Skip to main content

“Lab-on-a-Chip” Devices for Cellular Arrays Based on Dielectrophoresis

  • Chapter
Bioarrays

Abstract

Dielectrophoresis (DEP)-based lab-on-a-chip devices represent a very appealing approach for cell manipulation and will enable laboratory testing to move from laboratories into nonlaboratory settings. DEP-based lab-on-a-chip platforms involve the miniaturization of several complex chemical and physical procedures in a single microchip-based device, allowing the identification and isolation of cell populations or single cells, separation of cells exhibiting different DEP properties, isolation of infected from uninfected cells, and viable from nonviable cells. In addition, DEP-arrays allow cellomics procedures based on the parallel manipulation of thousands of cells. Arrayed lab-on-a-chip platforms are also suitable to study cell-cell interactions and cell targeting with programmed numbers of microspheres.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rhodes, D. R., and Chinnaiyan, A. M. (2002) DNA microarrays: implications for clinical medicine. J. Investig. Surg. 15, 275–279.

    Article  Google Scholar 

  2. Lian, Z., Kluger, Y., Greenbaum, D. S., et al. (2002) Genomic and proteomic analysis of the myeloid differentiation program: global analysis of gene expression during induced differentiation in the MPRO cell line. Blood 100, 3209–3220.

    Article  CAS  Google Scholar 

  3. Mendez, E., Cheng, C, Farwell, D. G., et al. (2002) Transcriptional expression profiles of oral squamous cell carcinomas. Cancer 95, 1482–1494.

    Article  CAS  Google Scholar 

  4. Schuppe-Koistinen, I., Frisk, A. L., and Janzon, L. (2002) Molecular profiling of hepato-toxicity induced by a aminoguanidine carboxylate in the rat: gene expression profiling. Toxicology 179, 197–219.

    Article  CAS  Google Scholar 

  5. Moos, P. J., Raetz, E. A., Carlson, M. A., et al. (2002) Identification of gene expression profiles that segregate patients with childhood leukemia. Clin. Cancer Res. 8, 3118–3130.

    CAS  Google Scholar 

  6. Tamiya, E., Zhi, Z. L., Morita, Y., and Hasan, Q. (2005) Nanosystems for biosensing: multianalyte immunoassay on a protein chip. Methods Mol. Biol. 300, 369–381.

    CAS  Google Scholar 

  7. Muller, T., Pfennig, A., Klein, P., Gradl, G., Jager, M. and Schnelle, T. (2003) The potential of dielectrophoresis for single-cell experiments. IEEE Eng. Med. Biol. Mag. 22, 51–61.

    Article  Google Scholar 

  8. Kricka, L. J. (2001) Microchips, microarrays, biochips and nanochips: personal laboratories for the 21st century. Clin. Chim. Acta 307, 219–223.

    Article  CAS  Google Scholar 

  9. Jain, K. K. (2002) Post-genomic applications of lab-on-a-chip and microarrays. Trends Biotechnol. 20, 184–185.

    Article  CAS  Google Scholar 

  10. Chovan, T., and Guttman, A. (2002) Microfabricated devices in biotechnology and bio-chemical processing. Trends Biotechnol. 20, 116–122.

    Article  CAS  Google Scholar 

  11. Jain, K. K. (2001) Cambridge Healthtech Institute’s Third Annual Conference on Lab-on-a-Chip and Microarrays. Pharmacogenomics 2, 73–77.

    Article  CAS  Google Scholar 

  12. Mouradian, S. (2002) Lab-on-a-chip: applications in proteomics. Curr. Opin. Chem. Biol. 6, 51–56.

    Article  CAS  Google Scholar 

  13. Polla, D. L., Erdman, A. G., Robbins, W. P., et al. (2000) Microdevices in medicine. Annu. Rev. Biomed. Eng. 2, 551–576.

    Article  CAS  Google Scholar 

  14. Hasselbrink, E. F., Shepodd, T. J., and Rehm, J. E. (2002) High-pressure microfluidic control in lab-on-a-chip devices using mobile polymer monoliths. Anal. Chem. 74, 4913–4918.

    Article  CAS  Google Scholar 

  15. Figeys, D. (2002) Adapting arrays and lab-on-a-chip technology for proteomics. Proteomics 2, 373–382.

    Article  CAS  Google Scholar 

  16. Weigl, B. H., and Hedine, K. (2002) Lab-on-a-chip-based separation and detection technology for clinical diagnostics. Am. Clin. Lab. 21, 8–13.

    Google Scholar 

  17. Wang, J., Pumera, M., Chatrathi, M. P., et al. (2002) Towards disposable lab-on-a-chip: poly(methylmethacrylate) microchip electrophoresis device with electrochemical detection. Electrophoresis 23, 596–601.

    Article  CAS  Google Scholar 

  18. Mouradian, S. (2002) Lab-on-a-chip: applications in proteomics. Curr. Opin. Chem. Biol. 6, 51–56.

    Article  CAS  Google Scholar 

  19. Gawad, S., Schild, L., and Renaud, P. H. (2001) Micromachined impedance spettroscopy flow cytometer for cell analysis and particle sizing. Lab Chip 1, 76–82.

    Article  CAS  Google Scholar 

  20. Pohl, H. A., and Crane, J. S. (1972) Dielectrophoretic force. J. Theor. Biol. 37, 1–13.

    Article  CAS  Google Scholar 

  21. Crane, J. S., and Pohl, H. A. (1972) Theoretical models of cellular dielectrophoresis. J. Theor. Biol. 37, 15–41.

    Article  CAS  Google Scholar 

  22. Voldman, J., Braff, R. A., Toner, M., Gray, M. L. and Schmidt, M. A. (2001) Holding forces of single-particle dielectrophoretic traps. Biophys. J. 80, 531–541.

    Article  CAS  Google Scholar 

  23. Gascoyne, P. R., and Vykoukal, J. (2002) Particle separation by dielectrophoresis. Electrophoresis 23, 1973–1983.

    Article  CAS  Google Scholar 

  24. Fiedler, S., Shirley, S. G., Schnelle, T., and Fuhr, G. (1998) Dielectrophoretic sorting of particles and cells in a microsystem. Anal. Chem. 70, 1909–1915.

    Article  CAS  Google Scholar 

  25. Morgan, H., Hughes, M. P., and Green, N. G. (1999) Separation of submicron bioparticles by dielectrophoresis. Biophys. J. 77, 516–525.

    CAS  Google Scholar 

  26. Gascoyne, P. R., Vykoukal, J. V., Schwartz, J. A., et al. (2004) Dielectrophoresis-based programmable fluidic processors. Lab Chip 4, 299–309.

    Article  CAS  Google Scholar 

  27. Huang, Y., Yang, J., Wang, X. B., Becker, F. F. and Gascoyne, P. R. (1999) The removal of human breast cancer cells from hematopoietic CD34+ stem cells by dielectrophoretic field-flow-fractionation. J. Hematother. Stem Cell Res. 8, 481–490.

    Article  CAS  Google Scholar 

  28. Yang, J., Huang, Y., Wang, X. B., Becker, F. F., and Gascoyne, P. R. (2000) Differential analysis of human leukocytes by dielectrophoretic field-flow-fractionation. Biophys. J. 78, 2680–2689.

    CAS  Google Scholar 

  29. Wang, X. B., Yang, J., Huang, Y., Vykoukal, J., Becker, F. F., and Gascoyne, P. R. (2000) Cell separation by dielectrophoretic field-flow-fractionation. Anal. Chem. 72, 832–839.

    Article  CAS  Google Scholar 

  30. Yang, J., Huang, Y., Wang, X. B., Becker, F. F., and Gascoyne, P. R. (1999) Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field-flow fractionation. Anal. Chem. 71, 911–918.

    Article  CAS  Google Scholar 

  31. Ogata, S., Yasukawa, T., and Matsue, T. (2001) Dielectrophoretic manipulation of a single chlorella cell with dual-microdisk electrode. Bioelectrochemistry 54, 33–37.

    Article  CAS  Google Scholar 

  32. Muller, T., Pfennig, A., Klein, P., Gradl, G., Jager, M., and Schnelle, T. (2003) The potential of dielectrophoresis for single-cell experiments. IEEE Eng. Med. Biol. Mag. 22, 51–61

    Article  Google Scholar 

  33. Medoro, G., Manaresi, N., Tartagni, M., Altomare, L., Leonardi, A. and Guerrieri, R. (2002) A lab-on-a-chip for cell separation based on the moving-cages approach. In: Proceedings of Eurosensors XVI. Prague, Czech Republic.

    Google Scholar 

  34. Manaresi, N., Romani, A., Medoro, G., et al. (2003) A CMOS chip for individual cell manipulation and detection. IEEE J. Solid-State Circuits 38, 2297–2304.

    Article  Google Scholar 

  35. Medoro, G., Manaresi, N., Tartagni, M., and Guerrieri, R. (2000) CMOS-only sensor and manipulator for microorganisms. IEEE International Electron Devices Meeting (IEDM) Technical Digest, pp. 415–418.

    Google Scholar 

  36. Wang, X. B., Huang, Y., Wang, X., Becker, F. F., and Gascoyne, P. R. Dielectrophoretic manipulation of cells with spiral electrodes. Biophys. J. 72, 1887–1899.

    Google Scholar 

  37. Gascoyne, P., Mahidol, C, Ruchirawat, M., Satayavivad, J., Watcharasit, P., and Becker, F.F. (2002) Microsample preparation by dielectrophoresis: isolation of malaria. Lab Chip 2, 70–75.

    Article  CAS  Google Scholar 

  38. Ermolina, I., and Morgan, H. (2005) The electrokinetic properties of latext particles: comparison of electrophoresis and dielectrophoresis. J. Colloid Interface Sci. 285, 419–428

    Article  CAS  Google Scholar 

  39. Altomare, L., Borgatti, M., Medoro, G., et al. (2003) Levitation and movement of human tumor cells using a printed circuit board device based on software-controlled dielectrophoresis. Biotechnol. Bioeng. 82, 474–479.

    Article  CAS  Google Scholar 

  40. Gambari, R., Borgatti, M., Altomare, L., et al. (2003) Applications to cancer research of “lab-on-a-chip” devices based on dielectrophoresis (DEP). Technol. Cancer Res. Treat. 2, 31–40.

    Google Scholar 

  41. Borgatti, M., Altomare, L., Baruffa, M., et al. (2005) Separation of white blood cells from erythrocytes on a dielectrophoresis (DEP) based Tab-on-a-chip’ device. Int. J. Mol. Med. 15, 913–920.

    CAS  Google Scholar 

  42. Medoro, G., Manaresi, N., Leonardi, A., Altomare, L., Tartagni, M., and Guerrieri, R. (2002) A lab-on-a-chip for cell detection and manipulation. In: Proceedings of IEEE Sensors Conference.

    Google Scholar 

  43. Huang, Y., Joo, S., Duhon, M., Heller, M., Wallace, B., and Xu, X. (2002) Dielectrophoretic cell separation and gene expression profiling on microelectronic chip arrays. Anal. Chem. 74, 3362–3371.

    Article  CAS  Google Scholar 

  44. Cheng, J., Sheldon, E. L., Wu, L., Heller, M. J., and O’Connell, J. P. (1998) Isolation of cultured cervical carcinoma cells mixed with peripheral blood cells on a bioelectronic chip. Anal. Chem. 70, 2321–2326.

    Article  CAS  Google Scholar 

  45. Xu, C, Wang, Y., Cao, M., and Lu, Z. (1999) Dielectrophoresis of human red cells in microchips. Electrophoresis 20, 1829–1831.

    Article  CAS  Google Scholar 

  46. Yu, Z., Xiang, G., Pan, L., et al. (2004) Negative dielectrophoretic force assisted construction of ordered neuronal networks on cell positioning bioelectronic chips. Biomed. Microdevices 6, 311–324.

    Article  CAS  Google Scholar 

  47. Markx, G. H., Talary, M. S., and Pethig, R. (1994) Separation of viable and non-viable yeast using dielectrophoresis. J. Biotechnol. 32, 29–37.

    Article  CAS  Google Scholar 

  48. Huang, Y., Holzel, R., Pethig, R., and Wang, X. B. (1992) Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies. Phys. Med. Biol. 37, 1499–1517.

    Article  CAS  Google Scholar 

  49. Gascoyne, P., Satayavivad, J., and Ruchirawat, M. (2004) Microfluidic approaches to malaria detection. Acta Trop. 89, 357–369.

    Article  Google Scholar 

  50. Bianchi, N., Chiarabelli, C, Borgatti, M., Mischiati, C, Fibach, E., and Gambari, R. (2001) Accumulation of gamma-globin mRNA and induction of erythroid differentiation after treatment of human leukaemic K562 cells with tallimustine. Br. J. Haematol. 113, 951–961.

    Article  CAS  Google Scholar 

  51. Mischiati, C, Sereni, A., Finotti, A., et al. (2004) Complexation to cationic microspheres of double-stranded peptide nucleic acid-DNA chimeras exhibiting decoy activity. J. Biomed. Sci. 11, 697–704.

    Article  CAS  Google Scholar 

  52. Borgatti, M., Altomare, L., Abonnec, M., et al. (2005) Dielectrophoresis (DEP) based’ labon-a-chip” devices for efficient and programmable binding of microspheres to target cells. Int. J. Oncol. 27, 1559–1566.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this chapter

Cite this chapter

Gambari, R. et al. (2007). “Lab-on-a-Chip” Devices for Cellular Arrays Based on Dielectrophoresis. In: Appasani, K., Southern, E.M. (eds) Bioarrays. Humana Press. https://doi.org/10.1007/978-1-59745-328-8_16

Download citation

Publish with us

Policies and ethics