Skip to main content

Epidemic Typhus Fever

  • Chapter
  • First Online:
Beyond Anthrax

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zanetti, G., Francioli, P., Tugan, D., et al. Imported epidemic typhus. Lancet 352, 1709, 1998.

    Article  PubMed  CAS  Google Scholar 

  2. Lutwick, L. I. Brill-Zinsser disease. Lancet 357, 1198–1200, 2001.

    Article  PubMed  CAS  Google Scholar 

  3. Osler, W. The Principles and Practice of Medicine, 3rd edn. D. Appleton and Co., New York, 1899.

    Google Scholar 

  4. Hirsch, A. Handbook of Geographical and Historical Pathology. Translated by Creighton, C. New Syndenham Society, London, 1885.

    Google Scholar 

  5. Retief, F. P. and Cilliers, L. The epidemics of Athens, 430-426 BC. S. Afr. Med. J. 88, 50–3, 1998.

    PubMed  CAS  Google Scholar 

  6. Zinsser, H. Rats, Lice and History. Little Brown, Boston, 1934.

    Google Scholar 

  7. Weiss, E. The role of rickettsioses in history. In: Biology of Rickettsial Diseases, vol. 1, Walker, D. H (ed). CRC Press, Boca Raton, pp.1, 1988.

    Google Scholar 

  8. Stephenson, C. S. Epidemic typhus fever and other rickettsial diseases of military importance. N. Engl. J. Med. 231, 407–413, 1944.

    Article  Google Scholar 

  9. Lasowski, E. S. and Matulewicz, S. Serendipitous discovery of artificial positive Weil–Felix reaction used in “primitive immunological war”. ASM News 43, 300–302, 1977.

    Google Scholar 

  10. Foster, G. M. Typhus disaster in the wake of war: the American-Polish relief expedition, 1919–1920. Bull. Hist. Med. 55, 221–232, 1981.

    Google Scholar 

  11. Davis, W. A. Typhus at Belsen. I. Control of the typhus epidemic. Am. J. Hyg. 46, 66–83, 1947.

    PubMed  CAS  Google Scholar 

  12. Gelston, A. L. and Jones, T. C. Typhus fever: report of an epidemic in New York City in 1847. J. Infect. Dis. 136, 813–821, 1977.

    Google Scholar 

  13. Raoult, D., Ndihokubwayo, J. B., Tissot-Dupont, H., et al. Outbreak of epidemic typhus associated with trench fever in Burundi. Lancet 352, 353–358, 1998.

    Article  PubMed  CAS  Google Scholar 

  14. Walker, D. H. Principles of the malicious use of infectious agents to create terror. Reasons for concern for organisms of the genus Rickettsia. Ann. N. Y. Acad. Sci. 990, 739–742, 2003.

    Article  Google Scholar 

  15. Walker, D. H., Valbuena, G. A., and Olano, J. P. Pathogenic mechanisms of diseases caused by Rickettsia. Ann. N. Y. Acad. Sci. 990, 1–11, 2003.

    Article  CAS  Google Scholar 

  16. Gaywee, J., Xu, W., Radulovic, S., et al. The Rickettsia prowazekii invasion gene homolog (invA) encodes a nudix hydrolase active on adenosine (5′)-pentaphospho-(5′)-adenosine. Mol. Cell. Proteomics 1, 179–185, 2002.

    Article  PubMed  CAS  Google Scholar 

  17. Heinzen, R. A., Grieshaben, S. S., Van Kirk, L. S., et al. Dynamics of actin-based movement of Rickettsia rickettsii in Vero cells. Infect. Immun. 67, 4201–4207, 1999.

    PubMed  CAS  Google Scholar 

  18. Andersson, S. G., Zomorodopour, A., Andersson, J. O. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396, 133–140, 1998.

    CAS  Google Scholar 

  19. Andersson, J. O. and Andersson, S. G. Pseudogenes, junk DNA, and the dynamics of rickettsial genomes. Mol. Biol. Evol. 18, 829–839, 2001.

    PubMed  CAS  Google Scholar 

  20. Ko, C. J. and Elston, D. M. Pediculosis. J. Am. Acad. Dermatol. 50, 1–12, 2004

    Article  PubMed  Google Scholar 

  21. Burgess, I. F. Human lice and their management. Adv. Parasitol. 36, 271–342, 1995.

    Article  PubMed  CAS  Google Scholar 

  22. Gross L. How Charles Nicolle of the Pasteur Institute discovered that epidemic typhus is transmitted by lice: reminiscences from my years at the Pasteur Institute in Paris. Proc. Natl. Acad. Sci. U.S.A. 93, 10539–10540, 1996.

    Article  PubMed  CAS  Google Scholar 

  23. Fournier, P. E., Ndihokubwayo, J. B., Guidran, J., et al. Human pathogens in body and head louse. Emerg. Infect. Dis. 8, 1515–1518, 2002.

    PubMed  Google Scholar 

  24. Elston, D. M. What’s eating you? Psocoptera (Book lice, Psocids) Cutis 64, 307–308, 1999.

    PubMed  CAS  Google Scholar 

  25. Patil, M. P., Niphadkar, P. V., and Bapat, M. M. Psocoptera spp. (book louse): a new major household allergen in Mumbai. Ann. Allergy Asthma Immunol. 87, 151–155, 2001.

    Article  PubMed  CAS  Google Scholar 

  26. Robinson, D., Leo, N., Prociv, P., and Barker, S. C. Potential role of head lice, Pediculus humanus capitus, a vector of Rickettsia prowazekii. Parasitol. Res. 90, 209–211, 2003.

    CAS  Google Scholar 

  27. Murray, E. S. and Torrey, S. B. Virulence of Rickettsia prowazekii for head lice. Ann. N. Y. Acad. Sci. 266, 25–34, 1975.

    Article  PubMed  CAS  Google Scholar 

  28. Bozeman, F. M., Masicllo, S. A., Williams, M. S., and Elisberg, B. L. Epidemic typhus isolated from flying squirrels. Nature 255, 545, 1975.

    Article  PubMed  CAS  Google Scholar 

  29. Sonenshine, D. E., Bozeman, F. M., Williams, M. S., et al. Epizootiology of epidemic typhus (Rickettsia prowazekii) in flying squirrels. Am. J. Trop. Med. Hyg. 27, 339–349, 1978.

    PubMed  CAS  Google Scholar 

  30. Massung, R. F., Davis, L. E., Slater, K., et al. Epidemic typhus meningitis in the southwestern United States. Clin. Infect. Dis. 32, 979–982, 2001.

    Article  PubMed  CAS  Google Scholar 

  31. Culpepper, G. H. The rearing and maintenance of a laboratory colony of the body louse. Am. J. Trop. Med. Hyg. 24, 327–329, 1944.

    Google Scholar 

  32. Houhamdi, L., Fournier, P.-E., Fang, R., et al. An experimental model of human body louse infection with Rickettsia prowazekii. J. Infect. Dis. 186, 1639–1646, 2002.

    Article  PubMed  Google Scholar 

  33. Raoult, D. and Roux, V. The body louse as a vector of reemerging human diseases. Clin. Infect. Dis. 29, 888–911, 1999.

    Article  PubMed  CAS  Google Scholar 

  34. Maunder, J. W. The appreciation of lice. Proc. R. Inst. Great Britain 55, 1–31, 1983.

    Google Scholar 

  35. Patterson, K. D. Typhus and its control in Russia, 1870–1940. Med Hist. 37, 361–381, 1993.

    Google Scholar 

  36. Mumcuoglu, K. Y., Miller, J., Manor, O., et al. The prevalence of ectoparasites in Ethiopian immigrants. Isr. J. Med. Sci. 29, 371–373, 1993.

    PubMed  CAS  Google Scholar 

  37. Fan, M. Y., Walker, D. H., Yu, S. R., and Liu, Q. H. Epidemiology and ecology of rickettsial diseases in the People’s Republic of China. Rev. Infect. Dis. 9, 823–840, 1987.

    Article  PubMed  CAS  Google Scholar 

  38. Tesfayohannes, T. Prevalence of body lice in elementary school students in three Ethiopian towns at different attitudes. Ethiop. Med. J. 27, 201–207, 1989.

    PubMed  CAS  Google Scholar 

  39. World Health Organization. A large outbreak of epidemic louse-borne typhus in Burundi. Wkly. Epidemiol Rec. 72, 152–153, 1997.

    Google Scholar 

  40. Raoult, D., Roux, V., Ndihokubwaho, J. B., et al. Jail fever (epidemic typhus) outbreak in Burundi. Emerg. Infect. Dis. 3, 357–360, 1997.

    Article  PubMed  CAS  Google Scholar 

  41. Mokrani , K., Fournier, P. E., Dalichaouche, M., et al. Reemerging threat of epidemic typhus in Algeria. J. Clin. Microbiol. 42, 3898–3900, 2004.

    Article  PubMed  CAS  Google Scholar 

  42. Badiaga, S., Brouqui, P., and Raoult, D. Autochthonous epidemic typhus associated with Bartonella quintana bacteremia in a homeless person. Am. J. Trop. Med. Hyg. 72, 638–639, 2005.

    PubMed  Google Scholar 

  43. Silverman, D. J., Boese, J. L., and Wissman Jr., C. L. Ultrastructural studies of Rickettsia prowazekii from louse midgut cells to feces: search for “dormant” forms. Infect. Immun. 10, 257–263, 1974.

    PubMed  CAS  Google Scholar 

  44. Regner, R. L., Yuan Fu, Z., and Spruill, C. L. Flying squirrel-associated Rickettsia prowazekii (epidemic typhus rickettsiae) characterized by a specific DNA fragment produced by restriction endonuclease digestion. J. Clin. Microbiol. 23, 189–191, 1986.

    Google Scholar 

  45. Eremeeva, M. E. and Silverman, D. J. Effects of the antioxidant α-lipoic acid on human umbilical vein endothelial cells infected with Rickettsia rickettsii. Infect. Immun. 66, 2290–2299, 1998.

    PubMed  CAS  Google Scholar 

  46. Winkler, H. H. and Miller, E. T. Immediate cytotoxicity and phospholipase A: the role of phospholipase A in the interaction of R. prowazekii and L cells. In: Rickettsiae and Rickettsial Diseases, Burgdorfer, W. and Anacker, R. L. (eds). Academic Press, New York. pp.327, 1981.

    Google Scholar 

  47. Renesto, P., Dehoux, P., Gouin, E., et al. Identification and characterization of a phospholipase D-superfamily gene in rickettsiae. J. Infect. Dis. 188, 1276–1283, 2003.

    Article  PubMed  CAS  Google Scholar 

  48. Walker, D. H. Pathology and pathogenesis of the vasculotropic rickettsioses. In: Biology of Rickettsial Disease, Walker, D. H. (ed.), CRC Press, Boca Raton. pp.115–1138, 1988.

    Google Scholar 

  49. Wolbach, S., Todd, J., and Palfrey, F. The Etiology and Pathology of Typhus. Harvard University Press, Cambridge, MA, 1922.

    Google Scholar 

  50. Perine, P. L., Chandler, B. P., Krause, D. K., et al. A clinico-epidemiological study of epidemic typhus in Africa. Clin. Infect. Dis. 14, 1149–1158, 1992.

    Article  PubMed  CAS  Google Scholar 

  51. Tsay, R.-W. and Chang, F.-Y. Acute respiratory distress syndrome in scrub typhus. Q. J. Med. 95, 126–128, 2002.

    CAS  Google Scholar 

  52. Park, J. S., Jee, Y. K., Lee, K. Y., et al. Acute respiratory distress syndrome associated with scrub typhus: diffuse alveolar damage without pulmonary vasculitis. J. Korean Med. Sci. 15, 343–345, 2000.

    PubMed  CAS  Google Scholar 

  53. Verghese, A. The “typhoid state” revisited. Am. J. Med. 79, 370–372, 1985.

    Article  PubMed  CAS  Google Scholar 

  54. Friedmann, I., Frohlich, A., and Wright A. Epidemic typhus fever and hearing loss: a histological study (Hall pike collection of temporal bone sections). J. Laryngol. Otol. 107, 275–283, 1993.

    PubMed  CAS  Google Scholar 

  55. Diab, S. M., Araj, G. F., and Fenech, F. F. Cardiovascular and pulmonary complications of epidemic typhus. Trop. Geogr. Med. 41, 76–79, 1989.

    PubMed  CAS  Google Scholar 

  56. Green, C., Fishbein, D., and Gleiberman, I. Brill-Zinsser: still with us. JAMA 264, 1811–1812, 1990.

    Article  PubMed  CAS  Google Scholar 

  57. Brill, N. E. An acute infectious disease of unknown origin. A clinical study based on 221 cases. Am. J. Med. Sci. 139, 484–502, 1910.

    Article  Google Scholar 

  58. Zinsser, H. Varieties of typhus fever and the epidemiology of the American form of European typhus fever (Brill’s disease). Am. J. Hyg. 20, 513–532, 1934.

    Google Scholar 

  59. Murray, E. S. and Snyder, J. C. Brill’s disease. II. Etiology. Am. J. Hyg. 53, 22–32, 1951.

    PubMed  CAS  Google Scholar 

  60. Price, W. H. Studies on the interepidemic survival of louse-borne epidemic typhus fever. J. Bacteriol. 69, 106–107, 1954.

    Google Scholar 

  61. Price, W. H., Emerson, H., Nagle, E., et al. Ecologic studies on the interepidemic survival of louse-borne epidemic typhus fever. Am. J. Hyg. 67, 155–178, 1958.

    Google Scholar 

  62. Smadel, J. E., Ley, H. L., Diercks, F. H., and Cameron, J. A. P. Persistence of Rickettsia tsutsugamushi in tissue of patients recovered from scrub typhus. Am. J. Hyg. 56, 294–302, 1952.

    PubMed  CAS  Google Scholar 

  63. Parker, R. T., Menon, P. G., Merideth, A. M., et al. Persistence of Rickettsia rickettsii in a patient recovered from Rocky Mountain spotted fever. J. Immunol. 73, 383–386, 1954.

    PubMed  CAS  Google Scholar 

  64. Ignatovich, V. F. Biological properties of Rickettsia prowazekii on long-term persistence in infected cotton rats. Acta Virol. 24, 144–148, 1980.

    CAS  Google Scholar 

  65. Freylikhman, O., Tokarerevich, N., Surorov, A., et al. Coxiella burnetii persistence in three generations of mice after application of live attenuated human M-44 vaccine against Q fever. Ann. N. Y. Acad. Sci. 990, 496–499, 2003.

    Article  PubMed  CAS  Google Scholar 

  66. Harris, S. Japanese biological warfare research in humans: a case study of microbiology and ethics. Ann. N. Y. Acad. Sci. 666, 21–49, 1992.

    Article  PubMed  CAS  Google Scholar 

  67. Alibek, K and Handelsman, S. Biohazard. Random House, New York, 1999.

    Google Scholar 

  68. Ecke, R. S., Gillaim, A. G., Snyder, J. C., et al. The effect of Cox-type vaccine on louse-borne typhus fever. Am. J. Trop. Med. 25, 447–462, 1945.

    CAS  Google Scholar 

  69. Johnson, J. E. and Kadull, P. J. Rocky Mountain spotted fever acquired in a laboratory. N. Engl. J. Med. 277, 842–847, 1967.

    Article  PubMed  Google Scholar 

  70. Centers of Disease Control. Laboratory-acquired endemic typhus – Maryland. MMWR Morb. Mortal Wkly. Rep. 27, 215–216, 1978.

    Google Scholar 

  71. Oh, M., Kim, N., Huh, M., et al. Scrub typhus pneumonitis acquired through the respiratory tract in a laboratory worker. Infection 29, 54–56, 2001.

    Article  PubMed  CAS  Google Scholar 

  72. Pike, R. M. Laboratory-associated infections: Summary and analysis of 3921 cases. Health. Lab. Sci. 13, 105–114, 1976.

    PubMed  CAS  Google Scholar 

  73. Walker, D. H., Crawford, C. G., and Cain, B. G. Rickettsial infection of the pulmonary microcirculation: the basis for interstitial pneumonitis in Rocky Mountain spotted fever. Hum. Pathol. 11, 263–272, 1980.

    Article  PubMed  CAS  Google Scholar 

  74. Committee on Pathology, Division of Medical Sciences, National Research Council. Pathology of epidemic typhus. Report of fatal cases studied by United States of America Typhus Commission in Cairo, Egypt during 1943–1945. Arch. Pathol. 56, 397–435, 1953.

    Google Scholar 

  75. Weil, E. and Felix, A. Zur serologischen diagnose des fleckfiebers. Wien. Klin. Wichenschr. 29, 33–35, 1916.

    Google Scholar 

  76. Ormsbee, R., Peacock, M., Philip, E., et al. Serologic diagnosis of epidemic typhus fever. Am J. Epidemiol. 105, 261–271, 1977.

    PubMed  CAS  Google Scholar 

  77. Newhouse, V. F., Shepard, C. C., Redus, M. D., et al. A comparison of the complement fixation, indirect fluorescent antibody and microagglutination tests for the serological diagnosis of rickettsial diseases. Am. J. Trop. Med. Hyg. 28, 387–395, 1979.

    PubMed  CAS  Google Scholar 

  78. La Scola, B. and Raoult, D. Laboratory diagnosis of rickettsioses: current approaches to the diagnosis of old and new rickettsial diseases. J. Clin. Microbiol. 35, 2715–2727, 1997.

    PubMed  Google Scholar 

  79. Hechemy, K. E., Osterman, J. V., Eisemann, C. S., et al. Detection of typhus antibody by latex agglutination. J. Clin. Microbiol. 13, 214–216, 1981.

    PubMed  CAS  Google Scholar 

  80. Halle, S. and Dasch, G. A. Use of sensitive microplate enzyme-linked immunosorbent assay in a retrospective serological analysis of a laboratory population at risk to infection with typhus group rickettsiae. J. Clin. Microbiol. 12, 343–350, 1980.

    PubMed  CAS  Google Scholar 

  81. Eremeeva, M. E., Balayeva, N. M., and Raoult, D. Serological response of patients suffering from primary and recrudescent typhus: Comparison of complement fixation reaction, Weil–Felix test, microimmunofluorescence, and immunoblotting. Clin. Diagn. Lab. Immunol. 1, 318–324, 1994.

    PubMed  CAS  Google Scholar 

  82. La Scola, B., Rydkina, L., Ndihokobwayo, J. B., et al. Serological differentiation of murine typhus and epidemic typhus using cross-adsorption and Western blotting. Clin. Diagn. Lab. Immunol. 7, 612–616, 2000.

    PubMed  Google Scholar 

  83. Teysselre, N. and Raoult, D. Comparison of Western immunoblotting and microimmunofluorescence for diagnosis of Mediterranean spotted fever. J. Clin. Microbiol. 30, 455–460, 1992.

    Google Scholar 

  84. Ching, W.-M., Rowland, D., Zhang, Z., et al. Early diagnosis of scrub typhus with a rapid flow assay using recombinant major outer membrane protein antigen (r56) of Orientia tsutsugamushi. Clin. Diagn. Lab. Immunol. 8, 409–414, 2001.

    CAS  Google Scholar 

  85. Eremeeva, M. E., Ignatovich, V. F., Dasch, G. A., et al. Genetic, biological, and serological differentiation of Rickettsia prowazekii and Rickettsia typhi. In: Rickettsia and Rickettsial Diseases, Kazar, J. and Toman, R. (eds). Publishing House of the Slovak Academy of Sciences, Veda, Bratislava. pp.43–50, 1996.

    Google Scholar 

  86. Carl, M., Tibbs, C. W., Dobson, M. E., et al. Diagnosis of acute typhus infection using the polymerase chain reaction. J. Infect. Dis. 161, 791–793, 1990.

    Article  PubMed  CAS  Google Scholar 

  87. Svraka, S., Rolain, J. M., Bechach, Y., et al. Rickettsia prowazekii and real-time polymerase chain reaction. Emerg. Infect Dis. 12, 428–432, 2006.

    PubMed  Google Scholar 

  88. Fang, R., Houhamdi, L., and Raoult, D. Detection of Rickettsia prowazekii in body lice and their feces by using monoclonal antibodies. J. Clin. Microbiol. 40, 3358–3363, 2002.

    Article  PubMed  CAS  Google Scholar 

  89. Birg, M.-L., La Scola, B., Roux, V., et al. Isolation of Rickettsia prowazekii from blood by shell vial culture. J. Clin. Microbiol. 37, 3722–3724, 1999.

    PubMed  CAS  Google Scholar 

  90. Boese, J. L., Wisseman, C. L. J., Walsh, W. T., and Fiset, P. Antibody and antibiotic action on Rickettsia prowazekii in body lice across the host-vector interface, with observation on strain virulence and retrieval mechanisms. Am. J. Epidemiol. 98, 262–282, 1973.

    PubMed  CAS  Google Scholar 

  91. Rolain, J. M., Maurin, M., Vestris, G., and Raoult, D. In vitro susceptibilities of 27 rickettsiae to 13 antimicrobials. Antimicrob. Agents Chemother. 42, 1537–1541, 1998.

    PubMed  CAS  Google Scholar 

  92. Krause, D. W., Perine, P. L., McDade, J. E., and Awoke, S. Treatment of louse-borne typhus fever with chloramphenicol, tetracycline, or doxycycline. East Afr. Med. J. 52, 421–427, 1975.

    PubMed  CAS  Google Scholar 

  93. Huys, J., Kayihigi, J., Freyens, P., et al. Single-dose treatment of epidemic typhus with doxycycline. Chemotherapy18, 314–317, 1973.

    Article  PubMed  CAS  Google Scholar 

  94. Watt, G., Chouriyagune, C., Ruangweerayud, R., et al. Scrub typhus infections poorly responsive to antibiotics in northern Thailand. Lancet 348, 86–89, 1996.

    Article  PubMed  CAS  Google Scholar 

  95. Turcinov, D., Kuzman, I., and Herendic B. Failure of azithromycin in treatment of Brill-Zinsser disease. Antimicrob. Agents Chemother. 44, 1737–1738, 2000.

    Article  PubMed  CAS  Google Scholar 

  96. Yeomans, A., Snyder, J. C., Murray, E. S., et al. The therapeutic effect of para-aminobenzoic acid in louse borne typhus fever. JAMA 126, 349–356, 1944.

    Google Scholar 

  97. Steigman, A. J. Rocky Mountain spotted fever and the avoidance of sulfonamides. J. Pediatr. 91, 163–164, 1977.

    Article  PubMed  CAS  Google Scholar 

  98. Ruiz Beltrán, R. and Herrero Herrero, J. I. Deleterious effect of trimethoprim-sulfamethoxazole in Mediterranean spotted fever. Antimicrob. Agents Chemother. 36, 1342–1343, 1992.

    PubMed  Google Scholar 

  99. Eaton, M., Cohen, M. T., Shlim, D. R., and Innes B. Ciprofloxacin treatment of typhus. JAMA 262, 772–773, 1989.

    Article  PubMed  CAS  Google Scholar 

  100. Strand, O. and Stromberg, A. Ciprofloxacin treatment of murine typhus. Scand. J. Infect. Dis. 22, 503–504, 1990.

    Article  PubMed  CAS  Google Scholar 

  101. Matossian, R. M., Thaddeus, J., and Garabedian, G. A. Outbreak of epidemic typhus in the northern region of Saudi Arabia. Am. J. Trop. Med. Hyg. 12, 82–90, 1963.

    PubMed  CAS  Google Scholar 

  102. TYPHUS Clinical Reference, http://allhazards.state.wy.us. Accessed Feb 2004.

  103. Murray, E. S., Baehr, G., Shwartzman, G., et al. Brill’s disease. JAMA 142, 1059–1066, 1950.

    Google Scholar 

  104. Campbell, W. C. Insect infestations of man. In: Chemotherapy of Parasitic Diseases, Campbell, W. C. and Rew, R. S. (eds). Plenum Press, New York. pp.531–540, 1986.

    Google Scholar 

  105. Sholdt, L. L., Rogers Jr., E. J., Gerberg, E. J., and Schreck, C. E. Effectiveness of permethrin-treated military uniform fabric against human body lice. Mil. Med. 154, 90–93, 1989.

    PubMed  CAS  Google Scholar 

  106. Notifiable Conditions, Washington State Department of Health, http://www.doh.wa.gov/Notify/guidelines/typhus.htm. Accessed Feb 2004.

  107. Woodward, T. E. Rickettsial vaccines with emphasis on epidemic typhus: initial report of an old vaccine trial. S. Afr. Med. J. 11, 73–76, 1986.

    Google Scholar 

  108. Perez Gallardo, F. and Fox, J. P. Infection and immunization of laboratory animals with Rickettsia prowazekii of reduced pathogenicity, strain E. Am. J. Hyg. 48, 6–21, 1948.

    PubMed  CAS  Google Scholar 

  109. Ge, H., Chuang, Y. Y., Zhao, S., et al. Comparative genomics of Rickettsia prowazekii Madrid E and Breinl strains. J. Bacteriol. 186, 556–565, 2004.

    Article  PubMed  CAS  Google Scholar 

  110. Weiss, K. and Walker, D. H. New and improved vaccines against rickettsia infections: Rocky mounted spotted fever, epidemic typhus, and scrub typhus. In: New Generation Vaccines, Woodrow, G. C. and Levine, M. M. (eds). Marcel Decker, New York. pp.357–374, 1990.

    Google Scholar 

  111. Wisseman, C. L. The present and future of immunization against the typhus fevers. In: Pan American Health Organization: First International Conference on Vaccines Against Viral and Rickettsial Diseases of Man. Pan American Health Organization, Washington, DC. pp.523–527, 1967.

    Google Scholar 

  112. Centers for Disease Control. Typhus vaccine. Recommendation on immunization practices. Ann. Intern. Med. 68, 785–786, 1968.

    Google Scholar 

  113. Coker, C., Majid, M., and Radulovic, S. Development of Rickettsia prowazekii DNA vaccine. Cloning strategies. Ann. N. Y. Acad. Sci. 990, 757–764, 2003.

    Article  PubMed  CAS  Google Scholar 

  114. Díaz-Montero, C. M., Feng, H.-M., Crocquet-Valdes, P. A., and Walker, D. H. Identification of protective components of two major outer membrane proteins of spotted fever group rickettsiae. Am. J. Trop. Med. Hyg. 65, 371–378, 2001.

    PubMed  Google Scholar 

  115. Dasch, G. A., Bourgeois, A. L., and Rollwagen, F. M. The surface protein antigen of Rickettsia typhi: in vitro and in vivo immunogenicity and protective efficacy in mice. In: Raoult, D., and Brouqui, P., eds. Rickettsiae and Rickettsial Diseases at the Turn of the Third Millenium. Paris: Elsevier. pp.116–122, 1999.

    Google Scholar 

  116. Bourgeois, A. L. and Dasch, G. A. The species-specific surface protein antigen of Rickettsia typhi: immunogenicity and protective efficacy in guinea pigs. In: Rickettsiae and Rickettsial Diseases, Burgdorfer, W. and Anacker, R. L. (eds). Academic Press, New York. pp.71–80, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry I. Lutwick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mooty, M., Lutwick, L.I. (2009). Epidemic Typhus Fever. In: Lutwick, S., Lutwick, L. (eds) Beyond Anthrax. Humana Press. https://doi.org/10.1007/978-1-59745-326-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-326-4_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-438-8

  • Online ISBN: 978-1-59745-326-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics