

    Article  Google Scholar 

  101. Jiang YH, McGeachin RB, Bailey CA. α-Tocopherol, β-carotene and retinol enrichment of chicken eggs. Poultry Sci 1994;73:1137–1143.

    CAS  Google Scholar 

  102. Van Elswyk ME, Sams AR, Hargis PS. Composition, functionality, and sensory evaluation of eggs from hens fed dietary menhaden oil. J Food Sci 1992;57:342–349.

    Article  Google Scholar 

  103. Adam RL, Pratt DE, Lin JH, Stadelman WJ. Introduction of omega-3 polyunsaturated fatty acid into eggs. Poultry Sci 1989;68 (SPSS Abstracts.): 166.

    Google Scholar 

  104. Koeheler HH, GE Bearse. Egg flavor quality as affected by fish meals or fish oils in laying rations. Poultry Sci 1975;54:881–889.

    Google Scholar 

  105. Marshall AC, Kubena KS, Hinton KR, Hargis PS, Van Elswyk ME. N-3 fatty acids enriched table eggs: a survey of consumer acceptability. Poultry Sci 1994;73:1334–1340.

    CAS  Google Scholar 

  106. Ayerza R(h), Coates W. Dietary levels of chia: influence on hen weight, egg production, and egg sensory quality. Brit Poultry Sci 2002;2:283–290.

    Article  Google Scholar 

  107. Shukla VKS, Wanasundra PKJPD, Shahidi F. Natural antioxidants from oilseeds. In: Shahidi F, ed. Natural Antioxidants. Champaign, Illinois, American Oil Chemists’ Press 1996, pp. 97–132.

    Google Scholar 

  108. International Flora Technologies. Oil of Chia. Apache Junction, Arizona, International Flora Technologies Inc 1990.

    Google Scholar 

  109. Castro-Martinez R, Pratt DE, Miller EE. Natural antioxidants of chia seeds. In Proceedings of The World Conference on Emerging Technologies in the Fats and Oils. Illinois, America Oil Chemists’ Society, Champaign, 1998, pp. 392–396.

    Google Scholar 

  110. Taga MS, Miller EE, Pratt DE. Chia seeds as a source of natural lipid antioxidants. J Am Oil Chem Soc 1984;61:928–931.

    Article  CAS  Google Scholar 

  111. Marshall AC, Sams AR, Van Elswyk ME. Oxidative stability and sensory quality of stored eggs from hens fed 1.5% menhaden oil. J Food Sci 1994;3:561–563.

    Article  Google Scholar 

  112. Sekine S, Kubo K, Tadokoro T, Maekawa A, Saito M. Dietary docosahexaenoic acid-induced production of tissue lipid peroxides is not suppressed by higher intake of ascorbic acid in genetically scorbutic osteogenic disorder Shionog/Shi-od/od rats. Brit J Nutr 2003;90:385–394.

    Article  CAS  Google Scholar 

  113. Shukla VKS, Perkins EG. Rancidity in encapsulated health-food oils. INFORM 1998;10:955–961.

    Google Scholar 

  114. Abril JR, Barclay WR, Abril PG. Safe use of microalgae (DHA GOLD) in laying hen feed for the production of DHA. enriched eggs. In: Sim JS, Nakai S, Guenter W, eds. Egg Nutrition and Technology. Wallingford, Oxon, CAB International, 2000, pp. 197–202.

    Google Scholar 

  115. Jiménez-Escrig A, Jiménez-Jiménez I, Pulido R, Saura-Calixto F. Antioxidant activity of fresh and processed edible seaweeds. J Sci Food Agr 2001;81:530–534.

    Article  Google Scholar 

  116. Ayerza R(h), Coates W, Slaugh B. Comparison of chia with other omega-3 sources for egg production. King of Prussia, Pennsylvania, Eggland’s Best, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ayerza, R. (2008). Chia as a New Source of ω-3 Fatty Acids. In: De Meester, F., Watson, R.R. (eds) Wild-Type Food in Health Promotion and Disease Prevention. Humana Press. https://doi.org/10.1007/978-1-59745-330-1_14

Download citation

Publish with us

Policies and ethics